ZEBRA SCANNER SDK for ANDROID
DEVELOPER GUIDE

ZEBRA SCANNER SDK for ANDROID
DEVELOPER GUIDE

MNO002223A06
Revision A
May 2019

i Zebra Scanner SDK for Android Developer Guide

No part of this publication may be reproduced or used in any form, or by any electrical or mechanical means,
without permission in writing from Zebra. This includes electronic or mechanical means, such as photocopying,
recording, or information storage and retrieval systems. The material in this manual is subject to change
without notice.

The software is provided strictly on an “as is” basis. All software, including firmware, furnished to the user is on
a licensed basis. Zebra grants to the user a non-transferable and non-exclusive license to use each software
or firmware program delivered hereunder (licensed program). Except as noted below, such license may not be
assigned, sublicensed, or otherwise transferred by the user without prior written consent of Zebra. No right to
copy a licensed program in whole or in part is granted, except as permitted under copyright law. The user shall
not modify, merge, or incorporate any form or portion of a licensed program with other program material, create
a derivative work from a licensed program, or use a licensed program in a network without written permission
from Zebra. The user agrees to maintain Zebra’s copyright notice on the licensed programs delivered
hereunder, and to include the same on any authorized copies it makes, in whole or in part. The user agrees not
to decompile, disassemble, decode, or reverse engineer any licensed program delivered to the user or any
portion thereof.

Zebra reserves the right to make changes to any software or product to improve reliability, function, or design.
Zebra does not assume any product liability arising out of, or in connection with, the application or use of any
product, circuit, or application described herein.

No license is granted, either expressly or by implication, estoppel, or otherwise under any Zebra Technologies
Corporation, intellectual property rights. An implied license only exists for equipment, circuits, and subsystems
contained in Zebra products.

Warranty

For the complete Zebra hardware product warranty statement, go to:

http://www.zebra.com/warranty.

Revision History

Changes to the original manual are listed below:

Change Date Description

-01 RevA | 8/2015 Initial Release

-02 RevA | 10/2015 | Software updates.

-03 RevA | 9/2016 Software updates.

-04 RevA | 4/2017 Software updates.

-05 RevA | 11/2018 Deleted EOL scanners; added new scanners.

-06 RevA | 5/2019 Updated:

- supported scanners list on pg. 1-2

- Android version on pg. 1-3

- Zebra copyright statement on the last page.

Added Scale Functionality on pg. 2-15.

http://www.zebra.com/warranty

TABLE OF CONTENTS

WVAITANTY ..ottt ettt ettt ettt ettt ettt ettt et e e e et e et e e e e e e et e e e e aaeeaaeaaaaaaaaaaaaaaaeaaaaaaaaans ii
NV T=Y o] o T 1] (o] ii
About This Guide
] (o Yo [T 1T o %
(O aF=T o) (=T gl D =T Yo] [o 1P USRRR v
Related DOCUMENTES ...ttt et ettt et et e et ettt ettt eeeeeeeeeeaaaeaaeaaaaaaaaaaaaaaaaaaaaaaaaans v
F o [0 [o] g F= T Y=o TN o= SRR Vi
Notational CoNVENTIONSoooi ittt s st e e e aeeeeeeeeens Vi
Service INFOrMALIONooviiiiieeee e ———— Vi
Chapter 1: GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID
1] (oo [T3 1T o R 1-1
Overview of the Zebra Scanner SDK for Androidoooiiiiiiiiiiii e 1-1
Y0 o] olo] 3 (=To IS To=] a =] = TSP 1-2
System ReQUIFEMENTS ...t e e e e e e e e e e s e e e e e e e ennes 1-3
Installation and ConfiQUrationcooi i e 1-3
Installing the Scanner Control AppliCationeiiiii i 1-3
Running and Configuring the Scanner Control Application ..., 1-4
Using Scanner Control Application with a Supported Deviceeeeeeeiiiiiiiiiiiiiiiiiieeeeeeeeee. 1-7
Setting Up the Zebra Scanner SDK for Android in Android Studioccoceeiiiiiiiiiiiiiccs 1-16
Prerequisite 1 - Installation of Android StUIOoooiiiiiiiiii e 1-16
Prerequisite 2 - Configuring the Host to Communicate With the Devicecccccvvvvvvvvvevreeneen. 1-16
Installing and Building the Android SDK Project ... 1-16
Chapter 2: ANDROID DEVELOPMENT SDK
] (o Yo [T 1o o 2-1
1= 1722 11T o 2-1
ST] N T F=1 =1 (o o PSSR 2-1
Setting SDK Handler Delegate ... 2-2

Setting Operation Mode

v Zebra Scanner SDK for Android Developer Guide

Subscribing tO EVENES ..o ———————— 2-3
CONNECHNG £0 @ SCANMETii ettt b e e b et s beeesaasssssssassessssssesssssesseeseessneneaaeeaens 2-4
Detecting Available SCANNETSuuuuiiiiiiiiiiiiiiiiiiiiiieeeeeererreeeeereeeeeeeeeeerereeeeeeererereeerreerrreeeeeeees 2-4
Connecting to an Available SCANNEToooiiiiiiii e 2-5
Receiving Bar Code Datacooiiiiiiiiiiiii et 2-7
Retrieving Scanner AttDULESoooiiiiii e 2-8
Sending Remote COMMANGSii e e e s e s eeseeassseeseeseesseeeeesereeeeeeeeees 2-12
BEEP the BEEPET ... e ———————— 2-12
Disabling a Bar Code SymbolOgy TYPEuuuuuiiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeereeeeeseeess 2-13
Disabling the SCANNET ... 2-14
Update SCANNEr FIMMWAIEcooiiiiiiiiiiiiieeeeee ettt eas e 2-15
Scale FUNCHONAITYeeeiiiiie et e e et e e e e e e e e aanbbe e e e e e e e aannes 2-15
Scale ENable/DiSableoooiiiiiiiiiie e 2-15
A (o TS T~ | [USSP 2-16
RESEE SCAIE ..ottt e e e e e e e e e e et a e e e e e e e e nraaaeeeeaaanne 2-16

REaA WEIGNT ...ttt e e e e e e e e e e e e e e nne 2-16

ABOUT THIS GUIDE

Introduction

The Zebra Scanner SDK for Android Developer Guide provides installation and programming information for the
Software Developer Kit (SDK) that allows Software Decode based applications for Android based devices.

Chapter Descriptions

This guide includes the following topics:

e Chapter 1, GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID provides information about
the Android Software Development Kit (Android SDK).

e Chapter 2, ANDROID DEVELOPMENT SDK describes how to connect to a scanner through the SDK,
retrieve bar codes, and send command and control messages using the included application as an example.

Related Documents

e RFD8500 Developer Guide, p/n MNO02222Axx.

e Zebra Scanner SDK for iOS Developer Guide, p/n MNOO1834Axx.
e RFD8500 User Guide, p/n MNO0O2065AxX.

e RFD8500 Quick Start Guide, p/n MNO02225Axx.

e RFD8500 Regulatory Guide, p/n MNO02062Axx.

e CRD1S-RFD8500 (1-Slot), CRDUNIV-RFD8500-1R (3-Slot), CRD4S-RFD8500 (4-Slot) Universal Charge
Only Cradles Regulatory Guide, p/n MN002224Axx.

e DS3678 Cordless Digital Imager Product Reference Guide, p/n MN-002689-xx.
e (CS4070 Product Reference Guide, p/n MNOOO762AxxX.

For the latest version of this guide and all guides, go to: www.zebra.com/support.

www.zebra.com/support

vi Zebra Scanner SDK for Android Developer Guide

Additional Resources

For further information on the various topics covered in this Developer Guide, also refer to:

¢ Android Studio Overview at http://developer.android.com/tools/studio/index.html

e Android Studio Training and Samples at https://developer.android.com/training/index.html

e Android API Guides at http://developer.android.com/quide/index.html

Notational Conventions

This document uses the following conventions:

¢ ltalics are used to highlight chapters, sections, field names, and screen names in this and related
documents.

e Courier New font type is used to represent code snippets.
¢ bullets (+) indicate:
e Action items

¢ Lists of alternatives
e Lists of required steps that are not necessarily sequential

e Sequential lists (e.g., those that describe step-by-step procedures) appear as numbered lists.

\/ NOTE This symbol indicates something of special interest or importance to the reader. Failure to read the note
does not result in physical harm to the reader, equipment or data.

CAUTION This symbol indicates that if this information is ignored, the possibility of data or material damage may
/ i \ occur.

WARNING! This symbol indicates that if this information is ignored the possibility that serious personal
A injury may occur.

Service Information

If you have a problem using the equipment, contact your facility's technical or systems support. If there is a
problem with the equipment, they contact the Zebra Technologies Global Customer Support Center at:
http://www.zebra.com/support.

When contacting Zebra support, please have the following information available:
* Product name
* Version number
Zebra responds to calls by e-mail, telephone or fax within the time limits set forth in support agreements.

If your problem cannot be solved by Zebra support, you may need to return your equipment for servicing and
will be given specific directions. Zebra is not responsible for any damages incurred during shipment if the
approved shipping container is not used. Shipping the units improperly can possibly void the warranty.

If you purchased your business product from a Zebra business partner, contact that business partner for
support.

http://developer.android.com/tools/studio/index.html
https://developer.android.com/training/index.html
http://www.zebra.com/support
http://developer.android.com/guide/index.html

Chapter1 GETTING STARTED with the
ZEBRA SCANNER SDK for
ANDROID

Introduction

This chapter provides information about the Zebra Scanner SDK for Android - an architectural framework
providing a single programming interface to provide two way communication between Android based
applications and supported Zebra scanning devices.

Overview of the Zebra Scanner SDK for Android

The Android SDK provides an abstraction layer, delivered in the form of an Android Library (.aar file). This
library provides an API to provide the connection, command and control, and communication facilities required
to operate a Zebra scanner on the Android platform.

The Android SDK is broken into three parts:

e Scanner Control Application for Android - Installable application for Android devices to enable quick
testing and demonstration of the SDK capabilities on a Bluetooth® (BT) supported Zebra scanner or a
USB SNAPI scanner. The Scanner Control application is available for download from the Google Play
Store and is distributed within the SDK.

¢ Android SDK Library File - This is provided as standalone AAR file that can be imported into a new
Android Application. Android Studio is the development environment that is recommended.

¢ Android SDK Demo Application Project - This is a zip file containing the Scanner Control application
project files from Android Studio. It contains the source code to the application and the SDK library files
necessary to build, test and modify the application as necessary.

1 -2 Zebra Scanner SDK for Android Developer Guide

Supported Scanners

Currently the following Zebra scanners are supported:

USB SNAPI
e PL3307
e DS457
e DS4308
* 1S2208
e DS8178 and Presentation Cradle
e DS3678 and Presentation Cradle
e MP6210 (CSS + Scale) + EAS (Sensormatic)
* MP7000.

Bluetooth
e (CS4070 (in Bluetooth SSI Profile mode)
e RFD8500 (in default mode)
e DS3678 (In SSI BT Classic mode)
e LI3678 (In SSI BT Classic mode).
e DS8178 (In SSI BT Classic mode)
e DS2278 (In SSI BT Classic mode).

\/ NOTE To configure a device in the mode specified, refer to the appropriate Product Reference Guide, User
Guide, or Integration Guide.

Table 1-1 lists the pairing methods that can be used for each scanner model.

Table 1-1 Pairing Methods

Scan-To-Connect Pairing

Scanner Model Bar Code Manual Pairing
CS4070 Yes Yes
DS3678 Yes Yes
LI3678 Yes Yes
DS8178 Yes Yes
DS2278 Yes Yes
RFD8500 Yes

GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID 1-3

System Requirements
The following system requirements are necessary to use the Scanner Control application (demo application).

¢ Hardware device supporting Android KitKat version 4.4, or later, with Bluetooth and USB port (only if
using USB scanners).

\/ NOTE Android version Pie (9.0) is the latest version that was tested.

The following system requirements are necessary to develop and test applications, and to use the Scanner
Control application project for development and testing.

¢ Android Studio 1.3 or later installed on Windows or Linux
e Android API Level 19 or later (Demo application was built and tested with API Level 19)
e The Scanner Control Application Project (packaged as an Android Studio Project)

¢ Hardware device running Android Kit Kat 4.4 or later, or emulator. Note that in order to create a
connection to the scanner, a Bluetooth connection is required.

Installation and Configuration

Installing the Scanner Control Application

The Scanner Control application can be installed directly onto a mobile device. The following steps include
general guidelines for installation. Menus and options may vary depending on the version of Android running.

\/ NOTE The Scanner Control application is available for download from the Google Play Store and is distributed
within the SDK.

To install the demo application:

1. Previous versions (earlier than v1.0.16.0 of the Zebra Scanner Control application used a different name
and branding signature and must be manually uninstalled before installing the current version of the SDK
demo application.

To do this:

a. Go to Android Settings > Application Manager (this varies depending on the version and platform of
Android running).

b. Select the Android Scanner Demo App.
c. Select Clear Cache and Clear Data to remove any resident demo settings.

d. Select Uninstall to remove the demo application from the system.

2. Install the application using one of the following methods:

a. Using Google Play Store:

i. Go to https://play.google.com/store/apps/details?id=com.zebra.scannercontrol.app or search for
Scanner Control in Google Play Store.

ii. Install the Scanner Control application.
or

b. Manual Installation from the SDK package:

https://play.google.com/store/apps/details?id=com.zebra.scannercontrol.app

1 -4 Zebra Scanner SDK for Android Developer Guide

i. Copy the file scanner_control_app_version.apk file included with the SDK package to the Android
device.

ii. Navigate to the saved location and select the APK package file.

ili. The Android OS provides a warning that the application is from an untrusted source and requires
that installation from unknown sources be enabled for this installation. This is normal. Select the
option to install from unknown sources.

\\‘

3. The Android OS installs the application and installs a Scanner Control Application icon (\s\\::\\\) in the
ZEBRA

Apps menu.

Running and Configuring the Scanner Control Application

To run the application:
1. Select the Scanner Control application from the Android App menu.

2. After the splash screen appears, the overview message screen displays (Figure 1-1).
30 F al #1013

This app supports Scan-To-Connect
technology for 1-step pairing.

It allows you to control your scanner:
+ Program beeper and LEDs
+ Enable / disable symbologies
+ Remotely trigger a scan

It displays scanned bar code data.

It can query scanner asset information &
battery health statistics.

[C] Don't show this message again.

CONTINUE

Figure 1-1 Scanner Control App - Overview

3. Select CONTINUE. The Pair New Scanner bar code displays.

GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID 1-5

4. From the Scanner Control App, select App Settings to configure the application.
30T 4 10:14

Scanner Control App
Zebra Technologies

|I|g|| Pair New Bluetooth Scanner
= Available Device List

\If' Find Cabled Scanner

0 Connection Help

Q App Settings

0 App Overview

Figure 1-2 Scanner Control App Menu - App Settings

5. The available settings are displayed in Figure 1-3. See Table 1-2 for settings descriptions.
2O T al 10:15

< App Settings

RESET DEFAULTS

Background Notifications

Available Scanner

Active Scanner

Barcode Event
Scanner Detection

Auto Detection .

Pair New Scanner Barcode

Figure 1-3 App Settings

1 -6 Zebra Scanner SDK for Android Developer Guide

Table 1-2 App Settings Descriptions

Setting Description

Reset Defaults Changes all settings to the defaults.

Background Notifications

Available Scanner Notifies the user when a new scanner is available for
connection.

Active Scanner Notifies the user when a scanner becomes connected.

Barcode Event Notifies the user when a bar code scans.

Scanner Detection

Auto Detection Automatically detects new scanners when they are paired or
connected via USB.

Pair New Scanner Bar Code

Communication Protocol Communication protocol to be used in ScanToConnect Suite
bar code. Application can connect only in the SSI over
Bluetooth Classic protocol.

Set Factory Defaults Determines whether or not the scanner changes its settings to
factory defaults before connecting.

GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID 1-7

Using Scanner Control Application with a Supported Device

IMPORTANTThis application demonstrates the various capabilities of the lower level SDK library, and is not
intended to be used for production functions.

To run the application:

1. There are two ways to connect a Bluetooth scanner.

a. Scan the pairing bar code. When the scanner and pairing bar code are configured correctly, scan the
pairing bar code to connect.
30T 4 10:14

= Pair New Scanner

Scan barcode to pair your cordless
scanner to this app.

Figure 1-4 Pairing Bar Code

If your device has the November 2016 or later security patch you may need to click the PAIR button in
the confirmation dialog shown in Figure 1-5.

Pair with DS8178 16237010503932?

Type the pairing code then press Return or
Enter

O Allow DS8178 16237010503932 to access

your contacts and call history

CANCEL PAIR

Figure 1-5 Pairing Confirmation

1 -8 Zebra Scanner SDK for Android Developer Guide

or

b. Pair the scanner manually. To pair the scanner manually, refer to the appropriate Product Reference
Guide, User Guide, or Integration Guide for instructions on how to pair the specific device.

2. When paired, the scanner displays in the Available Device List.
30 F 4 =% 1014

30l 11:45

& Available Device List)

Last Connected Scanner
Scanner Control App

Zebra Technologies

0O DS3678 160685230D0013 *
40:83:DE:94:DA:02

Ilgll Pair New Bluetooth Scanner

9 Available Device List

Find Cabled Scanner

Other Scanners

0 CS4070:14227522501612
40:83:DE:74:72:F9

CS4070:14227522501631

Connection Help 40:83:DE:74:72:EC

CS4070:15093522501653
40:83:DE:90:1C:8D

DS3678 153245230E0057
40:83:DE:94:D5:79

¢
7]
Lx AppSettings
© Avpoverview

DS3678 160685230D0021
40:83:DE:94:DA:0B

0o O o o 4

L14278 1434400502291
C4:7D:CC:0D:C2:19

K W W K K %

Figure 1-6 Available Device List

3. Ifusing a USB scanner:
Configure its USB host mode to SNAPI.
b. Connect it to the Android device
c. The scanner appears in the Available Device List.

or

GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID 1-9

d. Select Find Cabled Scanner from the menu to display the SNAPI bar code.
20T 4 10:14

D, &
N
>,

ZEBRA

Scanner Control App
Zebra Technologies

I”é”l Pair New Bluetooth Scanner
9 Available Device List
e Connection Help

¢ App Settings

0 App Overview

Figure 1-7 Menu - Find Cabled Scanner

e. lIfthere is a single scanner to connect, the application connects to the scanner automatically. If there
are no SNAPI scanners connected, the application displays the SNAPI bar code (Figure 1-8) to scan to
connect.

30T 4 134

< Find Cabled Scanner

Attach your cabled scanner
to your device and scan the
barcode to connect with this
app.

Com Protocol = SNAPI

Figure 1-8 SNAPI Bar Code

f. If multiple USB SNAPI scanners are available, the application displays the available scanner list from
which the user can select the appropriate scanner for the application to connect.

1 - 10 Zebra Scanner SDK for Android Developer Guide

It may be necessary for the user to give the Android operating system permission to access the USB
device. Should a permissions message display, select OK.

Scanner Control

Allow the app Scanner Control to access the USB device?

[T] use by default for this USB device

CANCEL OK

Figure 1-9 Application Permission

4. When a device is selected in the Available Device List on page 1-8, the application attempts to connect to
the scanner. When the connection is made, Figure 1-10 displays.

\/ NOTE Scanning the pairing bar code or clicking Find Cabled Scanner displays this screen.

Settings

From this screen you can exercise various options.
30 = . 10:18

= Active Scanner

Settings Data View Advanced

Beeper >
LED Control >
Symbologies >
Trigger Pull Release
Picklist Mode

Aim Guide On Off
Vibration Feedback >

Figure 1-10 Settings - Active Scanner (Connected Device)

GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID 1 -11

3OFT M 3:48

Active Scanner

Beeper Settings

Beeper Sequence

High-high-low-low beep

TEST BEEPER

Figure 1-11 Beeper Settings

LED

LACREA | 10:21

Active Scanner

LED Control
Green LED On Off
Amber/Blue LED On Off
Red LED On Off

Figure 1-12 LED Control

1 - 12 Zebra Scanner SDK for Android Developer Guide

Symbologies

LACRAY| 10:21

Active Scanner

Symbology Settings (ON/OFF)

[Persist Settings
UPC-A

UPC-E

UPC-E1
EAN-8/JAN8
EAN-13/JAN13

Bookland EAN

Figure 1-13 Symbology Settings

Vibration Feedback

30 = . 10:22

Active Scanner

Vibration Feedback

Vibration .

Vibration Duration (ms)

150

TEST VIBRATION

Figure 1-14 Vibration Feedback

GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID 1 - 13

Data View

Select the Data View tab to see bar codes received.
30F M 10:21

= Active Scanner

Settings Data View Advanced

Barcodes Scanned: 3

1 123456789012
UPCA, Characters =12

2 123456789
Code 128, Characters =9

3 0123456789ABCDEFGHIJKLNMOPQRS
TUVWXYZ
Data Matrix, Characters =36

CLEARLIST

Sample Barcodes for Scanning >

Figure 1-15 Data View Tab

Advanced

Select the Advanced tab to Find Scanner and select an option to display Asset Information on page 1-14,
Battery Statistics on page 1-14 and to Update Firmware on page 1-15.
3 @ %y (] 9:29

= Active Scanner

Settings DataView Advanced

FIND SCANNER

Asset Information >
Battery Statistics >
Update Firmware >

Figure 1-16 Advance Tab - Find Scanner

1 - 14 Zebra Scanner SDK for Android Developer Guide

Asset | nformation
30T 10:22

Active Scanner

Asset Information

Model Number: DS3678-SROF003VZWW

Serial Number: 160685230D0013
Firmware: PAACKS00-002-NO1
Manufacture Date: 08MAR16

Scanner Name: DS3678 160685230D0013

Configuration Filename: Modified

Figure 1-17 Advance Tab - Asset Information

Battery Statistics
30 T 10:22

Active Scanner

Battery Statistics

Battery Asset Information

Manufacture Date: 11FEB15
Serial Number: TX131Y211F203BGA.A0393
REV EV
Model Number: 80-165537-01
Design Capacity: 3350 mAhr
Battery Life Statistics
State of Health: 90%
Charge Cycles Consumed: 6

Figure 1-18 Advanced Tab - Battery Statistics

GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID 1 - 15

Update Firmware

3O "l T 11:29

3O Sl 11:29

Active Scanner

Firmware Update Process
Help

Update Firmware 0

DS3678-STANDARD SR MODELS

2. From your Windows PC with

From: CAACKS00-002-NO1 123Scan, access your scanner’s
To: Release 005 - 2016.07.27 (CAACKS00-002-R01) plug-in (.scnplg file) from C:

\ProgramData\123Scan2\Plug-

ins
UPDATE FIRMWARE 3. Put a copy of the plug-in into
your phone's download folder

(Device Storage > Download)

> Copy the correct 123Scan plug-in
for your scanner to your phone:
1. Load 123Scan onto a
Windows computer from:

www.Zebra.com/123Scan

Release Notes:

> Start the firmware update by
s clicking the "Update Firmware"

* Release CAACKS00-002-R01 - July 2016 button:
Kkkkk CLOSE

support for DS3608-ER

Figure 1-19 Advanced Tab - Update Firmware and Firmware Update Process Help

1 - 16 Zebra Scanner SDK for Android Developer Guide

Setting Up the Zebra Scanner SDK for Android in Android Studio

Prerequisite 1 - Installation of Android Studio

To install Android Studio:

1. Download Android Studio from the Android developers site: https://developer.android.com/sdk/index.html.

2. Before running the Android Studio, run the SDK Manager to install API Level 19. For additional
instructions, go to: http://developer.android.com/tools/help/sdk-manager.html.

3. The Android Studio uses the Gradle build system. For more information and an overview of the Gradle
build system, review the documentation at: https://developer.android.com/sdk/installing/studio-build.html.

Prerequisite 2 - Configuring the Host to Communicate With the Device

Some devices require that you download and install a driver so that is recognized as a USB device on
Windows. If using Linux, the device has to be configured manually. Review the documentation regarding
installing the appropriate driver for the device: http://developer.android.com/tools/device.html.

Installing and Building the Android SDK Project

To install and build the Android SDK project:

1. Unzip the file android_scanner_sdk_demo_version_src.zip into a local directory. This directory is referred
to as dev_directory.

2. Open Android Studio and select Open an Existing Project.

3. Navigate to the dev_directory and select the AndroidScannerSDK folder:
dev_directory\AndroidScannerSDK

As this is the first time that Android Studio is opening the project, it begins creating all of the necessary
local project files and indexes. This may take a minute or two.

4. Copy the folder to the development host. This directory is called dev_directory.

5. Open the Android Studio.

6. Select Open an Existing Android Studio Project.

7. Navigate to the dev_directory and select the project AndroidScannerSDK under the src folder.

8. The Project tab on the left panel displays the contents of the Project, including the app project which is the
top level for the application source.

9. Select the Build option from the Menu bar. Click Make Project. This builds the APK application located
under: dev_directory\AndroidScannerSDK\app\build\outputs\apk.

https://developer.android.com/sdk/index.html
http://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/sdk/installing/studio-build.html
http://developer.android.com/tools/device.html

Chapter2 ANDROIDDEVELOPMENT SDK

Introduction

This chapter outlines the steps to connect to a scanner through the SDK, retrieve bar codes, and send
commands and control messages using the included Scanner Control application as an example. Relevant
code snippets are included.

Initialization

SDK Initialization

Before the application can use the underlying SDK, it must first be initialized and set up to communicate with it.
The Appl i cat i on class defined in the application, which extends the required

andr oi d. app. Appl i cati on class creates the SDKHandl er object. The following application code shows
how this is done.

Code Snippet - SDK Initialization Code

public class Application extends android.app. Application {

/11 nstance of SDK Handl er
public static SDKHandl er sdkHandl er;

/ / Bar code data

@verride

public void onCreate() {
super.onCreate();
sdkHandl er = new SDKHandl er (t hi s);

2 -2 Zebra Scanner SDK for Android Developer Guide

When this object is passed to the SDKHandl er, all necessary library initialization is performed and the
reference is stored as an Android Context object which is defined by Android 4.4+ as:

An "Interface to global information about an application environment. This is an abstract class whose
implementation is provided by the Android system. It allows access to application-specific resources and
classes, as well as up-calls for application-level operations such as launching activities, broadcasting and
receiving intents, etc."

The Appl i cat i on object can now provide the Interface to all SDK APl methods. These are methods that call
"into" the SDK. Methods that call "out" (callbacks) are defined by the SDK API Delegate as shown in Setting
SDK Handler Delegate on page 2-2.

Setting SDK Handler Delegate

In order for the parent class to receive events from the SDK as well as call SDK methods, it must define a
delegate that conforms to the | Dcs SdkApi Del egat e interface definition.

Code Snippet - Setting SDK APl Delegate

public class BaseActivity extends ActionBarActivity inplements Scanner AppEngi ne,
| DcsSdkApi Del egat e {

/1 The Handl er that gets infornmation back fromthe Bl uetoothChat Service
protected final Handler nHandler = initializeHandl er();

@verride

protected voi d onCreat e(Bundl e savedl nstanceState) {
super. onCreat e(savedl nst anceSt ate) ;
nScanner | nf oLi st =Appl i cati on. nScanner | nf oLi st ;
TAG = get C ass() . get Si npl eNane() ;

/1 Setting up the SDK del egate to receive events
Appl i cation. sdkHandl er. dcssdkSet Del egat e(t hi s);
initializeDcsSdkW t hAppSettings();
}

The code that passes the BaseAct i vi t y as the defined SDK delegate, as shown in Code Snippet - Setting
SDK API Delegate, now contains the necessary inherited methods to receive events from the SDK to
determine scanner connection status, scanner availability, and the various data events that are sent up from
the SDK. Note that this must be set explicitly because the Appl i cat i on class owns the sdkHandl er object.
As stated earlier, the global Appl i cati on class is used to access the SDK API as shown in this example.

Setting Operation Mode

A client can set the operation mode interested. Currently Bluetooth and SNAPI are supported. You can set
multiple operation modes.

Code Snippet - Setting Operation Mode

Appl i cati on. sdkHandl er. dcssdkSet Oper at i onal Mode(DCSSDKDef s. DCSSDK_MODE. DCSSDK_OPMODE_BT_NO
RVAL) ;

Appl i cati on. sdkHandl er. dcssdkSet Oper at i onal Mode(DCSSDKDef s. DCSSDK_MODE. DCSSDK_OPMODE_SNAPI
)i

ANDROID DEVELOPMENT SDK 2-3

Subscribing to Events
A client can subscribe to specific event types:
e DCSSDK_EVENT_ BARCCDE - Notifies the client of an available bar code from the active scanner.

e DCSSDK_EVENT_ SCANNER APPEARANCE - Notifies the client that a scanner that was paired to the host
is available for connection.

e DCSSDK_EVENT_SCANNER_DI SAPPEARANCE - Notifies the client that a scanner is no longer available
for connection.

e DCSSDK _EVENT_SESSI ON_ESTABLI SHVENT - Notifies the client that a connection to a scanner has
become active (connected and available to communicate).

e DCSSDK_EVENT_SESSI ON_TERM NATI ON - Notifies the client that a connection to a scanner has
terminated (can no longer be communicated with).

Code Snippet - Subscribing to Events
Following is an example of how to subscribe to these events:

int notifications _mask = O;

/1 We would |ike to subscribe to all scanner avail abl e/ not-avail abl e events
notifications_mask |=

DCSSDKDef s. DCSSDK_EVENT. DCSSDK_EVENT _SCANNER APPEARANCE. val ue

DCSSDKDef s. DCSSDK_EVENT. DCSSDK_EVENT _SCANNER DI SAPPEARANCE. val ue

/1 W& would |ike to subscribe to all scanner connection events
notifications_mask |=
DCSSDKDef s. DCSSDK_EVENT. DCSSDK_EVENT_SESSI ON_ESTABLI SHVENT. val ue |
DCSSDKDef s. DCSSDK _EVENT. DCSSDK_EVENT _SESSI ON_ TERM NATI ON. val ue

/1 W& would |ike to subscribe to all barcode events
notifications_nask | = DCSSDKDefs. DCSSDK_EVENT. DCSSDK_EVENT_BARCCDE. val ue;

/'l subscribe to events set in notification nask
Appl i cati on. sdkHandl er. dcssdkSubsri beFor Event s(noti fi cati ons_mask) ;

11

In order for the client application to receive these events, the application must have a defined class that
implements the IDcsSdkApiDelegate interface. The application accomplishes this through the BaseActi vity
class. Since all Acti vi ty classes extend the BaseActivity,allU Activity classes can receive these
events.

2 -4 Zebra Scanner SDK for Android Developer Guide

Connecting to a Scanner

This section describes how to perform the initial setup, discovery and connection to a scanner device via
Bluetooth using the Scanner Control application for Android as a reference example. For each topic, a link to
the Android Studio developer site is included.

Detecting Available Scanners

When scanners are paired to the Android host, they are provided to the application. The SDK must be told to
look for these scanners (some use cases would disable this feature). At the same time, any events the client
application is interested in should be subscribed to at this time.

Code Snippet - Detecting Available Scanners

int notifications_nask = O;

/1 W& would |ike to subscribe to all scanner avail abl e/ not-avail abl e events
notifications_mask |=
DCSSDKDef s. DCSSDK_EVENT. DCSSDK_EVENT _SCANNER_APPEARANCE. val ue |
DCSSDKDef s. DCSSDK_EVENT. DCSSDK_EVENT_SCANNER_DI SAPPEARANCE. val ue;

/1 W& would |ike to subscribe to all scanner connection events
notifications_mask |=
DCSSDKDef s. DCSSDK_EVENT. DCSSDK_EVENT_SESSI ON_ESTABLI SHVENT. val ue |
DCSSDKDef s. DCSSDK_EVENT. DCSSDK_EVENT _SESSI ON_TERM NATI ON. val ue;

/1 W& would like to subscribe to all barcode events
notifications_nmask | = DCSSDKDef s. DCSSDK_EVENT. DCSSDK_EVENT_BARCODE. val ue

/'l enabl e scanner detection
Appl i cati on. sdkHandl er. dcssdkEnabl eAvai | abl eScanner sDet ecti on(true);

/'l subscribe to events set in notification nmask
Appl i cation. sdkHandl er. dcssdkSubsri beFor Event s(noti fi cati ons_mask);

When the sdkHandl| er calls dcssdkEnabl eAvai | abl eScanner sDet ecti on(true), this enables
notifications of type DCSSDK_EVENT_SCANNER_APPEARANCE, and

DCSSDK_EVENT_SCANNER_DI SAPPEARANCE. This allows the application to react to a scanner becoming
available for connection, discussed in Connecting to an Available Scanner.

ANDROID DEVELOPMENT SDK 2-5

Connecting to an Available Scanner

Synchronous Scanner Retrieval

There are two ways an application can become aware of an available scanner. The simplest method is to
query the SDK (ultimately the underlying Android host) for the scanners that are currently paired and available.
This is the synchronous method. This is performed by asking the SDK to pull its current list of available
scanners which it retrieves internally upon initialization.

Code Snippet - Synchronous Scanner Retrieval
I
if (Application.sdkHandler !'= null) {
nScanner | nfoLi st. clear();

Appl i cation. sdkHandl er. dcssdkGet Avai | abl eScanner sLi st (nScanner | nf oLi st) ;
Appl i cati on. sdkHandl er. dcssdkGet Act i veScanner sLi st (nmScanner | nf oLi st) ;

}
11

As shown above, the sdkHandl er API has two methods:

e dcssdkGet Avai | abl eScanner sLi st
e dcssdkGet Acti veScanner sLi st

These differ in that the dcssdkGet Avai | abl eScanner sLi st method retrieves only the scanner devices
that are available (i.e., were paired with the Android host). This is different than an established connection. The
method dcssdkGet Act i veScanner sLi st retrieves the scanners (in this version, it is always only one
device) that currently has an active connection/session to the SDK library.

Asynchronous Scanner Notification

When a scanner becomes available, the application is notified through the dcssdkEvent Scanner Appear ed
event via the SdkApi Del egat e (in the case of the app, this is the BaseAct i vi t y class) as shown below.

Code Snippet - Event Based Available Scanner

/* notify connections del egates */
public void dcssdkEvent Scanner Appear ed(DCSScanner | nf o avai | abl eScanner) {

...

/1 ... Code to update U del egates and internal structures with
/1 ... new scanner data

/1

}

As a result of the notification from the SDK method dcssdkEvent Scanner Appear ed, the application can
process the available scanner information how it needs to (i.e., update Ul component delegates and internal
data structures).

2-6 Zebra Scanner SDK for Android Developer Guide

Performing the Connection

In order to perform the connection, the scanner data must be retrieved either synchronously or asynchronously
using the methods described above. Now that the available devices are known, the client application can
decide which one it needs to connect to. As with an Ul command the actual work should be put into a
background task as this allows the Main Ul thread to proceed. For the purpose of this example we include this
code as well.

Code Snippet - Scanner Connection

public void connect ToScanner (Vi ew vi ew) {
new MyAsyncTask(scanner|d). execute();
}
private class MyAsyncTask extends AsyncTask<Voi d, | nt eger, Bool ean> {
private int scannerld;
public MyAsyncTask(int scannerld){
t hi s. scanner | d=scanner| d;
}
@verride
protected void onPreExecute() {
super . onPreExecut e();
progressDi al og = new Cust onProgressDi al og(Avai | abl eScanner Activity.this,
"Connect To scanner...");
progressDi al og. show() ;

}
@verride
prot ect ed Bool ean dol nBackground(Void... voids) {
DCSSDKDef s. DCSSDK_RESULT result =
DCSSDKDef s. DCSSDK_RESULT. DCSSDK_RESULT_FAI LURE;
if (Application.sdkHandler !'= null) {
result =
Appl i cati on. sdkHandl er. dcssdkEst abl i shConmmuni cat i onSessi on(scanner| d);
}
if(result == DCSSDKDefs. DCSSDK_RESULT. DCSSDK_RESULT_SUCCESS) {
return true;
}
else if(result == DCSSDKDefs. DCSSDK_RESULT. DCSSDK_RESULT_FAI LURE) {
return fal se;
}
return fal se;
}
@verride

protected voi d onPost Execut e(Bool ean b) {

super . onPost Execut e(b) ;

if (progressDialog !'= null && progressDi al og.i sShow ng())
progressDi al og. di sm ss();

Intent returnlntent = new Intent();

i f(b){
set Resul t (RESULT_OK, returnlntent);
returnlntent. put Extra(Constants. SCANNER | D, scannerld);

}
el se{

set Resul t (RESULT_CANCELED, returnlntent);
}

Avai | abl eScanner Activity.this.finish();

ANDROID DEVELOPMENT SDK 2-7

The additional code to handle to Ul task was include for brevity, however the main SDK API being used is the
dcssdkEst abl i shCommuni cat i onSessi on method which provides the bulk of the connection logic. The
result is either success of failure using the result codes defined in the DCSSDKDef s class of enums. A result
value of DCSSDKDef s. DCSSDK_RESULT. DCSSDK_RESULT_SUCCESS indicates that the scanner connection
was successful and can be considered accessible.

Receiving Bar Code Data

In order to receive a bar code, first subscribe to the bar code as shown in Subscribing to Events on page 2-3.
After completing the event subscription, a class can either directly implement the IDcsSdkApiDelegate or
inherit it in a way as follows, for example.

Code Snippet - Processing Bar Code Event
public class BaseActivity extends ActionBarActivity inplenments | DcsSdkApi Del egate {

11

@verride
public void dcssdkEvent Bar code(byte[] barcodeData, int barcodeType, int
frontScanner | D) {

Bar code barcode = new Bar code(bar codeDat a, bar codeType, fronScanner| D) ;
dat aHandl er . obt ai nMessage(Const ant s. BARCODE_RECI EVED, bar code) . sendToTar get () ;

11
/'l Performother kinds of notifications (i.e. Intents, etc.)
11

}

This example creates a new Bar code object from the event data itself, which is used to create the bar code
message.

The example also uses the Android Message Handler framework to create a message that places the bar code
message onto the Ul thread using sendToTar get () .

\/ NOTE The code described above leverages the Android Handler Framework to provide a decoupling from SDK
event to the Ul thread. For more information on this kind of background to Ul thread management, refer to
http://developer.android.com/training/multiple-threads/communicate-ui.html.

http://developer.android.com/training/multiple-threads/communicate-ui.html

2 -8 Zebra Scanner SDK for Android Developer Guide

Retrieving Scanner Attributes

By retrieving scanner attributes, the developer can provide the client application with all the necessary
information required from the scanner. The argument format for performing an RSM GET Command uses the
following syntax.

Code Snippet - RSM GET XML Syntax

<i nArgs>
<scanner | D>Scanner | D_Val ue</ scanner | D>
<cndAr gs>
<arg-xm >
<attrib list>attrl,attr2,..., attrN</attrib_|ist>
</ arg-xm >
</ cndAr gs>
</inArgs>

The following example shows the application retrieving standard scanner asset information: Model Number,
Serial Number, Firmware Version String, the Configuration Name from 123Scan?, and the Date of
Manufacturing. Each of these values is a separate attribute as described previously in the syntax to retrieve.

Code Snippet - RSM GET Example
private void fetchAssertlinfo() {

/'l get current Scanner |ID
int scannerl D = getlntent().getlntExtra(Constants. SCANNER |ID, -1);

if (scannerIiD != -1) {

/1l Creating beginning of XML argunent string with Scanner |ID
/'l of Active Scanner
String in_xm = "<inArgs><scanner|D>" + scannerlD

+ " </ scanner| D><cndAr gs><arg-xm ><attrib_|ist>";

/1 Add attribute values to |ist
i n_xm +=RVD_ATTR_MODEL_NUVBER;
in_xm+="";
i n_xm +=RVD_ATTR_SERI AL_NUMBER,;
in_xm+=",";
i n_xm +=RVD_ATTR_FW VERSI ON,;
in_xm+="";
i n_xm +=RVD_ATTR_CONFI G_NAMNE;
in_xm+="";
i n_xm +=RVD_ATTR_DOM
in_xm += "</attrib_list></arg-xm ></cndArgs></inArgs>";
/1 Run as Async Task to free up Ul
new MyAsyncTask(scanner| D,
DCSSDKDef s. DCSSDK_COVVAND_OPCCDE. DCSSDK_RSM ATTR_GET) . execut e(
new String[]{in_xm});
} else {
/1 Do not have a valid scanner |D, show popup error
Toast . makeText (t hi s, Constants. | NVALI D_SCANNER | D_NMSG
Toast . LENGTH_SHORT) . show() ;

ANDROID DEVELOPMENT SDK 2-9

In this example, the OPCODE defined in DCSSDKDef s. DCSSDK _COVMAND _OPCCDE is set to
DCSSDK_RSM ATTR_GET which instructs the SDK Library to retrieve the values specified, which are:

e RVD ATTR_MODEL_NUMBER - Scanner model number
RVD_ATTR_SERI AL_NUMBER - Scanner serial number

e RVD_ATTR_FW VERSI ON - Scanner firmware version

RMD_ATTR_CONFI G_NAME - Scanner configuration filename (if one was used)

RVD_ATTR_DOM- Scanner date of manufacture.

Ultimately this calls the interface execut eConmmand which is defined by the Scanner AppEngi ne interface
and extended by BaseAct i vi t y. Ultimately the call to the SDK API

dcssdkExecut eConmandOpCodel nXM_For Scanner is made, which is part of the SDK Handler object
owned by the Appl i cat i on class as discussed earlier. This is the API call that sends the command to the
SDK Library to be queued for communication with the scanner.

Code Snippet - dessdkExecuteCommandOpCodelnXMLForScanner API

publ i ¢ bool ean execut eCommand(DCSSDKDef s. DCSSDK_COMVAND OPCODE opCode, String
i nXM_, StringBuilder outXM., int scannerlD) {

if (Application.sdkHandler != null)

{
/1 get result from Scanner (not that this is a blocking call, but is
/1l being run on an AsyncTask away fromthe U thread
DCSSDKDef s. DCSSDK_RESULT result =
Appl i cati on. sdkHandl er . dcssdkExecut eCommandOpCodel nXM_For Scanner (
opCode, i nXM., out XM_, scanner | D) ;
/'l check result and return true or fal se
i f(result == DCSSDKDefs. DCSSDK_RESULT. DCSSDK_RESULT_SUCCESS)
return true;
el se if(result == DCSSDKDefs. DCSSDK_RESULT. DCSSDK_RESULT_FAI LURE)
return fal se;
}

return fal se;

}

In this example, the call is made directly to the SDK API which sends the opcode out to the scanner. Each
attribute is retrieved in turn until they are all retrieved and a valid response is received from the scanner for
each one. The API call compiles the results into the out XML St ri ngBui | der argument for return to the
caller. The syntax of the output is as follows:

2-10 Zebra Scanner SDK for Android Developer Guide

Code Snippet - RSM GET XML Syntax

<?xm version="1.0" encodi ng="UTF-8"7?>
<out Ar gs>
<scanner | D>scanner _| D</ scanner | D>
<arg-xm >
<nodel nunber >nodel _nunber _val ue</ nodel nunber >
<seri al nunber >seri al _nunber _val ue</ seri al nunber >
<r esponse>
<opcode>DCSSDK_RSM ATTR_GET</ opcode>
<attrib_|ist>
<attribute>
<id>attributl</id>
<dat at ype>dat at ype_val ue</ dat at ype>
<per m ssi on>per m ssi on_val ue</ perni ssi on>
<val ue>attribut1_val ue</val ue>
<lattribute>
<attri bute>
<id>attibute2</id>
<dat at ype>dat at ype_val ue</ dat at ype>
<per m ssi on>per m ssi on_val ue</ perni ssi on>
<val ue>attri but 2_val ue</ val ue>
</attribute>
<attribute>
<id>attibuteN</id>
<dat at ype>dat at ype_val ue</ dat at ype>
<per m ssi on>per m ssi on_val ue</ perni ssi on>
<val ue>attri but N _val ue</val ue>
</attribute>
<lattrib_list>
</ response>
</ arg-xm >
</ out Ar gs>

The actual elements returned for each attribute describe the attribute in its entirety:
¢ id - The Attribute number for which the next elements describe as shown in attributeN

e datatype - One of the following 11 data types.
* B - Byte - unsigned char
e C - Char - signed byte
* F -BitFlags
¢ W -WORD - short unsigned integer (16 bits)
* |- SWORD - short signed integer (16 bits)
e D -DWORD - long unsigned integer (32 bits)
¢ L -SDWORD - long signed integer (32 bits)
* A-Array
e S-String
e X-Action
e permission - The permission of the data itself; a combination of one or more of the following letters:
e W - Write - Attribute value is writable
* R - Read - Attribute value is readable
* P - Persistent - Attribute value is non-volatile and persists across reboots

¢ value - The actual value of the attribute. This corresponds to the datatype (e.g., the value for an 'S
datatype is a 16 bit signed number only)

ANDROID DEVELOPMENT SDK 2 -11

Following is the XML result of the RSM GET command as used in this example (getting all asset information):

Code Snippet - RSM GET Return Set

<?xm version="1.0" encodi ng="UTF-8"7?>
<out Ar gs>
<scanner | D>6</ scanner | D>
<ar g-xnml >
<nodel nunber >i PL3307- RFD8500</ nodel nunber >
<seri al nunber >150209008500B </ seri al nunber >
<response>
<opcode>DCSSDK_RSM ATTR_GET</ opcode>
<attrib_ |ist>
<attribute>
<i d>533</i d>
<dat at ype>S</ dat at ype>
<per m ssi on>R</ per ni ssi on>
<val ue>i PL3307- RFD38500 </ val ue>
</attribute>
<attribute>
<i d>534</i d>
<dat at ype>S</ dat at ype>
<per m ssi on>R</ per ni ssi on>
<val ue>150209008500B </ val ue>
</attribute>
<attribute>
<i d>20004</i d>
<dat at ype>S</ dat at ype>
<per m ssi on>R</ per ni ssi on>
<val ue>PAABLS00- 004- RO0O </ val ue>
</attribute>
<attribute>
<i d>616</i d>
<dat at ype>S</ dat at ype>
<per m ssi on>RWP</ per ni ssi on>
<val ue>Mbdi fi ed </val ue>
</attribute>
<attribute>
<i d>535</i d>
<dat at ype>S</ dat at ype>
<per m ssi on>R</ per ni ssi on>
<val ue>15May15</ val ue>
</attribute>
</fattrib_list>
</ response>
</ arg-xm >
</ out Ar gs>

2 - 12 Zebra Scanner SDK for Android Developer Guide

Sending Remote Commands

The At tri but e SET mechanism allows a client application to perform many command and control functions
on the scanner, from disabling a specific bar code symbology (F - Flag Attribute) to rebooting the device (X -
Action Attribute). Following are examples that illustrate how to do this. For a specific product, refer to the
device Product Reference Guide to determine what attributes the device supports and the values for that
device.

Beep the Beeper

A simple command example is to sound the beeper on the scanner (if it has one).Tthe following example
includes the application Ul portion to show how the Aysnc Task can process this. For the execut eCommand
function see Code Snippet - dcssdkExecuteCommandOpCodelnXMLForScanner APl on page 2-9.

Code Snippet - Beep the Beeper

public void beeperAction(View view) {

/1l set beeper to performa H GH pitch SHORT duration tone
int value = RVD_ATTR VALUE_ACTI ON_HI GH_SHORT_BEEP_1;

String i nXM. = "<inArgs><scanner| D>" + getlntent().getlntExtra(
Constants. SCANNER_I D, 0) + "</scanner| D><cndArgs><arg-int>" +
+ Integer.toString(value) +"</arg-int></cndArgs></inArgs>";

/1 Exceute in an AsyncTask to renmove U bl ocking
new MyAsyncTask(getlntent().getlnt Extra(Constants. SCANNER | D,
0) , DCSSDKDef s. DCSSDK_COVMAND_OPCODE. DCSSDK_SET_ACTI ON) . execut e(
new String[]{inXM});
}

private class MyAsyncTask extends AsyncTask<String, | nteger, Bool ean> {
int scannerld;

DCSSDKDef s. DCSSDK_COMVAND_OPCODE opcode;

public MyAsyncTask(int scannerld, DCSSDKDefs.DCSSDK COVMAND OPCODE opcode) {
t hi s. scanner | d=scanner| d;
t hi s. opcode=opcode;

}
@verride

protected voi d onPreExecute() {
super. onPreExecute();
progressDi al og = new Cust onProgressDi al og(Beeper Acti onsActivity.this,
"Executing beeper action..");
progressDi al og. show() ;

}
@verride
prot ect ed Bool ean dol nBackground(String... strings) {
return executeCommand(opcode, strings[0], null, scannerld);
}

(continued on next page)

ANDROID DEVELOPMENT SDK 2 - 13

@verride
prot ected voi d onPost Execut e(Bool ean b) {
super . onPost Execut e(b) ;
if (progressDialog !'= null && progressDi al og.isShow ng()) {
progressDi al og. di sm ss();
}
if(!'b){
Toast . makeText (Beeper Acti onsActivity.this,
"Cannot perform beeper action", Toast.LENGIH SHORT).show();

}

This example is not specifically concerned with the return XML string because it is just requesting an action to
be carried out (which is why a null value is passed into execut eCommand()). The example requests setting
the beeper command to RVD_ATTR_VALUE_ACTI ON_HI GH_SHORT_BEEP_1 which is a specific pitch and
tone (typically this would use the value set by the Ul picker, but this example uses a specific value for brevity).
The SDK API takes the rest of the underlying XML and communication to cause the beeper to sound.

The result for a command like this is returned via the onPost Execut e argument Boolean b which is be true
on success; false otherwise.

Disabling a Bar Code Symbology Type

The client application can control symbologies on the scanner and determine whether it decodes the supported
symbology. This example disables the UPC-A symbology so the scanner can not decode it. This example does
not include the Ul Async Task code, but focuses on the construction of the XML arguments.

Code Snippet - Disable UPC-A Example

/1

/1 U code renoved

/'l explicitly setting to UPC-A to false for exanple
/1 This is Attribute '1' - see XM string bel ow

/1

String inXM. =
"<i nArgs>" +
"<scanner| D>" + getlntent().getlntExtra(Constants. SCANNER ID, 0) +
"</scanner| D>" +
"<cndArgs>" +
"<arg-xm>" +
"<attrib list><attribute>" +
"<id>1</id>" +
"<dat at ype>F</ dat at ype>" +
"<val ue>Fal se</val ue>" +
"</attribute></attrib_list>" +
"<larg-xm>" +
"</ cmdArgs>" +
</i nArgs>";

I

/1 U code renpved

/1 W& are going to use Attribute STORE to nake change pernanent
/1l so it persists through scanner reboots

I

/1 Execute Async Task to renpve from U thread
new MyAsyncTask(getlntent().getlntExtra(Constants. SCANNER | D, 0),
DCSSDKDef s. DCSSDK_COMVAND_OPCCDE. DCSSDK_RSM ATTR_STORE, Vi ew) . execut e(
i NXM) ;

2 - 14 Zebra Scanner SDK for Android Developer Guide

This example explicitly sets the values for UPC-A and false. Typically these values are retrieved from the Ul
settings (refer to the application for more details). In the XML string, the example gets the scanner ID from the
Ul and sets the ID to '1' which is Attribute 1. The datatype is set to 'F' as the UPC-A setting is a Flag datatype
and accepts either 'True' or 'False' as an acceptable value. Once the XML string is set, a call is made using the
AsyncTask defined in the Synbol ogi esActi vi ty class and the opcode

DCSSDKDef s. DCSSDK_COVIVAND _OPCODE. DCSSDK_RSM ATTR_STORE is passed in as this is an Attribute
Store operation. If the setting is temporary and to be restored to its default state after a scanner reboot, use the
opcode DCSSDKDef s. DCSSDK_COVMMAND_OPCODE. DCSSDK_RSM ATTR_SET.

Disabling the Scanner

Code Snippet - Disable the Scanner

Certain use cases require disabling scanning in the scanner, and then re-enabling it when needed. As with
most operations, this involves using an opcode and the associated XML argument string.

public void di sabl eScanni ng(Vi ew view) {

String in_xm = "<inArgs><scanner|D>" + scannerlD + "</scanner| D></i nArgs>";
new MyAsyncTask(
scanner | D, DCSSDKDef s. DCSSDK_COMVAND _OPCODE. DCSSDK_DEVI CE_SCAN_DI SABLE) .
execute(new String[]{in_xm});

I
/'l AsyncTask code
I

@verride
protected Bool ean dol nBackground(String... strings) {

if (Application.sdkHandl er !'= null)

/1 calling execute command SDK API
DCSSDKDef s. DCSSDK_RESULT result =
Appl i cati on. sdkHandl er . dcssdkExecut eCommandCOpCodel nXM_For Scanner (
opCode, i nXM_, out XM_, scanner | D) ;

/1 return true if DCSSDKDefs.DCSSDK RESULT. DCSSDK RESULT SUCCESS

/1 fal se otherw se

i f (resul t == DCSSDKDef s. DCSSDK_RESULT. DCSSDK_RESULT_SUCCESS) {
return true;

}
el se if(resul t ==DCSSDKDef s. DCSSDK_RESULT. DCSSDK_RESULT_FAI LURE)
return false;

}

return false;

}

This example makes a call to dcssdkExecut eCommandQpCodel nXM_For Scanner using opcode
DCSSDKDef s. DCSSDK_COVIVAND _OPCODE. DCSSDK_DEVI CE_SCAN_DI SABLE. This disables the scanner so
it can not illuminate and scan bar codes. To re-enable the scanner, use opcode

DCSSDKDef s. DCSSDK_COMVAND_OPCODE. DCSSDK_DEVI CE_SCAN_ENABLE.

Most operations performed with the SDK API involve passing opcodes and XML arguments to the
dcssdkExecut eConmandOpCodel nXMLFor Scanner method. For a list of all of available opcodes, refer to
the included JavaDocs under the DCSSDKDef s. DCSSDK _COVIVAND _OPCCDE enum.

ANDROID DEVELOPMENT SDK 2 - 15

Update Scanner Firmware

Client application can update a connected scanner firmware using a plug-in file comes with 123Scan. After the
update application needs to send a command to the scanner to use the updated firmware. Upon receiving that
command scanner will be rebooted and flash the new firmware. Client application can abort the firmware
update in the middle of the process.

Code Snippet - Update Scanner Firmware Using Plug-in File
String in_xm = "<inArgs><scanner|D>" + scannerlD + "</scanner| D><cndArgs><arg-string>" +
sel ect edPl ugl n. get Absol utePat h() + "</arg-string></cndArgs></inArgs>";

DCSSDKDef s. DCSSDK_RESULT result =
Appl i cati on. sdkHandl er. dcssdkExecut eCormandOpCodel nXMLFor Scanner (DCSSDK_UPDATE FI RMMRE, i n
XM, out XM.) ;

Progress and status of the firmware update will be notified to the application using this event:

dcssdkEvent Fi r mwar eUpdat e(Fi r nwar eUpdat eEvent fi r mnvar eUpdat eEvent

Code Snippet - Aborting Firmware Update

String in_xm = "<inArgs><scanner|D>" + scannerlD + "</scanner| D></i nArgs>";

DCSSDKDef s. DCSSDK_RESULT result =

Appl i cation. sdkHandl er. dcssdkExecut eCormmandOpCodel nXM_For Scanner (DCSSDK_ABORT _UPDATE_FI RMW

ARE
, i NXM., out XM.) ;

Code Snippet - Start New Firmware
String in_xm = "<inArgs><scanner| D>" + scannerlD + "</scannerl D></i nArgs>";
DCSSDKDef s. DCSSDK_RESULT result =

Appl i cati on. sdkHandl er . dcssdkExecut eComandOpCodel nXM_For Scanner (DCSSDK_START_NEW _FI RMWARE
, i nXM_, out XM.) ;

Scale Functionality

Scale functionality is only applicable for MP-XXXX scanner combined with a scale. These scanners support four
main scale functionalities. Following examples illustrate how a user can achieve those scale functions using SDK.

Scale Enable/Disable

Enable or disable weight measuring of the associated device.

Code Snippet - Enable Scale

String in_xm = "<inArgs><scanner|D>" + scannerlD + "</scanner| D></i nArgs>";

DCSSDKDef s. DCSSDK_RESULT result =

Appl i cati on. sdkHandl er. dcssdkExecut eCormandOpCodel nXML_For Scanner (DCSSDK_ENABLE SCALE, i n_xm
|, out_xm,scannerlD);

Code Snippet — Disable Scale

String in_xm = "<inArgs><scanner| D>" + scannerlD + "</scannerl D></i nArgs>";

DCSSDKDef s. DCSSDK_RESULT result =

Appl i cati on. sdkHandl er . dcssdkExecut eCommandOpCodel nXM_For Scanner (DCSSDK_DI SABLE_SCALE, i n_x
m , out_xm,scannerlD);

2-16 Zebra Scanner SDK for Android Developer Guide

Zero Scale

Zero the scale reading.

Code Snippet - Zero Scale

String in_xm = "<inArgs><scanner|D>" + scannerlD + "</scanner| D></inArgs>";

DCSSDKDef s. DCSSDK_RESULT result =

Appl i cati on. sdkHandl er . dcssdkExecut eConmandQpCodel nXM_For Scanner (DCSSDK_ZERO SCALE, i n_xm ,
out _xm , scanner|D);

Reset Scale

Reset the scale.

Code Snippet - Reset Scale

String in_xm = "<inArgs><scanner| D>" + scannerlD + "</scanner| D></inArgs>";

DCSSDKDef s. DCSSDK_RESULT result =

Appl i cati on. sdkHandl er . dcssdkExecut eCommandOpCodel nXM_For Scanner (DCSSDK_RESET_SCALE, i n_xm
,out _xm , scannerlD);

Read Weight

Read the weight from the scale.

Code Snippet - Read Weight

String in_xm = "<inArgs><scanner|D>" + scannerlD + "</scanner| D></i nArgs>";

DCSSDKDef s. DCSSDK_RESULT result =

Appl i cati on. sdkHandl er. dcssdkExecut eConmandCpCodel nXM_For Scanner (DCSSDK_READ WEI GHT, i n_xm ,
out _xml , scanner| D);

Upon a successful execution of the method out_xml will contain an XML in following format.

<?xm version="1.0" encodi ng="UTF-8"7?>
<out Ar gs>
<scanner | D>1</ scanner | D>
<ar g- xnml >
<nodel nunber >MP6200- LNOOOMD10US</ nodel nunber >
<seri al nunber >13049010501209 </ seri al nunber >
<response>
<opcode>7000</ opcode>
<wei ght >0. 700</ wei ght >
<wei ght _nmode>Engl i sh</ wei ght _node>
<st at us>6</ st at us>
<r awdat a>0x06 0x01 0x00 0x00 0x02 Oxbc </rawdata>
</ response>
</ arg-xm >
</ out Ar gs>

Tags in the above XML contains following data:

<weight> tag contains the weight value

<weight_mode> tag contains the weight unit English (pounds) or Metric (Kg)

ANDROID DEVELOPMENT SDK 2 -17

<status> tag contains the status of the weight read call. Following table shows status values

Status Description

0 Scale not enabled

1 Scale not ready

Stable weight over limit
Stable weight under zero
Non-stable weight

Stable zero weight

[o> NI &) RENE >RGO RN]

Stable non-zero weight

<rawdata> tag contains the data received from the scale

2 - 18 Zebra Scanner SDK for Android Developer Guide

' ZEBRA

Zebra Technologies Corporation
Lincolnshire, IL U.S.A.
http://www.zebra.com

ZEBRA and the stylized Zebra head are trademarks of Zebra Technologies Corporation,
registered in many jurisdictions worldwide. All other trademarks are the property of their
respective owners. © 2018-2019 Zebra Technologies Corporation and/or its affiliates. All
rights reserved.

MNO002223A06 Revision A - May 2019

	Warranty
	Revision History
	Table of Contents
	ABOUT THIS GUIDE
	Introduction
	Chapter Descriptions
	Related Documents
	Additional Resources
	Notational Conventions
	Service Information

	GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID
	Introduction
	Overview of the Zebra Scanner SDK for Android
	Supported Scanners
	USB SNAPI
	Bluetooth

	System Requirements

	Installation and Configuration
	Installing the Scanner Control Application
	Running and Configuring the Scanner Control Application
	Using Scanner Control Application with a Supported Device
	Settings
	Data View
	Advanced

	Setting Up the Zebra Scanner SDK for Android in Android Studio
	Prerequisite 1 - Installation of Android Studio
	Prerequisite 2 - Configuring the Host to Communicate With the Device
	Installing and Building the Android SDK Project

	ANDROID DEVELOPMENT SDK
	Introduction
	Initialization
	SDK Initialization
	Code Snippet - SDK Initialization Code

	Setting SDK Handler Delegate
	Code Snippet - Setting SDK API Delegate

	Setting Operation Mode
	Code Snippet - Setting Operation Mode

	Subscribing to Events
	Code Snippet - Subscribing to Events

	Connecting to a Scanner
	Detecting Available Scanners
	Code Snippet - Detecting Available Scanners

	Connecting to an Available Scanner
	Synchronous Scanner Retrieval
	Code Snippet - Synchronous Scanner Retrieval
	Asynchronous Scanner Notification
	Code Snippet - Event Based Available Scanner
	Performing the Connection
	Code Snippet - Scanner Connection

	Receiving Bar Code Data
	Code Snippet - Processing Bar Code Event

	Retrieving Scanner Attributes
	Code Snippet - RSM GET XML Syntax
	Code Snippet - RSM GET Example
	Code Snippet - dcssdkExecuteCommandOpCodeInXMLForScanner API
	Code Snippet - RSM GET XML Syntax
	Code Snippet - RSM GET Return Set

	Sending Remote Commands
	Beep the Beeper
	Code Snippet - Beep the Beeper

	Disabling a Bar Code Symbology Type
	Code Snippet - Disable UPC-A Example

	Disabling the Scanner
	Code Snippet - Disable the Scanner

	Update Scanner Firmware
	Code Snippet - Update Scanner Firmware Using Plug-in File
	Code Snippet - Aborting Firmware Update
	Code Snippet - Start New Firmware

	Scale Functionality
	Scale Enable/Disable
	Code Snippet - Enable Scale
	Code Snippet – Disable Scale

	Zero Scale
	Code Snippet - Zero Scale

	Reset Scale
	Code Snippet - Reset Scale

	Read Weight
	Code Snippet - Read Weight

