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User Applications
User Applications

• Runs on the RFID reader, No external control software needed

• Previous embedded applications were written in either C++ or Java

• Difficult to maintain without a build environment setup

• Support libraries and generic configuration had to be implemented every time
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User Applications
User Applications (DA apps): DA Library

• DA Apps must make use of the DA Library to be able to send messages across.

• DA library abstracts the underlying connections between the ZIoTC components.

• The DA modules are available in below languages
• Python 3.9
• NodeJS

• The apps must be packaged as deb files, like an embedded User App.

• The apps can be installed via Web Console/ZIoTC management interface.
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User Applications
Features and Highlights

• Supported on FX7500, FX9600, ATR7000.
• Enables connectivity to the cloud platforms to provide IOT capabilities to the reader.
• Supports independent interfaces for Management, control, data and monitoring.
• Supports Data retention during network disconnects.
• Supports various pre-defined but configurable radio operating modes.
• Supports multiple modes of deployment for fully cloud, on-prem, hybrid modes of operation.
• Support two simultaneous data paths. 
• Supports sending different data to different data paths using the DA app framework.
• Supports a User-App framework called DA framework for writing custom applications using Python 

or NodeJS.
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User Applications
Connectivity 

• Zebra Data Services ( ZDS )

• Message Queuing Telemetry Transport ( MQTT )

• Amazon Web Services ( AWS )

• Google Cloud Platform ( GCP )

• HTTP Post

• IBM Watson IoT

• TCP

• Websocket

• Microsoft Azure

• Keyboard HID Emulation
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User Applications
Reader Management/Monitoring/Control 
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• Management functionalities supported
• Get Info

• Status
• Network
• Region

• Configure reader
• Reader Profile
• Endpoints
• Events
• GPIO-LED

• Manage User Apps
• Update Firmware

• Control functionalities supported
• Control

• Start
• Stop
• Mode

• Monitoring  Events supported
• Heartbeats
• GPI
• Error
• Warnings
• Firmware Update Progress
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User Applications
Controlling GPOs and LED

• Provides an easy-to-use rules-based mechanism to control the reader GPOs and LED

• User can configure:
• The default state of GPOs and LED
• Event of Interest upon which a GPO and LED control action can be performed
• Conditions to be met for the action to take place
• The action to perform: the LED and GPO state/blink etc.
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User Applications
Overview

• The following methods are available in the DA library for applications to use.
• ziotc.ZIOTC() : Initializes the library. This will establish connections between the script and the other IoT 

Connector components
• ziotcObject.reg_new_msg_callback() : Registers a callback function to be called when a message is received.
• ziotcObject.reg_pass_through_callback() : Registers a callback function to be called on a control message
• ziotcObject.enableGPIEvents() : Allows callback to receive GPI Events
• ziotcObject.loop.run_forever(): This will cause any messages arriving to flow through the callback function
• ziotcObject.send_next_msg(msg_type, msg_out): This will send the message out to the Reader Gateway to be 

handled appropriately. Following message types are supported.
• ZIOTC_MSG_TYPE_DATA
• ZIOTC_MSG_TYPE_CTRL
• ZIOTC_MSG_TYPE_GPO
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User Applications
Simple Python Application

def new_msg_callback(msg_type, msg_in):

    if msg_type == ziotc.ZIOTC_MSG_TYPE_TAG_INFO_JSON:        

        msg_in_json = json.loads(msg_in.decode('utf-8'))

        tag_id_hex = msg_in_json["data"]["idHex"]            

        ts = msg_in_json["timestamp"]

        tag = { “tag” : {} }

        tag[“id”] = tag_id_hex

        tag[“timestamp”] = ts

        ziotcObject.send_next_msg(ziotc.ZIOTC_MSG_TYPE_DATA, bytearray(json.dumps(tag).encode('utf-8’)))

ziotcObject = ziotc.ZIOTC()

ziotcObject.reg_new_msg_callback(new_msg_callback)

ziotcObject.loop.run_forever()
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User Applications
Simple Python Application to Monitor GPI
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User Applications
Simple Python Application to Flash GPO
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User Applications
Simple Python Application to decode GRAI-96
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User Applications
Rest API Interface for management

• The Local Rest API is used to configure the RFID device

• The Local Rest API can also be used to interrogate the RFID device

• Local Rest API interface must be enabled in the Web Console

• Local Rest API’s calls from an embedded application do not need authenticating

https://zebradevs.github.io/rfid-ziotc-docs/api_ref/local_rest/index.html 
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User Applications
Rest API Interface for management
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User Applications
Rest API Interface for management
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User Applications
Rest API Interface for management
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Packaging

• Applications are shipped in Debian packages

• The Debian package must contain a start_ and stop_ script

• The Debian package also contains a control file

• Installation can be either through Web Console or Reader Management software

https://zebradevs.github.io/rfid-ziotc-docs/user_apps/packaging_and_deployment.html
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Packaging
Example Start and Stop scripts

• start_sample.sh

• stop_sample.sh
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Packaging
Example control file

• Control
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Packaging
File Structure and building

• Building ( Linux Only )
dpkg-deb –build –Zgzip sample_1.0.1/
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Resources

• Zebra IoT Connector - https://zebradevs.github.io/rfid-ziotc-docs/
• Zebra Devs GitHub - https://github.com/zebradevs
• Zebra Devs Examples - https://github.com/ZebraDevs/RFID_ZIOTC_Examples
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Questions
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