
1

Gary Crean

Embedded scripting in Python &
NodeJS

Senior Software Engineer

ZEBRA TECHNOLOGIES

User Applications (DA apps): Overview

ZEBRA TECHNOLOGIES

User Applications
User Applications

• Runs on the RFID reader, No external control software needed

• Previous embedded applications were written in either C++ or Java

• Difficult to maintain without a build environment setup

• Support libraries and generic configuration had to be implemented every time

3

ZEBRA TECHNOLOGIES

User Applications
User Applications (DA apps): DA Library

• DA Apps must make use of the DA Library to be able to send messages across.

• DA library abstracts the underlying connections between the ZIoTC components.

• The DA modules are available in below languages
• Python 3.9
• NodeJS

• The apps must be packaged as deb files, like an embedded User App.

• The apps can be installed via Web Console/ZIoTC management interface.

4

ZEBRA TECHNOLOGIES

User Applications
Features and Highlights

• Supported on FX7500, FX9600, ATR7000.
• Enables connectivity to the cloud platforms to provide IOT capabilities to the reader.
• Supports independent interfaces for Management, control, data and monitoring.
• Supports Data retention during network disconnects.
• Supports various pre-defined but configurable radio operating modes.
• Supports multiple modes of deployment for fully cloud, on-prem, hybrid modes of operation.
• Support two simultaneous data paths.
• Supports sending different data to different data paths using the DA app framework.
• Supports a User-App framework called DA framework for writing custom applications using Python

or NodeJS.

5

ZEBRA TECHNOLOGIES

User Applications
Connectivity

• Zebra Data Services (ZDS)

• Message Queuing Telemetry Transport (MQTT)

• Amazon Web Services (AWS)

• Google Cloud Platform (GCP)

• HTTP Post

• IBM Watson IoT

• TCP

• Websocket

• Microsoft Azure

• Keyboard HID Emulation

6

ZEBRA TECHNOLOGIES

User Applications
Reader Management/Monitoring/Control

7

• Management functionalities supported
• Get Info

• Status
• Network
• Region

• Configure reader
• Reader Profile
• Endpoints
• Events
• GPIO-LED

• Manage User Apps
• Update Firmware

• Control functionalities supported
• Control

• Start
• Stop
• Mode

• Monitoring Events supported
• Heartbeats
• GPI
• Error
• Warnings
• Firmware Update Progress

ZEBRA TECHNOLOGIES

User Applications
Controlling GPOs and LED

• Provides an easy-to-use rules-based mechanism to control the reader GPOs and LED

• User can configure:
• The default state of GPOs and LED
• Event of Interest upon which a GPO and LED control action can be performed
• Conditions to be met for the action to take place
• The action to perform: the LED and GPO state/blink etc.

8

ZEBRA TECHNOLOGIES

User Applications
Overview

• The following methods are available in the DA library for applications to use.
• ziotc.ZIOTC() : Initializes the library. This will establish connections between the script and the other IoT

Connector components
• ziotcObject.reg_new_msg_callback() : Registers a callback function to be called when a message is received.
• ziotcObject.reg_pass_through_callback() : Registers a callback function to be called on a control message
• ziotcObject.enableGPIEvents() : Allows callback to receive GPI Events
• ziotcObject.loop.run_forever(): This will cause any messages arriving to flow through the callback function
• ziotcObject.send_next_msg(msg_type, msg_out): This will send the message out to the Reader Gateway to be

handled appropriately. Following message types are supported.
• ZIOTC_MSG_TYPE_DATA
• ZIOTC_MSG_TYPE_CTRL
• ZIOTC_MSG_TYPE_GPO

9

ZEBRA TECHNOLOGIES

User Applications
Simple Python Application

def new_msg_callback(msg_type, msg_in):

 if msg_type == ziotc.ZIOTC_MSG_TYPE_TAG_INFO_JSON:

 msg_in_json = json.loads(msg_in.decode('utf-8'))

 tag_id_hex = msg_in_json["data"]["idHex"]

 ts = msg_in_json["timestamp"]

 tag = { “tag” : {} }

 tag[“id”] = tag_id_hex

 tag[“timestamp”] = ts

 ziotcObject.send_next_msg(ziotc.ZIOTC_MSG_TYPE_DATA, bytearray(json.dumps(tag).encode('utf-8’)))

ziotcObject = ziotc.ZIOTC()

ziotcObject.reg_new_msg_callback(new_msg_callback)

ziotcObject.loop.run_forever()
10

ZEBRA TECHNOLOGIES

User Applications
Simple Python Application to Monitor GPI

11

ZEBRA TECHNOLOGIES

User Applications
Simple Python Application to Flash GPO

12

ZEBRA TECHNOLOGIES

User Applications
Simple Python Application to decode GRAI-96

13

ZEBRA TECHNOLOGIES

User Applications
Rest API Interface for management

• The Local Rest API is used to configure the RFID device

• The Local Rest API can also be used to interrogate the RFID device

• Local Rest API interface must be enabled in the Web Console

• Local Rest API’s calls from an embedded application do not need authenticating

https://zebradevs.github.io/rfid-ziotc-docs/api_ref/local_rest/index.html

14

https://zebradevs.github.io/rfid-ziotc-docs/api_ref/local_rest/index.html

ZEBRA TECHNOLOGIES

User Applications
Rest API Interface for management

15

ZEBRA TECHNOLOGIES

User Applications
Rest API Interface for management

16

ZEBRA TECHNOLOGIES

User Applications
Rest API Interface for management

17

ZEBRA TECHNOLOGIES

Packaging the application

ZEBRA TECHNOLOGIES

Packaging

• Applications are shipped in Debian packages

• The Debian package must contain a start_ and stop_ script

• The Debian package also contains a control file

• Installation can be either through Web Console or Reader Management software

https://zebradevs.github.io/rfid-ziotc-docs/user_apps/packaging_and_deployment.html

19

https://zebradevs.github.io/rfid-ziotc-docs/user_apps/packaging_and_deployment.html

ZEBRA TECHNOLOGIES

Packaging
Example Start and Stop scripts

• start_sample.sh

• stop_sample.sh

20

ZEBRA TECHNOLOGIES

Packaging
Example control file

• Control

21

ZEBRA TECHNOLOGIES

Packaging
File Structure and building

• Building (Linux Only)
dpkg-deb –build –Zgzip sample_1.0.1/

22

ZEBRA TECHNOLOGIES

Resources

ZEBRA TECHNOLOGIES

Resources

• Zebra IoT Connector - https://zebradevs.github.io/rfid-ziotc-docs/
• Zebra Devs GitHub - https://github.com/zebradevs
• Zebra Devs Examples - https://github.com/ZebraDevs/RFID_ZIOTC_Examples

24

https://zebradevs.github.io/rfid-ziotc-docs/
https://github.com/zebradevs
https://github.com/ZebraDevs/RFID_ZIOTC_Examples

Questions

25ZEBRA TECHNOLOGIES

Thank You

ZEBRA and the stylized Zebra head are trademarks of Zebra Technologies Corp., registered in many
jurisdictions worldwide.All other trademarks are the property of their respective owners.
©2023 Zebra Technologies Corp. and/or its affiliates. All rights reserved.

ZEBRA TECHNOLOGIES

