DS9308
Imaging Scanner

Product Reference Guide
Copyright

ZEBRA and the stylized Zebra head are trademarks of Zebra Technologies Corporation, registered in many jurisdictions worldwide. All other trademarks are the property of their respective owners. ©2020 Zebra Technologies Corporation and/or its affiliates. All rights reserved.

COPYRIGHTS & TRADEMARKS: For complete copyright and trademark information, go to www.zebra.com/copyright.

WARRANTY: For complete warranty information, go to www.zebra.com/warranty.

END USER LICENSE AGREEMENT: For complete EULA information, go to www.zebra.com/eula.

For Australia Only

For Australia Only. This warranty is given by Zebra Technologies Asia Pacific Pte. Ltd., 71 Robinson Road, #05-02/03, Singapore 068895, Singapore. Our goods come with guarantees that cannot be excluded under the Australia Consumer Law. You are entitled to a replacement or refund for a major failure and compensation for any other reasonably foreseeable loss or damage. You are also entitled to have the goods repaired or replaced if the goods fail to be of acceptable quality and the failure does not amount to a major failure.

Zebra Technologies Corporation Australia’s limited warranty above is in addition to any rights and remedies you may have under the Australian Consumer Law. If you have any queries, please call Zebra Technologies Corporation at +65 6858 0722. You may also visit our website: www.zebra.com for the most updated warranty terms.

Terms of Use

- Proprietary Statement
 This manual contains proprietary information of Zebra Technologies Corporation and its subsidiaries (“Zebra Technologies”). It is intended solely for the information and use of parties operating and maintaining the equipment described herein. Such proprietary information may not be used, reproduced, or disclosed to any other parties for any other purpose without the express, written permission of Zebra Technologies.

- Product Improvements
 Continuous improvement of products is a policy of Zebra Technologies. All specifications and designs are subject to change without notice.

- Liability Disclaimer
 Zebra Technologies takes steps to ensure that its published Engineering specifications and manuals are correct; however, errors do occur. Zebra Technologies reserves the right to correct any such errors and disclaims liability resulting therefrom.

- Limitation of Liability
 In no event shall Zebra Technologies or anyone else involved in the creation, production, or delivery of the accompanying product (including hardware and software) be liable for any damages whatsoever (including, without limitation, consequential damages including loss of business profits, business interruption, or loss of business information) arising out of the use of, the results of use of, or inability to use such product, even if Zebra Technologies has been advised of the possibility of such damages. Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.
Revision History

Changes to the original guide are listed below:

<table>
<thead>
<tr>
<th>Change</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-01 Rev A</td>
<td>09/2019</td>
<td>Initial release.</td>
</tr>
<tr>
<td>-02 Rev A</td>
<td>12/2019</td>
<td>Updated defaults for Parity and ASCII Format in Terminal Specific RS-232 Table; Replaced High Illumination barcode; Added USB CDC Host Variant.</td>
</tr>
<tr>
<td>-03EN Rev A</td>
<td>6/2020</td>
<td>- Updated Data Formatting: ADF, MDF, Preferred Symbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Updated Electronic Article Surveillance (EAS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Updated 123Scan Requirements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Updated Zebra copyright statement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Added USB Certification in Table 6.</td>
</tr>
</tbody>
</table>
Table of Contents

Copyright ... 2
For Australia Only ... 2
Terms of Use .. 2
Revision History .. 3

Table of Contents ... 4

List of Figures .. 20

List of Tables .. 21

About This Guide
Introduction .. 23
Configurations .. 23
Accessories .. 24
Chapter Descriptions .. 25
Notational Conventions .. 26
Related Documents and Software ... 27
Service Information .. 27
Provide Documentation Feedback .. 27

Getting Started
Introduction .. 28
Interfaces .. 29
Unpacking .. 29
Features ... 30
Setting Up the Scanner ... 31
 Inserting the Interface Cable .. 31
 Removing the Interface Cable .. 32
 Connecting Power (if required) .. 33
 Configuring the Scanner ... 33
Mounting the Scanner .. 33
Multi-Mount Bracket ... 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errors While Scanning</td>
<td>60</td>
</tr>
<tr>
<td>User Preferences/Miscellaneous Options Parameter Defaults</td>
<td>60</td>
</tr>
<tr>
<td>Standard User Preferences</td>
<td>62</td>
</tr>
<tr>
<td>Default Parameters</td>
<td>62</td>
</tr>
<tr>
<td>Write to Custom Defaults</td>
<td>62</td>
</tr>
<tr>
<td>Parameter Barcode Scanning</td>
<td>63</td>
</tr>
<tr>
<td>Beep After Good Decode</td>
<td>63</td>
</tr>
<tr>
<td>Beep Volume</td>
<td>64</td>
</tr>
<tr>
<td>Beep Tone</td>
<td>65</td>
</tr>
<tr>
<td>Standard Beep Tones</td>
<td>65</td>
</tr>
<tr>
<td>Beep Duration</td>
<td>66</td>
</tr>
<tr>
<td>Volume Adjustment Trigger Timeout</td>
<td>78</td>
</tr>
<tr>
<td>Suppress Power Up Beeps</td>
<td>67</td>
</tr>
<tr>
<td>Direct Decode Indicator</td>
<td>68</td>
</tr>
<tr>
<td>Low Power Mode</td>
<td>69</td>
</tr>
<tr>
<td>Time Delay to Low Power Mode</td>
<td>70</td>
</tr>
<tr>
<td>Trigger Mode</td>
<td>71</td>
</tr>
<tr>
<td>Hand-held Decode Aiming Pattern</td>
<td>73</td>
</tr>
<tr>
<td>Presentation (Hands-free) Decode Aiming Pattern</td>
<td>74</td>
</tr>
<tr>
<td>Momentary Trigger Mode Timeout</td>
<td>75</td>
</tr>
<tr>
<td>Picklist Mode</td>
<td>76</td>
</tr>
<tr>
<td>Continuous Barcode Read</td>
<td>77</td>
</tr>
<tr>
<td>Unique Barcode Reporting</td>
<td>78</td>
</tr>
<tr>
<td>Decode Session Timeout</td>
<td>78</td>
</tr>
<tr>
<td>Timeout Between Decodes, Same Symbol</td>
<td>79</td>
</tr>
<tr>
<td>Timeout Between Decodes, Different Symbols</td>
<td>80</td>
</tr>
<tr>
<td>Triggered Timeout, Same Symbol</td>
<td>80</td>
</tr>
<tr>
<td>Mobile Phone/Display Mode</td>
<td>81</td>
</tr>
<tr>
<td>PDF Prioritization</td>
<td>82</td>
</tr>
<tr>
<td>PDF Prioritization Timeout</td>
<td>82</td>
</tr>
<tr>
<td>Decoding Illumination</td>
<td>83</td>
</tr>
<tr>
<td>Illumination Brightness</td>
<td>83</td>
</tr>
<tr>
<td>Motion Tolerance (Hand-held Trigger Modes Only)</td>
<td>85</td>
</tr>
<tr>
<td>Product ID (PID) Type</td>
<td>85</td>
</tr>
<tr>
<td>Product ID (PID) Value</td>
<td>86</td>
</tr>
<tr>
<td>ECLLevel</td>
<td>86</td>
</tr>
<tr>
<td>Miscellaneous Scanner Parameters</td>
<td>87</td>
</tr>
<tr>
<td>Enter Key</td>
<td>87</td>
</tr>
<tr>
<td>Tab Key</td>
<td>87</td>
</tr>
<tr>
<td>Transmit Code ID Character</td>
<td>88</td>
</tr>
<tr>
<td>Prefix/Suffix Values</td>
<td>88</td>
</tr>
<tr>
<td>Scan Data Transmission Format</td>
<td>89</td>
</tr>
<tr>
<td>FN1 Substitution Values</td>
<td>90</td>
</tr>
<tr>
<td>Transmit "No Read" Message</td>
<td>92</td>
</tr>
<tr>
<td>Unsolicited Heartbeat Interval</td>
<td>93</td>
</tr>
<tr>
<td>securPharm Decoding</td>
<td>94</td>
</tr>
<tr>
<td>securPharm Output Formatting</td>
<td>95</td>
</tr>
<tr>
<td>Sample GS1 Format</td>
<td>96</td>
</tr>
<tr>
<td>Sample IFA Format</td>
<td>97</td>
</tr>
<tr>
<td>securPharm Output Formatting Barcodes</td>
<td>98</td>
</tr>
</tbody>
</table>
Table of Contents

Imager Preferences

- Introduction .. 99
- Setting Parameters ... 99
 - Scanning Sequence Examples .. 100
 - Errors While Scanning ... 100
- Image Capture Preferences Parameter Defaults .. 100
- Image Capture Preferences .. 102
 - Operational Modes ... 102
 - Decode Mode .. 102
 - Snapshot Mode .. 102
 - Image Capture Illumination ... 103
 - Image Capture Autoexposure ... 103
 - Fixed Exposure .. 104
 - Analog and Digital Gain .. 105
 - Analog Gain .. 105
 - Digital Gain .. 105
 - Gain/Exposure Priority for Snapshot Mode ... 106
 - Snapshot Mode Timeout .. 107
 - Snapshot Aiming Pattern .. 108
 - Silence Operational Mode Changes .. 108
 - Image Cropping ... 109
 - Crop to Pixel Addresses .. 109
 - Image Size (Number of Pixels) .. 111
 - Image Brightness (Target White) .. 112
 - JPEG Image Options ... 112
 - JPEG Quality Value .. 113
 - JPEG Size Value .. 113
 - Image Enhancement .. 114
 - Image File Format Selector ... 115
 - Image Rotation .. 116
 - Bits Per Pixel .. 117
 - Signature Capture .. 118
 - Output File Format .. 118
 - Signature Capture File Format Selector .. 119
 - Signature Capture Bits Per Pixel .. 120
 - Signature Capture Width ... 121
 - Signature Capture Height ... 121
 - Signature Capture JPEG Quality .. 121

Symbologies

- Introduction ... 123
- Setting Parameters .. 123
 - Scanning Sequence Examples .. 124
 - Errors While Scanning .. 124
- Symbology Parameter Defaults .. 124
- Enable/Disable All Code Types .. 131
- UPC/EAN/JAN ... 131
 - UPC-A ... 131
 - UPC-E ... 132
 - UPC-E1 .. 132
EAN-8/JAN-8 .. 133
EAN-13/JAN-13 .. 133
Bookland EAN ... 134
Bookland ISBN Format .. 135
ISSN EAN ... 136
Decode UPC/EAN/JAN Supplementals ... 137
User-Programmable Supplementals ... 140
UPC/EAN/JAN Supplemental Redundancy .. 140
UPC/EAN/JAN Supplemental AIM ID Format ... 141
Transmit UPC-A Check Digit ... 142
Transmit UPC-E Check Digit ... 142
Transmit UPC-E1 Check Digit .. 143
UPC-A Preamble .. 144
UPC-E Preamble .. 145
UPC-E1 Preamble .. 146
Convert UPC-E to UPC-A .. 147
Convert UPC-E1 to UPC-A ... 147
EAN/JAN Zero Extend ... 148
UCC Coupon Extended Code .. 148
Coupon Report ... 149
UPC Reduced Quiet Zone .. 150
Code 128 .. 150
Set Lengths for Code 128 .. 151
GS1-128 (formerly UCC/EAN-128) ... 152
ISBT 128 .. 153
ISBT Concatenation .. 153
Check ISBT Table ... 154
ISBT Concatenation Redundancy ... 155
Code 128 <FNC4> ... 155
Code 128 Security Level ... 156
Code 128 Reduced Quiet Zone ... 157
Code 39 .. 157
Trioptic Code 39 ... 158
Convert Code 39 to Code 32 .. 158
Code 32 Prefix .. 159
Set Lengths for Code 39 ... 159
Code 39 Check Digit Verification ... 161
Transmit Code 39 Check Digit ... 161
Code 39 Full ASCII Conversion ... 162
Code 39 Security Level ... 163
Code 39 Reduced Quiet Zone .. 164
Code 93 .. 164
Set Lengths for Code 93 ... 165
Code 11 .. 167
Set Lengths for Code 11 ... 167
Code 11 Check Digit Verification ... 169
Transmit Code 11 Check Digits ... 170
Interleaved 2 of 5 (ITF) .. 170
Set Lengths for Interleaved 2 of 5 ... 171
I 2 of 5 Check Digit Verification ... 172
Transmit I 2 of 5 Check Digit .. 173
<table>
<thead>
<tr>
<th>Symbology/Specific Security Features</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite CC-A/B</td>
<td>206</td>
</tr>
<tr>
<td>Composite CC-C</td>
<td>206</td>
</tr>
<tr>
<td>Composite TLC-39</td>
<td>206</td>
</tr>
<tr>
<td>Composite Inverse</td>
<td>206</td>
</tr>
<tr>
<td>UPC Composite Mode</td>
<td>208</td>
</tr>
<tr>
<td>Composite Beep Mode</td>
<td>209</td>
</tr>
<tr>
<td>GS1-128 Emulation Mode for UCC/EAN Composite Codes</td>
<td>209</td>
</tr>
<tr>
<td>2D Symbologies</td>
<td>210</td>
</tr>
<tr>
<td>PDF417</td>
<td>210</td>
</tr>
<tr>
<td>MicroPDF417</td>
<td>210</td>
</tr>
</tbody>
</table>
Table of Contents

SSI Interface
Introduction ... 254
Communication .. 254
SSI Transactions ... 256
General Data Transactions .. 256
ACK/NAK Handshaking .. 256
Decoded Data Transmission .. 257
ACK/NAK Enabled and Packeted Data ... 257
ACK/NAK Enabled and Unpacked ASCII Data .. 257
ACK/NAK Disabled and Packeted DECODE_DATA .. 258
ACK/NAK Disabled and Unpacked ASCII Data .. 258
Communication Summary .. 258
RTS/CTS Lines ... 258
ACK/NAK Option ... 258
Number of Data Bits .. 258
Serial Response Timeout ... 259
Retries .. 259
Baud Rate, Stop Bits, Parity, Response Timeout, ACK/NAK Handshaking .. 259
Errors ... 259
SSI Communication Notes .. 259
Using Time Delay to Low Power Mode with SSI ... 260
Encapsulation of RSM Commands/Responses over SSI ... 261
Command Structure .. 261
Response Structure ... 261
Example Transaction .. 262
Command from Host to Query Packet Size Supported by Device .. 262
Response from Device with Packet Size Information ... 262

Barcodes with Unknown Characters ... 240
USB Convert Unknown to Code 39 ... 241
USB Fast HID ... 241
USB Polling Interval .. 242
Keypad Emulation .. 244
Quick Keypad Emulation .. 244
Keypad Emulation with Leading Zero ... 245
USB Keyboard FN1 Substitution ... 245
Function Key Mapping .. 245
Simulated Caps Lock ... 246
Convert Case ... 247
USB Static CDC .. 248
CDC Beep on <BEL> ... 248
TGCS (IBM) USB Beep Directive ... 249
TGCS (IBM) USB Barcode Configuration Directive .. 249
TGCS (IBM) USB Specification Version ... 249
USB CDC Host Variant ... 250
Parameter Scanning Lockout .. 250
Parameter Default ... 250
Transmitting Data Formatting .. 251
ASCII Character Sets ... 253

11
Table of Contents

Errors While Scanning ... 351
Image Document Capture Parameter Defaults .. 352
IDC Operating Mode .. 353
IDC Symbology ... 354
IDC X Coordinate ... 355
IDC Y Coordinate ... 355
IDC Width .. 356
IDC Height .. 356
IDC Aspect ... 357
IDC File Format Selector .. 357
IDC Bits Per Pixel .. 358
IDC JPEG Quality .. 358
IDC Find Box Outline ... 359
IDC Minimum Text Length .. 359
IDC Maximum Text Length .. 360
IDC Captured Image Brighten ... 360
IDC Captured Image Sharpen ... 361
IDC Border Type .. 362
IDC Delay Time .. 363
IDC Zoom Limit ... 363
IDC Maximum Rotation ... 364
Quick Start .. 365
Sample IDC Setup .. 365
IDC Demonstrations ... 366
 Anchored Mode Demo ... 366
 Free-Form Mode Demo .. 366
 Linked Mode Demo .. 366
Other Suggestions ... 367
Quick Start Form .. 367

Digimarc (DS9308-SRD and DS9308-DLD)

 Introduction .. 368
 Digimarc Symbology Selection .. 368
 Picklist ... 368
 Digimarc Digital Watermarks .. 369

Data Formatting: ADF, MDF, Preferred Symbol

 Introduction .. 370
 Advanced Data Formatting (ADF) .. 370
 Multicode Data Formatting (Hand-held Mode Only) 370
 MDF in Hands-Free Mode .. 371
 MDF Best Practices .. 372
 Preferred Symbol .. 373

Driver’s License Set Up (DS9308-DL)

 Introduction .. 374
 Driver’s License Parsing ... 375
 Parsing Driver’s License Data Fields (Embedded Driver’s License Parsing) 376
Table of Contents

Embedded Driver's License Parsing Criteria - Code Type .. 376
Driver's License Parse Field Barcodes .. 377
AAMVA Parse Field Barcodes .. 379
Parser Version ID Barcode .. 388
User Preferences .. 389
 Set Default Parameter ... 389
 Output Gender as M or F .. 389
 Date Format ... 390
 No Separator ... 391
Send Keystroke (Control Characters and Keyboard Characters) .. 392
 Control Characters .. 392
 Keyboard Characters .. 396
Parsing Rule Example .. 410
Embedded Driver's License Parsing ADF Example ... 414

Parameter Defaults

Numeric Barcodes
- Cancel ... 431
- Numeric Barcodes .. 431

Alphanumeric Barcodes
- Cancel ... 433
- Alphanumeric Barcodes .. 433

ASCII Character Sets
- Introduction ... 450

Programming Reference
- Symbol Code Identifiers ... 461
- AIM Code Identifiers .. 462

Communication Protocol Functionality
- Functionality Supported via Communication (Cable) Interface ... 468

Country Codes
- Introduction ... 470
- USB and Keyboard Wedge Country Keyboard Types (Country Codes) 471

Country Code Pages
- Introduction ... 486
- Country Code Page Defaults ... 486
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country Code Page Barcodes</td>
<td>490</td>
</tr>
<tr>
<td>CJK Decode Control</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>500</td>
</tr>
<tr>
<td>CJK Control Parameters</td>
<td>500</td>
</tr>
<tr>
<td>Unicode Output Control</td>
<td>500</td>
</tr>
<tr>
<td>CJK Output Method to Windows Host</td>
<td>501</td>
</tr>
<tr>
<td>Non-CJK UTF Barcode Output</td>
<td>503</td>
</tr>
<tr>
<td>Country Keyboard Type Missing Characters</td>
<td>503</td>
</tr>
<tr>
<td>Unicode/CJK Decode Setup with Windows Host</td>
<td>504</td>
</tr>
<tr>
<td>Setting Up the Windows Registry Table for Unicode Universal Output</td>
<td>504</td>
</tr>
<tr>
<td>Adding CJK IME on Windows</td>
<td>504</td>
</tr>
<tr>
<td>Selecting the Simplified Chinese Input Method on the Host</td>
<td>506</td>
</tr>
<tr>
<td>Selecting the Traditional Chinese Input Method on the Host</td>
<td>507</td>
</tr>
<tr>
<td>Signature Capture</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>508</td>
</tr>
<tr>
<td>Code Structure</td>
<td>508</td>
</tr>
<tr>
<td>Signature Capture Area</td>
<td>508</td>
</tr>
<tr>
<td>CapCode Pattern Structure</td>
<td>509</td>
</tr>
<tr>
<td>Start / Stop Patterns</td>
<td>509</td>
</tr>
<tr>
<td>Dimensions</td>
<td>510</td>
</tr>
<tr>
<td>Data Format</td>
<td>510</td>
</tr>
<tr>
<td>Additional Capabilities</td>
<td>511</td>
</tr>
<tr>
<td>Signature Boxes</td>
<td>511</td>
</tr>
</tbody>
</table>
| **Non-Parameter Attributes (Attribute Data Dictionary)** | |}

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>512</td>
</tr>
<tr>
<td>Attributes</td>
<td>512</td>
</tr>
<tr>
<td>Model Number</td>
<td>512</td>
</tr>
<tr>
<td>Serial Number</td>
<td>512</td>
</tr>
<tr>
<td>Date of Manufacture</td>
<td>513</td>
</tr>
<tr>
<td>Date of First Programming</td>
<td>513</td>
</tr>
<tr>
<td>Configuration Filename</td>
<td>513</td>
</tr>
<tr>
<td>Beeper/LED</td>
<td>514</td>
</tr>
<tr>
<td>Parameter Defaults</td>
<td>515</td>
</tr>
<tr>
<td>Parameter Buffer</td>
<td>515</td>
</tr>
<tr>
<td>Beep on Next Bootup</td>
<td>515</td>
</tr>
<tr>
<td>Reboot</td>
<td>515</td>
</tr>
<tr>
<td>Host Trigger Session</td>
<td>516</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>516</td>
</tr>
<tr>
<td>Device Class</td>
<td>516</td>
</tr>
<tr>
<td>Scankit Version</td>
<td>516</td>
</tr>
<tr>
<td>Combined Firmware Version</td>
<td>517</td>
</tr>
<tr>
<td>RSM Version</td>
<td>517</td>
</tr>
<tr>
<td>Top Level Release Name</td>
<td>517</td>
</tr>
<tr>
<td>Imagekit Version</td>
<td>517</td>
</tr>
<tr>
<td>DL Parser Version</td>
<td>518</td>
</tr>
</tbody>
</table>
Table of Contents

- DL Parser Activated ... 518
- ScanSpeed Analytics ... 518
- Introduction .. 519
- Histogram Decode Information ... 519

ScanSpeed Analytics

Image of Slowest Decoded Barcode ... 523

Sample Barcodes

- UPC/EAN .. 525
 - UPC-A, 100% ... 525
 - UPC-A with 2-digit Add-on .. 525
 - UPC-A with 5-digit Add-on ... 526
 - UPC-E .. 526
 - UPC-E with 2-digit Add-on .. 526
 - UPC-E with 5-digit Add-on .. 527
 - EAN-8 .. 527
 - EAN-13, 100% ... 527
 - EAN-13 with 2-digit Add-on ... 528
 - EAN-13 with 5-digit Add-on .. 528
- Code 128 .. 528
 - GS1-128 .. 529
- Code 39 .. 529
- Code 93 .. 529
- Code 11 with 2 Check Digits .. 530
- Interleaved 2 of 5 .. 530
- MSI with 2 Check Digits .. 530
- Chinese 2 of 5 .. 531
- Matrix 2 of 5 .. 531
- Korean 3 of 5 .. 531
- GS1 DataBar ... 532
 - GS1 DataBar Omnidirectional (formerly GS1 DataBar-14) ... 532
 - GS1 DataBar Truncated ... 532
 - GS1 DataBar Stacked .. 532
 - GS1 DataBar Stacked Omnidirectional 533
 - GS1 DataBar Limited ... 533
 - GS1 DataBar Expanded .. 533
 - GS1 DataBar Expanded Stacked ... 534
- 2D Symbologies .. 534
 - PDF417 .. 534
 - Data Matrix ... 534
 - GS1 Data Matrix ... 535
 - Maxicode ... 535
 - QR Code ... 535
 - GS1 QR ... 535
 - MicroQR ... 536
 - Aztec ... 536
 - Grid Matrix ... 536
 - Han Xin ... 537
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postal Codes</td>
<td>537</td>
</tr>
<tr>
<td>US Postnet</td>
<td>537</td>
</tr>
<tr>
<td>UK Postal</td>
<td>537</td>
</tr>
<tr>
<td>Japan Postal</td>
<td>537</td>
</tr>
<tr>
<td>Australian Post</td>
<td>538</td>
</tr>
<tr>
<td>OCR</td>
<td>538</td>
</tr>
<tr>
<td>OCR-A</td>
<td>538</td>
</tr>
<tr>
<td>OCR-B</td>
<td>538</td>
</tr>
<tr>
<td>MICR E13B</td>
<td>538</td>
</tr>
<tr>
<td>US Currency</td>
<td>539</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>DS9308 Scanner</td>
</tr>
<tr>
<td>2</td>
<td>Parts of the Scanner</td>
</tr>
<tr>
<td>3</td>
<td>Inserting the Cable</td>
</tr>
<tr>
<td>4</td>
<td>Removing the Cable</td>
</tr>
<tr>
<td>5</td>
<td>Mounting with Adhesive Pad</td>
</tr>
<tr>
<td>6</td>
<td>Securing Multi-Mount Bracket to Table</td>
</tr>
<tr>
<td>7</td>
<td>Inserting Scanner into Multi-Mount on Table</td>
</tr>
<tr>
<td>8</td>
<td>Securing Multi-Mount Bracket to Wall</td>
</tr>
<tr>
<td>9</td>
<td>Inserting Scanner into Multi-Mount on Wall</td>
</tr>
<tr>
<td>10</td>
<td>Installing Locking Table Mount Bracket</td>
</tr>
<tr>
<td>11</td>
<td>Inserting Scanner onto Locking Table Mount Bracket</td>
</tr>
<tr>
<td>12</td>
<td>Securing Scanner to Locking Mount Bracket</td>
</tr>
<tr>
<td>13</td>
<td>Removing Scanner from Locking Mount Bracket</td>
</tr>
<tr>
<td>14</td>
<td>Scanning in Hands-free Mode</td>
</tr>
<tr>
<td>15</td>
<td>Scanning in Hand-held (Momentary Trigger) Mode</td>
</tr>
<tr>
<td>16</td>
<td>Scanning Orientation with Imager Aiming Dot</td>
</tr>
<tr>
<td>17</td>
<td>Acceptable and Incorrect Aiming</td>
</tr>
<tr>
<td>18</td>
<td>Scanner Cable Pinouts</td>
</tr>
<tr>
<td>19</td>
<td>USB Connection</td>
</tr>
<tr>
<td>20</td>
<td>RS-232 Connection</td>
</tr>
<tr>
<td>21</td>
<td>IBM Connection</td>
</tr>
<tr>
<td>22</td>
<td>Keyboard Wedge Connection</td>
</tr>
<tr>
<td>23</td>
<td>IBM PS2 Type Keyboard</td>
</tr>
<tr>
<td>24</td>
<td>Quick Start Form</td>
</tr>
<tr>
<td>25</td>
<td>Scanning Label in a Horizontal Orientation</td>
</tr>
<tr>
<td>26</td>
<td>Scanning Label in a Vertical Orientation</td>
</tr>
<tr>
<td>27</td>
<td>Figure Match Setting for Output</td>
</tr>
<tr>
<td>28</td>
<td>CapCode</td>
</tr>
<tr>
<td>29</td>
<td>CapCode Structure</td>
</tr>
<tr>
<td>30</td>
<td>Acceptable Signature Boxes</td>
</tr>
<tr>
<td>31</td>
<td>123Scan Statistics Tab - Histogram Data</td>
</tr>
</tbody>
</table>
List of Tables

Table 1. DS9308 Scanner Only Configurations ... 23
Table 2. Scanner Accessories ... 24
Table 3. Scanner Beeper and LED Indications .. 42
Table 4. DS9308 Decode Ranges .. 47
Table 5. Troubleshooting ... 51
Table 6. Technical Specifications .. 55
Table 7. DS9308 Scanner Signal Pin-outs ... 58
Table 8. User Preferences Parameter Defaults .. 60
Table 9. Image Capture Preferences Parameter Defaults ... 100
Table 10. Image Size ... 111
Table 11. Output File Format ... 118
Table 12. Symbology Parameter Defaults .. 124
Table 13. USB Interface Parameter Defaults ... 235
Table 14. USB CDC Host Variant Parameter Values .. 250
Table 15. Parameter Defaults for Airport Device Types .. 250
Table 16. SITA Code ID ... 251
Table 17. ARINC Barcode Identifier .. 251
Table 18. SSI Commands ... 255
Table 19. Values for Selecting Time Delay to Low Power ... 260
Table 20. SSI Interface Default Table ... 264
Table 21. Event Codes ... 276
Table 22. RS-232 Interface Parameter Defaults ... 281
Table 23. Terminal Specific RS-232 .. 282
Table 24. Terminal Specific Code ID Characters .. 283
Table 25. IBM 468X/469X Interface Parameter Defaults .. 300
Table 26. Keyboard Wedge Interface Parameter Defaults .. 306
Table 27. OCR Programming Default Table ... 316
Table 28. Table of Numeric Value Assignments for Computing HIBC LIC Data Format Check Digit 345
Table 29. Intelligent Document Capture (IDC) Parameter Defaults 352
Table 30. IDC Symbologies ... 354
Table 31. DL Parsing Parameter Table ... 374
Table 32. Parameter Defaults ... 416
Table 33. ASCII Character Set ... 450
Table 34. ALT Key Character Set ... 455
Table 35. GUI Key Character Set .. 456
Table 36. PF Key Character Set ... 457
Table 37. F Key Character Set ... 458
Table 38. Numeric Key Character Set .. 458
Table 39. Extended Key Character Set ... 459
Table 40. Symbol Code Characters .. 461
Table 41. AIM Code Characters ... 462
Table 42. Modifier Characters ... 463
Table 43. Communication Interface Functionality ... 468
Table 44. Country Code Page Defaults .. 486
Table 45. Missing Characters ... 503
Table 46. Missing Characters ... 504
Table 47. Start / Stop Pattern Definitions ... 509
Table 48. User Defined CapCode Parameters .. 509
Table 49. Data Format .. 510
Table 50. Attributes Numbers of Barcode Symbology Statistic Information 520
Table 51. RSM Attributes to Store/Retrieve Image of Slowest Decoded Barcode 523
About This Guide

Introduction
The DS9308 scanner Product Reference Guide provides general instructions for setting up, operating, maintaining, and troubleshooting the DS9308 scanner.

Configurations
This guide includes the DS9308 scanner configurations listed in Table 1.

Table 1 DS9308 Scanner Only Configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS9308-SR00004ZZWW</td>
<td>Presentation Area Imager, Standard Range, Corded, Midnight Black</td>
</tr>
<tr>
<td>DS9308-SR00004ZCWW</td>
<td>Presentation Area Imager, Standard Range, Corded, Midnight Black, Checkpoint EAS</td>
</tr>
<tr>
<td>DS9308-SRD0004ZZWW</td>
<td>Presentation Area Imager, Standard Range, Corded, Midnight Black, Digimarc</td>
</tr>
<tr>
<td>DS9308-DL00004ZZNA</td>
<td>Presentation Area Imager, Standard Range, DL Parsing, Corded, Midnight Black</td>
</tr>
<tr>
<td>DS9308-DL00004ZCNA</td>
<td>Presentation Area Imager, Standard Range, DL Parsing, Corded, Midnight Black, Checkpoint EAS</td>
</tr>
<tr>
<td>DS9308-DLD0004ZZNA</td>
<td>Presentation Area Imager, Standard Range, DL Parsing, Corded, Midnight Black, Digimarc</td>
</tr>
<tr>
<td>DS9308-TT00004ZZJP</td>
<td>Presentation Area Imager, Standard Range, Toshiba TEC, Corded, Midnight Black</td>
</tr>
<tr>
<td>DS9308-TT00004ZCJP</td>
<td>Presentation Area Imager, Standard Range, Toshiba TEC, Corded, Midnight Black, Checkpoint EAS</td>
</tr>
<tr>
<td>DS9308-SR00004ZZY</td>
<td>Presentation Area Imager, Standard Range, Corded, Midnight Black - India Only</td>
</tr>
<tr>
<td>DS9308-SR00004WZZWW</td>
<td>Presentation Area Imager, Standard Range, Corded, Alpine White</td>
</tr>
<tr>
<td>DS9308-SR00004ZTWW</td>
<td>Presentation Area Imager, Standard Range, Corded, Midnight Black, TAA</td>
</tr>
</tbody>
</table>
Accessories

NOTE: Check Solution Builder for additional information regarding all available accessories, and the latest available configurations.

The scanner ships with the DS9308 Quick Start Guide. The following required accessories must be ordered:

- Interface cable for the appropriate interface. For example, a shielded connector cable when connecting via USB.
- Universal power supply, if the interface requires this.

The product configurations related to the DS9308 scanner are listed in Table 2.

Table 2 Scanner Accessories

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cables</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For information about cables, cable compatibility, and the full list of supported cables go to the Zebra Partner Portal at: https://partnerportal.zebra.com/PartnerPortal/product_services/downloads_z/barcode_scanners/Universal-Cable-Guide-Bar-Code-Scanners.xlsx.</td>
<td></td>
</tr>
<tr>
<td>Stands and Holders (optional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRKT-MM0093C-04</td>
<td>DS9308 Multi-mount bracket, Black. Can be used as wall mount or table mount. See Mounting the Scanner on page 33 for installation instructions.</td>
<td></td>
</tr>
<tr>
<td>BRKT-LM0093C-04</td>
<td>DS9308 Locking-mount bracket, Black. Can be used to lock the scanner into position on a horizontal or vertical surface. See Mounting the Scanner on page 33 for installation instructions.</td>
<td></td>
</tr>
<tr>
<td>BRKT-MM0093C-0W</td>
<td>DS9308 Multi-mount bracket, White. Can be used as wall mount or table mount. See Mounting the Scanner on page 33 for installation instructions.</td>
<td></td>
</tr>
<tr>
<td>BRKT-LM0093C-0W</td>
<td>DS9308 Locking-mount bracket, White. Can be used to lock the scanner into position on a horizontal or vertical surface. See Mounting the Scanner on page 33 for installation instructions.</td>
<td></td>
</tr>
<tr>
<td>Power Supplies (if required)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWR-WUA5V4W0US</td>
<td>Power Supply, 5VDC, 100 - 240VAC, US/CA/MX/JP/TW</td>
<td></td>
</tr>
<tr>
<td>PWR-WUA5V4W0BR</td>
<td>Power Supply, 5VDC, 100 - 240VAC, KR (Korea)</td>
<td></td>
</tr>
<tr>
<td>PWR-WUA5V4W0EU</td>
<td>Power Supply, 5VDC, 100 - 240VAC, EU/UK</td>
<td></td>
</tr>
<tr>
<td>PWR-WUA5V4W0CN</td>
<td>Power Supply, 5VDC, 100 - 240VAC, CN</td>
<td></td>
</tr>
<tr>
<td>PWR-WUA5V4W0AU</td>
<td>Power Supply, 5VDC, 100 - 240VAC, HK/AU</td>
<td></td>
</tr>
</tbody>
</table>
Chapter Descriptions

Topics covered in this guide are as follows:

- **Getting Started** provides a product overview, unpacking instructions, and cable connection information.
- **123Scan and Software Tools** describes the Zebra software tools available for customizing scanner operation.
- **Data Capture** describes parts of the scanner, beeper and LED definitions, and how to use the scanner in hand-held and hands-free (presentation) modes.
- **Maintenance, Troubleshooting, and Technical Specifications** provides information on how to care for the scanner, troubleshooting, and technical specifications.
- **User Preferences & Miscellaneous Options** describes features frequently used to customize how data transmits to the host device and programming barcodes for selecting user preference features for the scanner.
- **Imager Preferences** provides imaging preference features and programming barcodes for selecting these features.
- **Symbologies** describes all symbology features and provides programming barcodes for selecting these features for the scanner.
- **USB Interface** describes how to set up the scanner with a USB host.
- **SSI Interface** describes the system requirements of the Simple Serial Interface (SSI), which provides a communications link between Zebra decoders and a serial host.
- **RS-232 Interface** describes how to set up the scanner with an RS-232 host, such as point-of-sale devices, host computers, or other devices with an available RS-232 port.
- **IBM Interface** describes how to set up the scanner with IBM 468X/469X POS systems.
- **Keyboard Wedge Interface** describes how to set up a Keyboard Wedge interface with the scanner.
- **OCR Programming** describes how to set up the scanner for OCR programming.
- **Intelligent Document Capture (Hand-held Mode Only)** describes IDC, an advanced image processing firmware, including IDC functionality, parameter barcodes to control its features, and a quick start procedure.
- **Digimarc (DS9308-SRD and DS9308-DLD)** provides barcodes to either enable or disable Digimarc Barcode, a machine-readable code that is invisible to people.
- **Data Formatting: ADF, MDF, Preferred Symbol** briefly describes the Zebra features available for customizing scanner operation.
- **Driver's License Set Up (DS9308-DL)** describes how the DS9308-DL scanner can parse out information from standard US driver's licenses and certain other American Association of Motor Vehicle Administrators (AAMVA) compliant ID cards.
- **Parameter Defaults** provides a table of all host devices and miscellaneous scanner defaults.
- **Numeric Barcodes** includes the numeric barcodes to scan for parameters requiring specific numeric values.
- **Alphanumeric Barcodes** includes the barcodes representing the alphanumeric keyboard, used when setting ADF rules.
- **ASCII Character Sets** provides ASCII character value tables.
- **Programming Reference** provides a table of AIM code identifiers, ASCII character conversions, and keyboard maps.
• Communication Protocol Functionality lists supported scanner functionality by communication protocol.
• Country Codes provides barcodes for programming the country keyboard type for the USB keyboard (HID) device and the keyboard wedge host.
• Country Code Pages provides barcodes for selecting code pages for the country keyboard type.
• CJK Decode Control describes control parameters for Unicode/CJK (Chinese, Japanese, Korean) barcode decode through USB HID Keyboard Emulation mode.
• Signature Capture provides information on CapCode, a signature capture code that encloses a signature area on a document and allows a scanner to capture a signature.
• Non-Parameter Attributes (Attribute Data Dictionary) defines non-parameter attributes.
• ScanSpeed Analytics describes the Zebra ScanSpeed Analytics software that allows the identification of barcodes that slow down processes.
• Sample Barcodes includes sample barcodes of various code types.

Notational Conventions

The following conventions are used in this document:

• **Bold** text is used to highlight the following:
 • Dialog box, window and screen names
 • Drop-down list and list box names
 • Check box and radio button names
 • Icons on a screen
 • Key names on a keypad
 • Button names on a screen.
• Bullets (•) indicate:
 • Action items
 • Lists of alternatives
 • Lists of required steps that are not necessarily sequential.
• Sequential lists (e.g., those that describe step-by-step procedures) appear as numbered lists.
Related Documents and Software

- DS9308 Quick Start Guide, p/n MN-003533-xx, provides general information for getting started with the DS9308 scanner, and includes basic set up and operation instructions.
- Advanced Data Formatting Programmer Guide, p/n 72E-69680-xx - provides information on ADF, a means of customizing data before transmission to a host.
- Plural Stage Programmer’s Guide, p/n 72E-67113-xx, provides the barcodes necessary to program the DS9308 scanner to decode Plural Stage barcodes and enable Supplemental Recognition Characters.
- Toshiba TEC Programmer’s Guide, p/n MN-002707-xx, provides the barcodes necessary to program the DS9308 scanner for the Toshiba TEC host.

For the latest version of this guide and all guides, go to: zebra.com/support.

Service Information

If you have a problem with your equipment, contact Zebra Global Customer Support for your region. Contact information is available at: zebra.com/support.

When contacting support, please have the following information available:

- Serial number of the unit
- Model number or product name
- Software type and version number.

Zebra responds to calls by email, telephone or fax within the time limits set forth in support agreements.

If your problem cannot be solved by Zebra Customer Support, you may need to return your equipment for servicing and will be given specific directions. Zebra is not responsible for any damages incurred during shipment if the approved shipping container is not used. Shipping the units improperly can possibly void the warranty.

If you purchased your Zebra business product from a Zebra business partner, contact that business partner for support.

Provide Documentation Feedback

If you have comments, questions, or suggestions about this guide, send an email to EVM-Techdocs@zebra.com.
Getting Started

Introduction

The DS9308 combines superior 1D and 2D omnidirectional barcode scanning with advanced imaging applications in a compact, easy to use form factor. The DS9308 is designed primarily for hands-free presentation scanning but can easily be picked up and triggered like a hand-held.

Figure 1 DS9308 Scanner
Interfaces

NOTE: Only the Symbol Native API (SNAPI) with Imaging interface supports image capture. See USB Device Type on page 237 to enable this host.

The DS9308 scanner supports:

- USB connection to a host. The scanner autodetects a USB host and defaults to the HID keyboard interface type. Select other USB interface types by scanning programming barcode menus. This interface supports the international keyboards (for Windows® environment) included in the chapter Country Codes.

- Standard RS-232 connection to a host. Scan barcode menus to set up communication of the scanner with the host.

- Connection to IBM 468X/469X hosts. Scan barcode menus to set up communication of the scanner with the IBM terminal.

- Keyboard Wedge connection to a host. The host interprets scanned data as keystrokes. Scan barcode menus to set up communication of the scanner with the host. This interface supports the international keyboards (for Windows® environment) included in the chapter Country Codes.

Unpacking

Remove the scanner from its packing and inspect it for damage. If the scanner was damaged in transit, contact support. See page 27 for contact information. KEEP THE PACKING. It is the approved shipping container; use this to return the equipment for servicing.
Features

Figure 2 Parts of the Scanner
Setting Up the Scanner

Inserting the Interface Cable

NOTE: Different hosts require different cables. The connectors illustrated in each host chapter are examples only. Connectors vary from those illustrated, but the steps to connect the scanner are the same.

1. Place the scanner on a flat surface and tilt the scanner all the way forward.
2. Plug the interface cable modular connector into the cable interface port on the rear of the scanner until you hear a click (see Figure 3). Gently tug the cable to ensure the connector is secure. The green LED lights and low/medium/high beeps sound, indicating that the scanner is operational.

IMPORTANT: For information about cables and cable compatibility, go to the Zebra Partner Portal at: https://partnerportal.zebra.com/PartnerPortal/product_services/downloads_z/barcode_scanners/Universal-Cable-Guide-Bar-Code-Scanners.xlsx.

Figure 3 Inserting the Cable

3. Connect the other end of the interface cable to the host (see the specific host chapter for information on host connections).
Removing the Interface Cable

1. Place the scanner on a flat surface and tilt the scanner all the way forward.
2. Insert a small screw driver into the under side of the cable release opening to lift up the cable clip.
3. Pull the cable/connector UP and OUT of the connection and carefully slide out the cable.
4. Follow the steps for Inserting the Interface Cable to connect a new cable.
Connecting Power (if required)

If the host does not provide power to the scanner, connect an external power supply:

1. Connect the interface cable to the base of the scanner, as described in Inserting the Interface Cable on page 31.
2. Connect the other end of the interface cable to the host (refer to the host manual to locate the correct port).
3. Plug the power supply into the power jack on the interface cable. Plug the other end of the power supply into an AC outlet.

Configuring the Scanner

To configure the scanner use the barcodes included in this manual. See User Preferences & Miscellaneous Options and Imager Preferences for information about programming the scanner using barcode menus. Also see each host-specific chapter to set up connection to a specific host type.

Mounting the Scanner

The DS9308 offers the following mounting options:

- Multi-Mount Bracket - Mounts the scanner to a wall (or other vertical surface) or to a table. The device can easily be removed from the multi-mount for hand-held use.
- Locking Table Mount - Mounts to a flat surface and the scanner is locked into place.

Multi-Mount Bracket

The optional multi-mount bracket mounts the scanner to a table top or wall (or other vertical surface). When mounting to a table top, use either screws or the adhesive pad. When mounting to a wall (or other vertical surface) screws are required.

NOTE: When mounting to a table top, screws are more secure than the adhesive pad.

Installing Multi-Mount With Adhesive Pad

Figure 5 Mounting with Adhesive Pad
To mount the optional multi-mount bracket using the adhesive pad:

1. Clean the table top surface with Isopropyl alcohol to remove any dirt or debris.
2. Peel the corner of the paper liner off the tape on the bottom of the multi-mount bracket (Figure 5).
3. Press the bottom of the multi-mount bracket on the flat table top and apply uniform pressure for minimally 10 seconds to secure it to the surface (Figure 5).
4. Slide the base of the scanner into the bracket.

Installing Multi-Mount With Screws on Table

To mount the scanner to a table using the optional multi-mount bracket with screws:

1. Place the bracket in the desired location on the table top.
2. Insert two #8 screws through each screw hole in the bracket.

Figure 6 Securing Multi-Mount Bracket to Table

![Securing Multi-Mount Bracket to Table](image)

3. Screw into place until secure.

Figure 7 Inserting Scanner into Multi-Mount on Table

![Inserting Scanner into Multi-Mount on Table](image)

4. Slide the base of the scanner into the bracket.
Installing Multi-Mount with Screws on Wall

To mount the scanner on a wall using the optional multi-mount bracket with screws:

1. Place the bracket in its desired location on the wall and insert two #8 screws through each screw hole in the bracket.

 Figure 8 Securing Multi-Mount Bracket to Wall

 ![Securing Multi-Mount Bracket to Wall](image)

2. Tighten the screws to secure the bracket to the wall.
3. Slide the base of the scanner into the bracket, oriented so the scan window faces down (**Figure 9**).

 Figure 9 Inserting Scanner into Multi-Mount on Wall

 ![Inserting Scanner into Multi-Mount on Wall](image)
Locking Table Mount

The optional locking table mount is secured to a flat surface and the scanner is locked into place.

Installing Locking Table Mount

To mount the scanner using the optional locking table mount:

1. Place the bracket in the desired location on the table top and insert two #8 screws through each screw hole in the bracket.

 \[\text{NOTE:}\] When selecting the desired location to install the locking table mount bracket, be sure to consider that when the scanner is placed on the mount bracket, it is turned a 1/4 revolution clockwise which will be the final location the scanner faces.

 \[\text{Figure 10}\] Installing Locking Table Mount Bracket

2. Place the scanner onto the bracket.
Figure 11 Inserting Scanner onto Locking Table Mount Bracket
3. Turn the scanner 1/4 revolution clockwise until you hear a click and the scanner faces its final position.

Figure 12 Securing Scanner to Locking Mount Bracket

Removing DS9308 from Locking Table Mount
To remove the scanner from the locking table mount, turn counter-clockwise until the scanner is released.

Figure 13 Removing Scanner from Locking Mount Bracket
123Scan and Software Tools

Introduction

This chapter briefly describes the Zebra software tools available for customizing scanner operation.

123Scan

123Scan is a software tool that simplifies scanner setup and more.

Intuitive enough for first time users, the 123Scan wizard guides users through a streamlined setup process. Settings are saved in a configuration file that can be printed as a single programming barcode for scanning, emailed to a smart phone for scanning from its screen, or downloaded to the scanner using a USB cable.

Through 123Scan a user can:

- Configure a scanner using a wizard.
 - Program the following scanner settings.
 - Beeper tone / volume settings.
 - Enable / disable symbologies.
 - Communication settings.
 - Modify data before transmission to a host using:
 - Advanced Data Formatting (ADF) - Scan one barcode per trigger pull.
 - Multicode Data Formatting (MDF) - Scan many barcodes in one trigger pull (select scanners).
 - Preferred Symbol - Single out one barcode on label of many (select scanners).
- Load parameter settings to a scanner via the following.
 - Barcode scanning.
 - Scan a paper barcode.
 - Scan a barcode from a PC screen.
 - Scan a barcode from a smart phone screen.
 - Download over a USB cable.
 - Load settings to one scanner.
 - Stage up to 10 scanners simultaneously (Powered USB Hub recommended with 0.5 amp / port).
• Validate scanner setup.
 • View scanned data within the utility's Data view screen.
 • Capture an image and save to a PC within the utility's Data view screen.
 • Review settings using the Parameter Report.
 • Clone settings from an already deployed scanner from the Start screen.
• Upgrade scanner firmware.
 • Load settings to one scanner.
 • Stage up to 10 scanners simultaneously (Powered USB Hub recommended with 0.5 amp / port).
• View statistics such as:
 • Asset tracking information.
 • Time and usage information.
 • Barcodes scanned by symbology.
 • Battery diagnostics (select scanners).
• Generate the following reports.
 • Barcode Report - Programming barcode, included parameter settings, and supported scanner models.
 • Parameter Report - Parameters programmed within a configuration file.
 • Inventory Report - Scanner asset tracking information.
 • Validation Report - Scanned data from the Data view.
 • Statistics Report - All statistics retrieved from the scanner.

For more information go to: www.zebra.com/123Scan.

Communication with 123Scan

Use a USB cable to connect the scanner to a Windows host computer running 123Scan.

123Scan Requirements

• Host computer running Windows 7, 8, and 10
• Scanner
• USB cable.

123Scan Information

For more information on 123Scan, go to: www.zebra.com/123Scan.

For a 1 minute tour of 123Scan, go to: www.zebra.com/ScannerHowToVideos.

To see a list of all of our software tools, go to: www.zebra.com/scannersoftware.
Scanner SDK, Other Software Tools, and Videos

Tackle all your scanner programming needs with our diversified set of software tools. Whether you need to simply stage a device, or develop a fully featured application with image and data capture as well as asset management, these tools help you every step of the way.

To download any of the following free tools, go to: www.zebra.com/scannersoftware.

- 123Scan configuration utility
- SDKs
 - Scanner SDK for Windows
 - Scanner SDK for Linux
 - Scanner SDK for Android
- Drivers
 - OPOS driver
 - JPOS driver
 - USB CDC driver
 - TWAIN driver
- Scanner Management Service (SMS) for Remote Management
 - Windows
 - Linux
- How-To-Videos

NOTE: For a list of SDK supported scanner functionality by communication protocol, see Communication Protocol Functionality.
Introduction

This chapter provides beeper and LED definitions, general instructions and tips about scanning, and decode zone diagrams.

Beeper and LED Indicators

In addition to beep sequences, the scanner uses a two-color LED to indicate status.

- The DS9308 scanner includes one LED indicator for system/decode indications.

Table 3 defines beep sequences that occur during both normal scanning and while programming the scanner; LED colors that display during scanning.

<table>
<thead>
<tr>
<th>Beeper Sequence</th>
<th>LED</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low/medium/high beeps</td>
<td>Green</td>
<td>Power up.</td>
</tr>
<tr>
<td>Medium beep</td>
<td>Hands-free - solid green</td>
<td>A barcode was successfully decoded. (See User Preferences Parameter Defaults on page 60 for programming beeper sounds.)</td>
</tr>
<tr>
<td>(or as configured)</td>
<td>LED; turns off after decode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hand-held - LED is off;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>green upon decode.</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Green (solid)</td>
<td>Presentation (Hands-free) Mode on.</td>
</tr>
<tr>
<td>None</td>
<td>No LED (green LED is turned off)</td>
<td>Presentation (Hands-free) Mode off.</td>
</tr>
<tr>
<td>Four long low beeps</td>
<td>Red</td>
<td>A transmission error occurred. The data is ignored. This occurs if a unit is not properly configured. Check option setting.</td>
</tr>
<tr>
<td>Five long low beeps</td>
<td>Red</td>
<td>Conversion or format error.</td>
</tr>
<tr>
<td>None</td>
<td>Red (blinking) on trigger pull</td>
<td>Scanner is disabled by a host command to the scanner.</td>
</tr>
<tr>
<td>Image Capture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low beep</td>
<td>Green (blinking)</td>
<td>Snapshot mode started.</td>
</tr>
</tbody>
</table>
Table 3 Scanner Beeper and LED Indications (Continued)

<table>
<thead>
<tr>
<th>Beeper Sequence</th>
<th>LED</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low beep</td>
<td>Default Green LED based upon hand-held or hands-free mode</td>
<td>Snapshot mode completed.</td>
</tr>
<tr>
<td>High/low beeps</td>
<td>Default Green LED based upon hand-held or hands-free mode</td>
<td>Snapshot mode timed-out.</td>
</tr>
</tbody>
</table>

Parameter Programming

<table>
<thead>
<tr>
<th>Beeper Sequence</th>
<th>LED</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long low/long high beeps</td>
<td>Red</td>
<td>Input error; incorrect barcode or Cancel scanned, wrong entry, incorrect barcode programming sequence; remain in program mode.</td>
</tr>
<tr>
<td>High/low beeps</td>
<td>Green</td>
<td>Number expected. Enter value using numeric barcodes.</td>
</tr>
<tr>
<td>High/low/high/low beeps</td>
<td>Green</td>
<td>Successful program exit with change in the parameter setting.</td>
</tr>
</tbody>
</table>

ADF Programming

<table>
<thead>
<tr>
<th>Beeper Sequence</th>
<th>LED</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low/high/low beeps</td>
<td>None</td>
<td>ADF transmit error.</td>
</tr>
<tr>
<td>High/low beeps</td>
<td>Green</td>
<td>Number expected. Enter another digit. Add leading zeros to the front if necessary.</td>
</tr>
<tr>
<td>Low/low beeps</td>
<td>Green</td>
<td>Alphanumeric expected. Enter another alphanumeric character or scan the End of Message barcode.</td>
</tr>
<tr>
<td>High/high beeps</td>
<td>Green blinking</td>
<td>ADF criteria or action is expected. Enter another criteria or action or scan the Save Rule barcode.</td>
</tr>
<tr>
<td>High/low/low beeps</td>
<td>Green</td>
<td>All criteria or actions cleared for current rule, continue entering rule.</td>
</tr>
<tr>
<td>High/low/high/low beeps</td>
<td>Green (turns off after blinking)</td>
<td>Rule saved. Rule entry mode exited.</td>
</tr>
<tr>
<td>Long low/long high beeps</td>
<td>Red</td>
<td>Rule error. Entry error, wrong barcode scanned, or criteria/action list is too long for a rule. Re-enter criteria or action.</td>
</tr>
<tr>
<td>Low beep</td>
<td>Green</td>
<td>Deleted last saved rule. The current rule is left intact.</td>
</tr>
<tr>
<td>Low/high/high beeps</td>
<td>Green</td>
<td>All rules deleted.</td>
</tr>
<tr>
<td>Long low/long/high low/long high beeps</td>
<td>Red</td>
<td>Out of rule memory. Erase some existing rules, then try to save rule again.</td>
</tr>
<tr>
<td>Long low/long high/low beeps</td>
<td>Green (turns off after blinking)</td>
<td>Cancel rule entry. Rule entry mode exited because of an error or the user asked to exit rule entry.</td>
</tr>
</tbody>
</table>

Host Specific

<table>
<thead>
<tr>
<th>USB only</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Four high beeps</td>
<td>None</td>
<td>Scanner has not completed initialization. Wait several seconds and scan again.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RS-232 only</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High beep</td>
<td>None</td>
<td>A <BEL> character is received when Beep on <BEL> is enabled (Point-to-Point mode only).</td>
</tr>
</tbody>
</table>
Table 3 Scanner Beeper and LED Indications (Continued)

<table>
<thead>
<tr>
<th>Beeper Sequence</th>
<th>LED</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>123Scan only (When in use, the utility controls the scanner LED)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Green (slow blinking)</td>
<td>Scanner connected to 123Scan.</td>
</tr>
<tr>
<td>None</td>
<td>Red (fast blinking)</td>
<td>File being transferred to the scanner (parameters and firmware).</td>
</tr>
<tr>
<td>None</td>
<td>Red (slow blinking)</td>
<td>Firmware being activated on the scanner, loaded into memory.</td>
</tr>
<tr>
<td>None</td>
<td>Green (solid)</td>
<td>Programming completed successfully (parameters and firmware).</td>
</tr>
<tr>
<td>None</td>
<td>Red (solid)</td>
<td>Error state.</td>
</tr>
<tr>
<td>SMS only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Red (blinking)</td>
<td>Loading the SMS package to scanner.</td>
</tr>
<tr>
<td>Maintenance Indications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High/high beeps</td>
<td>Red (stays on)</td>
<td>Enter Bootloader.</td>
</tr>
<tr>
<td>None</td>
<td>Red (blinking)</td>
<td>Firmware installation.</td>
</tr>
<tr>
<td>Macro PDF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low/low beeps</td>
<td>None</td>
<td>Buffered File ID error. A barcode not in the current MPDF sequence was scanned.</td>
</tr>
<tr>
<td>Long low/low beeps (2 long low beeps)</td>
<td>None</td>
<td>File ID error. A barcode not in the current MPDF sequence was scanned.</td>
</tr>
<tr>
<td>Long low/low/low beeps (3 long low beeps)</td>
<td>None</td>
<td>Out of memory. There is not enough buffer space to store the current MPDF symbol.</td>
</tr>
<tr>
<td>Long low/low/low/long low/low beeps (4 long low beeps)</td>
<td>None</td>
<td>Bad symbology. Scanned a 1D or 2D barcode in an MPDF sequence, a duplicate MPDF label, a label in an incorrect order, or trying to transmit an empty or illegal MPDF field.</td>
</tr>
<tr>
<td>Long low/low/low/long low/low/low beeps (5 long low beeps)</td>
<td>None</td>
<td>Flushing MPDF buffer.</td>
</tr>
<tr>
<td>Fast Warble</td>
<td>None</td>
<td>Aborting MPDF sequence.</td>
</tr>
<tr>
<td>Low/high beeps</td>
<td>None</td>
<td>Flushing an already empty MPDF buffer.</td>
</tr>
</tbody>
</table>
Scanning

The DS9308 has a built-in, adjustable base to easily accommodate both hands-free (presentation) and hand-held scanning.

Hands-free Scanning

The scanner is in hands-free (presentation) mode when it sits on a counter top, or when it is mounted on a wall using the multi-mount bracket. In this mode, the scanner operates in continuous (constant-on) mode, where it automatically decodes a barcode presented in its field of view.

In hands-free mode the LED indicator turns solid green. An aiming dot does not appear.

Figure 14 Scanning in Hands-free Mode

Hand-held Scanning

To operate the digital scanner in hand-held mode (momentary trigger mode):
1. Pick up the digital scanner and press the trigger. The aiming dot displays.

Figure 15 Scanning in Hand-held (Momentary Trigger) Mode

2. Ensure the aiming dot is centered on the barcode (see Figure 17).
3. Press and hold the trigger until either:
 a. The digital scanner reads the barcode. The digital scanner beeps and the successful decode LED flashes.
 b. The digital scanner does not read the barcode and the illumination turns off.
4. Release the trigger. The aiming dot reappears. To read another barcode, repeat steps 2 and 3.

After a programmable time period (see Momentary Trigger Mode Timeout on page 76), the aiming dot turns off and the digital scanner returns to presentation mode, ready to read barcodes without the use of the trigger. For beeper definitions, see Table 3 on page 42.

Aiming

The scanner may project an LED dot which allows positioning the barcode within its field of view. See Decode Ranges on page 47 for the proper distance to achieve between the scanner and a barcode.

Figure 16 Scanning Orientation with Imager Aiming Dot

The scanner can also read a barcode presented within the aiming dot not centered. The top examples in Figure 17 show acceptable aiming options, while the bottom examples cannot be decoded.

Figure 17 Acceptable and Incorrect Aiming

The aiming dot is smaller when the scanner is closer to the symbol and larger when it is farther from the symbol. Scan symbols with smaller bars or elements (mil size) closer to the scanner, and those with larger bars or elements (mil size) farther from the scanner.

The scanner beeps to indicate that it successfully decoded the barcode. For more information on beeper and LED definitions, see Table 3 on page 42.
Decode Ranges

Table 4 DS9308 Decode Ranges

<table>
<thead>
<tr>
<th>Symbol Density</th>
<th>Barcode Type</th>
<th>Near</th>
<th>Far</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 mil Code 39</td>
<td>0 in. / 0 cm</td>
<td>2.5 in. / 6.35 cm</td>
<td></td>
</tr>
<tr>
<td>4.0 mil Code 39</td>
<td>0 in. / 0 cm</td>
<td>4.0 in. / 10.2 cm</td>
<td></td>
</tr>
<tr>
<td>5.0 mil Code 39</td>
<td>0 in. / 0 cm</td>
<td>5.0 in. / 12.7 cm</td>
<td></td>
</tr>
<tr>
<td>7.5 mil Code 39</td>
<td>0 in. / 0 cm</td>
<td>6.5 in. / 16.5 cm</td>
<td></td>
</tr>
<tr>
<td>20 mil Code 39</td>
<td>0 in. / 0 cm</td>
<td>11.0 in. / 27.9 cm</td>
<td></td>
</tr>
<tr>
<td>3 mil Code 128</td>
<td>0 in. / 0 cm</td>
<td>2.0 in. / 5.1 cm</td>
<td></td>
</tr>
<tr>
<td>5 mil Code 128</td>
<td>0 in. / 0 cm</td>
<td>4.0 in. / 10.2 cm</td>
<td></td>
</tr>
<tr>
<td>13 mil (100%) UPC</td>
<td>0 in. / 0 cm</td>
<td>8.8 in. / 22.4 cm</td>
<td></td>
</tr>
<tr>
<td>10 mil Data Matrix</td>
<td>0 in. / 0 cm</td>
<td>4.5 in. / 11.4 cm</td>
<td></td>
</tr>
<tr>
<td>20 mil QR</td>
<td>0 in. / 0 cm</td>
<td>7.5 in. / 19.1 cm</td>
<td></td>
</tr>
</tbody>
</table>

Electronic Article Surveillance (EAS)

NOTE: EAS is available only on scanner models that support Checkpoint EAS.

Some scanner configurations include an integrated Electronic Article Surveillance (EAS) antenna.

The scanner’s integrated EAS deactivation antenna requires an EAS host cable. This Y-cable connects to the scanner’s host port at one end, and splits to the host and the EAS system at the other end.

Installing

Checkpoint EAS Model Compatibility

The scanner is intended for use with Checkpoint CP-VII, CP-IX, and CP-XI systems. It does not support CP-IV and other low-power receiver-based EAS deactivation systems.

Considerations

The Checkpoint CP-VII system generates a periodic burst of electromagnetic energy that deactivates EAS tags brought near the scanner. To avoid interference with the scanner’s operation, take the following precautions when installing the EAS system:

- Position the EAS antenna box as far as possible from the scanner (at least 6 in. / 15.24 cm.)
- Position the EAS antenna, EAS antenna box, EAS control cable, and EAS controller box as far as possible from the scanner’s host and power cables.
EAS range is as dependent on the Checkpoint system (which is calibrated onsite) as it is on the scanner. Therefore, we cannot provide estimated ranges, however these are some of the factors that contribute to EAS range:

- Antenna – Length, gauge, number of turns, placement in the scanner.
- Type of Checkpoint EAS system used (ie. CP-VII, CP-IX, and CP-XI).
- Length of wire connecting antenna to (Checkpoint) EAS (site/installation dependent)
- Settings done within Checkpoint system (site/installation dependent).

Checkpoint Contact Information

Contact your local Checkpoint representative to install the EAS cable to the Checkpoint Deactivation System.
Introduction

This chapter provides suggested scanner maintenance, troubleshooting, technical specifications, and signal descriptions (pinouts).

Maintenance

Known Harmful Ingredients

The following chemicals are known to damage the plastics on Zebra scanners and should not come in contact with the device:

- Acetone
- Ammonia solutions
- Aqueous or alcoholic alkaline solutions
- Aromatic and chlorinated hydrocarbons
- Benzene
- Carbolic acid
- Compounds of amines or ammonia
- Ethanolamine
- Ethers
- Ketones
- TB-lysoform
- Toluene
- Trichloroethylene.

Approved Cleaners for the Scanner

- Isopropyl alcohol 70% (including pre-moistened wipes).
Cleaning the Scanner

Routinely cleaning the exit window is required. A dirty window may affect scanning accuracy. Do not allow any abrasive material to touch the window.

To clean the scanner:

1. Dampen a soft cloth with one of the approved cleaning agents listed above or use pre-moistened wipes.
2. Gently wipe all surfaces, including the front, back, sides, top and bottom. Never apply liquid directly to the scanner. Be careful not to let liquid pool around the scanner window, trigger, cable connector or any other area on the device.
3. Be sure to clean the trigger and in between the trigger and the housing (use a cotton-tipped applicator to reach tight or inaccessible areas).
4. Do not spray water or other cleaning liquids directly into the exit window.
5. Wipe the scanner exit window with a lens tissue or other material suitable for cleaning optical material such as eyeglasses.
6. Immediately dry the scanner window after cleaning with a soft non-abrasive cloth to prevent streaking.
7. Allow the unit to air dry before use.
8. Scanner connectors:
 a. Dip the cotton portion of a cotton-tipped applicator in isopropyl alcohol.
 b. Rub the cotton portion of the cotton-tipped applicator back-and-forth across the connector on the Zebra scanner at least 3 times. Do not leave any cotton residue on the connector.
 c. Use the cotton-tipped applicator dipped in alcohol to remove any grease and dirt near the connector area.
 d. Use a dry cotton tipped applicator and rub the cotton portion of the cotton-tipped applicator back-and-forth across the connectors at least 3 times. Do not leave any cotton residue on the connectors.
Troubleshooting

NOTE: If after performing the possible solutions in Table 5 the scanner still experiences problems, contact the distributor or call support.

Table 5 Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The illumination does not appear when pressing the trigger.</td>
<td>No power to the scanner.</td>
<td>If the configuration requires a power supply, re-connect the power supply.</td>
</tr>
<tr>
<td></td>
<td>Incorrect host interface cable is used.</td>
<td>Connect the correct host interface cable.</td>
</tr>
<tr>
<td></td>
<td>Interface/power cables are loose.</td>
<td>Re-connect cables.</td>
</tr>
<tr>
<td></td>
<td>Scanner is disabled.</td>
<td>For IBM 468x and USB IBM hand-held, IBM table-top, and OPOS modes, enable the scanner via the host interface. Otherwise, see the technical person in charge of scanning.</td>
</tr>
<tr>
<td></td>
<td>If using RS-232 Nixdorf B mode, CTS is not asserted.</td>
<td>Assert CTS line.</td>
</tr>
<tr>
<td></td>
<td>Illumination is disabled.</td>
<td>Enable the illumination. See Decoding Illumination on page 83.</td>
</tr>
<tr>
<td>Scanner emits illumination, but does not decode the barcode.</td>
<td>Scanner is not programmed for the correct barcode type.</td>
<td>Program the scanner to read that type of barcode. See Symbologies.</td>
</tr>
<tr>
<td></td>
<td>Barcode symbol is unreadable.</td>
<td>Scan test symbols of the same barcode type to determine if the barcode is defaced.</td>
</tr>
</tbody>
</table>
| | The symbol is not completely inside illumination. | Move the symbol completely within the illumination.
Move the symbol completely within the field of view (AIM pattern does NOT define FOV) |
<p>| | Distance between scanner and barcode is incorrect. | Move the scanner closer to or further from the barcode. See Decode Ranges on page 47. |</p>
<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanner decodes barcode, but does not transmit the data to the host.</td>
<td>Scanner is not programmed for the correct host type.</td>
<td>Scan the appropriate host type programming barcode. See the chapter corresponding to the host type.</td>
</tr>
<tr>
<td>Interface cable is loose.</td>
<td>Re-connect the cable.</td>
<td></td>
</tr>
<tr>
<td>If the scanner emits four long low beeps, a transmission error occurred. This occurs if a unit is not properly configured or connected to the wrong host type.</td>
<td>Set the scanner's communication parameters to match the host's setting.</td>
<td></td>
</tr>
<tr>
<td>If the scanner emits 5 low beeps, a conversion or format error occurred.</td>
<td>Configure the scanner's conversion parameters properly.</td>
<td></td>
</tr>
<tr>
<td>If the scanner emits low/high/low beeps, it detected an invalid ADF rule.</td>
<td>Program the correct ADF rules. Refer to the Advanced Data Formatting Programmer Guide.</td>
<td></td>
</tr>
<tr>
<td>Host displays scanned data incorrectly.</td>
<td>Scanner is not programmed to work with the host.</td>
<td>Scan the appropriate host type programming barcode.</td>
</tr>
<tr>
<td>For RS-232, set the scanner's communication parameters to match the host's settings.</td>
<td>For a Keyboard Wedge configuration, program the system for the correct keyboard type, and turn off the CAPS LOCK key.</td>
<td></td>
</tr>
<tr>
<td>Program the proper editing options (e.g., UPC-E to UPC-A Conversion).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scanner emits short low/short medium/short high beep sequence (power-up beep sequence) more than once.</td>
<td>The USB bus may put the scanner in a state where power to the scanner is cycled on and off more than once.</td>
<td>Normal during host reset.</td>
</tr>
<tr>
<td>Scanner emits 4 short high beeps during decode attempt.</td>
<td>Scanner has not completed USB initialization.</td>
<td>Wait several seconds and scan again.</td>
</tr>
<tr>
<td>Scanner emits Low/low/low/extra low beeps when not in use.</td>
<td>RS-232 receive error.</td>
<td>Normal during host reset. Otherwise, set the scanner's RS-232 parity to match the host setting.</td>
</tr>
<tr>
<td>Scanner emits low/high beeps during programming.</td>
<td>Input error, incorrect barcode or Cancel barcode was scanned.</td>
<td>Scan the correct numeric barcodes within range for the parameter programmed.</td>
</tr>
<tr>
<td>Problem</td>
<td>Possible Causes</td>
<td>Possible Solutions</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Scanner emits low/high/low/high beeps during programming.</td>
<td>Out of host parameter storage space.</td>
<td>Scan Default Parameters on page 62.</td>
</tr>
<tr>
<td></td>
<td>Out of memory for ADF rules.</td>
<td>Reduce the number of ADF rules or the number of steps in the ADF rules.</td>
</tr>
<tr>
<td></td>
<td>During programming, indicates out of ADF parameter storage space.</td>
<td>Erase all rules and re-program with shorter rules.</td>
</tr>
<tr>
<td>Scanner emits low/high/low beeps.</td>
<td>ADF transmit error.</td>
<td>Refer to the Advanced Data Formatting Guide for information.</td>
</tr>
<tr>
<td></td>
<td>Invalid ADF rule is detected.</td>
<td>Refer to the Advanced Data Formatting Guide for information.</td>
</tr>
<tr>
<td>Scanner emits a power-up beep after changing USB host type.</td>
<td>The USB bus re-established power to the scanner.</td>
<td>Normal when changing USB host type.</td>
</tr>
<tr>
<td>Scanner emits one high beep when not in use.</td>
<td>In RS-232 mode, a \textless\text{BEL}\textgreater\ character was received and Beep on \textless\text{BEL}\textgreater option is enabled.</td>
<td>Normal when Beep on \textless\text{BEL}\textgreater is enabled and the scanner is in RS-232 mode.</td>
</tr>
<tr>
<td>Scanner emits frequent beeps.</td>
<td>Inadequate power supplied to the scanner.</td>
<td>Check the system power. If the configuration requires a power supply, re-connect the power supply.</td>
</tr>
<tr>
<td></td>
<td>Incorrect host interface cable is used.</td>
<td>Verify that the correct host interface cable is used. If not, connect the correct host interface cable.</td>
</tr>
<tr>
<td></td>
<td>Interface/power cables are loose.</td>
<td>Check for loose cable connections and re-connect cables.</td>
</tr>
<tr>
<td>Scanner emits five long low beeps after a barcode is decoded.</td>
<td>Conversion or format error was detected.</td>
<td>Ensure the scanner conversion parameters are properly configured.</td>
</tr>
<tr>
<td></td>
<td>The scanner conversion parameters are not properly configured.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conversion or format error was detected.</td>
<td>Change the ADF rule, or change to a host that can support the ADF rule.</td>
</tr>
<tr>
<td></td>
<td>An ADF rule was set up with characters that can't be sent for the host selected.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conversion or format error was detected.</td>
<td>Change the barcode, or change to a host that can support the barcode.</td>
</tr>
<tr>
<td></td>
<td>A barcode was scanned with characters that can't be sent for that host.</td>
<td></td>
</tr>
</tbody>
</table>
Report Product Information

Report Software Version
Scan the following barcode to send the version of software installed in the scanner.

Report Serial Number
Scan the following barcode to send the scanner serial number to the host.

Report Manufacturing Information
Scan the following barcode to send the scanner manufacturing information to the host.
Technical Specifications

Table 6 Technical Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Characteristics</td>
<td></td>
</tr>
</tbody>
</table>
| Dimensions | 5.7 in H x 3.4 in W x 3.3 in D
 | 14.5 cm H x 8.6 cm W x 8.3 cm D |
| Weight | 11.2 oz (318 g) | | | |
| Available Colors | Midnight Black, Alpine White |
| Supported Host Interfaces | USB, RS232, Keyboard Wedge, TGCS (IBM) 46XX over RS485 |
| USB Certification | DS9308 is USB2.0 Full Speed Compliant, visit USB.org for more details. |
| Keyboard Support | Supports over 90 international keyboards |
| Electronic Article Surveillance| Compatible with Checkpoint deactivation system |
| **Electrical Characteristics** | |
| SR and DL Models | Minimum | Maximum | Unit |
| Supply Voltage | 4.5 | 5.0 | 5.5 | V |
| Idle current (Hand-held) | 75 | mA |
| Idle current (Hands-free) | 135 | mA |
| Scanning current (Hand-held) | 350 | mA |
| Scanning current (Hands-free) | 335 | mA |
| **Performance Characteristics**| |
| Swipe Speed | Up to 120 in./305 cm per second for 13 mil UPC in optimized mode |
| Aiming Dot | Amber 617nm LED |
| Illumination | Red 660nm LED |
| Field of View | 52° H x 33° V |
| (Horizontal x Vertical) Nominal| |
Image Sensor
- 1280 x 800 pixels

Minimum Print Contrast
- 15% minimum reflective difference

Skew Tolerance
- +/- 60°

Pitch Tolerance
- +/- 60°

Roll Tolerance
- 360°

Image Capture
- Graphics Format Support: Images can be exported as Bitmap, JPEG, or TIFF
- Resolution (4 x 5.8 in. document @ 6 in.): 109 PPI

User Environment
- Operating Temperature: 32°F to 122°F (0°C to 50°C)
- Storage Temperature: -40°F to 158°F / -40° to 70°C
- Humidity: 5% to 95% RH, non-condensing
- Drop Specifications: Designed to withstand multiple drops at 5.0 ft/1.5 m to concrete
- Tumble Specification (Scanner): Designed to withstand 1,000 tumbles in 1.5 ft./0.5 m tumbler
- Ambient Light Immunity: 0 to 10,000 Foot Candles/0 to 107,700 Lux
- Environmental Sealing: IP52
- Electrostatic Discharge (ESD): ESD per EN61000-4-2, +/-15 KV Air, +/-8 KV Indirect

Accessories (see page 24)

Symbol Decode Capability

| 1D Code 39, Code 128, Code 93, Codabar/NW7, Code 11, MSI Plessey, UPC/EAN, I 2 of 5, Korean 3 of 5, GS1 DataBar, Base 32 (Italian Pharma) |
| 2D PDF417, Micro PDF417, Composite Codes, TLC-39, Aztec, Data Matrix, MaxiCode, QR Code, Micro QR, Han Xin, Postal Codes, SecurPharm, Dotcode, Dotted Datamatrix |
| Digimarc Digital watermark technology; available on specific models only |
| OCR OCR-A, OCR-B, MICR, US Currency |

Minimum Element Resolution
- Code 39: 3 mil
- Code 128: 3 mil
- QR Code: 5 mil
- Data Matrix: 5 mil

See Decode Ranges on page 47 for working ranges.
Table 6 Technical Specifications (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental: Restriction of Hazardous Substances (RoHS)</td>
<td>EN 50581, EN IEC 63000</td>
</tr>
<tr>
<td>EMC</td>
<td>EN 55032, EN55024, EN55035, EN 61000-3-2, EN 61000-3-3, 47 CFR Part 15, Subpart B, Class B, ICES-003, Class B</td>
</tr>
<tr>
<td>Health and Safety</td>
<td>IEC 62368-1, UL 62368-1, CAN/CSA-22.2 No. 62368-1-14, IEC 62471</td>
</tr>
<tr>
<td>Utilities and Management</td>
<td></td>
</tr>
<tr>
<td>123Scan</td>
<td>Programs scanner parameters, upgrades firmware, provides scanned barcode data and prints reports. See 123Scan and Software Tools</td>
</tr>
<tr>
<td>Symbol Scanner SDK</td>
<td>Generates a fully-featured scanner application, including documentation, drivers, test utilities and sample source code. www.zebra.com/ScannerSDKforWindows</td>
</tr>
<tr>
<td>Scanner Management Service (SMS)</td>
<td>Remotely manages your Zebra scanner and queries its asset information. www.zebra.com/sms</td>
</tr>
</tbody>
</table>
Scanner Signal Descriptions

![Scanner Cable Pinouts](image)

The signal descriptions in Table 7 apply to the connectors on the DS9308 scanner and are for reference only.

Table 7 DS9308 Scanner Signal Pin-outs

<table>
<thead>
<tr>
<th>Pin</th>
<th>IBM</th>
<th>RS-232</th>
<th>Keyboard Wedge</th>
<th>USB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cable ID</td>
<td>Cable ID</td>
<td>Cable ID</td>
<td>Cable ID</td>
</tr>
<tr>
<td>2</td>
<td>Power (+5V)</td>
<td>Power (+5V)</td>
<td>Power (+5V)</td>
<td>Power (+5V)</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
<td>Ground</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>IBM_OUT</td>
<td>TxD</td>
<td>KeyClock</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>IBM_IN</td>
<td>RxD</td>
<td>TermData</td>
<td>D +</td>
</tr>
<tr>
<td>6</td>
<td>IBM_T/R</td>
<td>RTS</td>
<td>KeyData</td>
<td>Reserved</td>
</tr>
<tr>
<td>7</td>
<td>Reserved</td>
<td>CTS</td>
<td>TermClock</td>
<td>D -</td>
</tr>
<tr>
<td>8</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>See note</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>See note</td>
<td></td>
</tr>
</tbody>
</table>

Note: EAS configurations use pins 9 and 10 for an EAS antenna. For other configurations pins 9 and 10 are open.
User Preferences & Miscellaneous Options

Introduction

You can program the scanner to perform various functions, or activate different features. This chapter describes user preference features and provides programming barcodes for selecting these features.

The scanner ships with the settings shown in Table 8 on page 60 (also see Parameter Defaults for all defaults). If the default values suit requirements, programming is not necessary.

Setting Parameters

To set feature values, scan a single barcode or a short barcode sequence. The settings are stored in non-volatile memory and are preserved even when the scanner powers down.

NOTE: Most computer monitors allow scanning barcodes directly on the screen. When scanning from the screen, be sure to set the document magnification to a level where you can see the barcode clearly, and bars and/or spaces do not merge.

If not using the default host, select the host type (see each host chapter for specific host information) after the power-up beeps sound. This is only necessary upon the first power-up when connected to a new host.

To return all features to default values, see Default Parameters on page 62. Throughout the programming barcode menus, asterisks indicate (*) default values.

Scanning Sequence Examples

In most cases, scanning one barcode sets the parameter value. For example, to set the beeper tone to high, scan the High Frequency (beep tone) barcode listed under Beep Tone on page 65. The scanner issues a fast warble beep and the LED turns green, signifying a successful parameter entry.

Other parameters require scanning several barcodes. See the parameter descriptions for this procedure.
Errors While Scanning

Unless otherwise specified, to correct an error during a scanning sequence, just re-scan the correct parameter.

User Preferences/Miscellaneous Options Parameter Defaults

Table 8 lists defaults for user preferences parameters. Change these values in one of two ways:

- Scan the appropriate barcodes in this chapter. The new value replaces the standard default value in memory. To recall default parameter values, see Default Parameters on page 62.
- Configure the scanner using the 123Scan configuration program. See 123Scan and Software Tools.

NOTE: See Parameter Defaults for all user preference, host, symbology, and miscellaneous default parameters.

Table 8 User Preferences Parameter Defaults

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard User Preferences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Default Parameter</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>62</td>
</tr>
<tr>
<td>Parameter Barcode Scanning</td>
<td>236</td>
<td>ECh</td>
<td>Enable</td>
<td>63</td>
</tr>
<tr>
<td>Beep After Good Decode</td>
<td>56</td>
<td>38h</td>
<td>Enable</td>
<td>63</td>
</tr>
<tr>
<td>Beep Volume</td>
<td>140</td>
<td>8Ch</td>
<td>High</td>
<td>64</td>
</tr>
<tr>
<td>Beep Tone</td>
<td>145</td>
<td>91h</td>
<td>Medium</td>
<td>65</td>
</tr>
<tr>
<td>Beep Duration</td>
<td>628</td>
<td>F1h 74h</td>
<td>Short</td>
<td>66</td>
</tr>
<tr>
<td>Volume Adjustment Trigger Timeout</td>
<td>403</td>
<td>F0h 93h</td>
<td>5 Seconds</td>
<td>67</td>
</tr>
<tr>
<td>Suppress Power Up Beeps</td>
<td>721</td>
<td>F1h D1h</td>
<td>Do Not Suppress</td>
<td>68</td>
</tr>
<tr>
<td>Direct Decode Indicator</td>
<td>859</td>
<td>F2h 5Bh</td>
<td>Disable</td>
<td>69</td>
</tr>
<tr>
<td>Low Power Mode</td>
<td>128</td>
<td>80h</td>
<td>Disable</td>
<td>70</td>
</tr>
<tr>
<td>Time Delay to Low Power Mode</td>
<td>146</td>
<td>92h</td>
<td>1 Hour</td>
<td>71</td>
</tr>
<tr>
<td>Trigger Mode</td>
<td>138</td>
<td>8Ah</td>
<td>Presentation Mode</td>
<td>73</td>
</tr>
<tr>
<td>Hand-held Decode Aiming Pattern</td>
<td>306</td>
<td>F0h 32h</td>
<td>Enable</td>
<td>74</td>
</tr>
<tr>
<td>Presentation (Hands-free) Decode Aiming Pattern</td>
<td>590</td>
<td>F1h 4Eh</td>
<td>Disable Presentation (Hands-free) Decode Aiming Pattern</td>
<td>75</td>
</tr>
<tr>
<td>Momentary Trigger Mode Timeout</td>
<td>2030</td>
<td>EDh</td>
<td>5 Seconds</td>
<td>76</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
User Preferences & Miscellaneous Options

Table 8 User Preferences Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picklist Mode</td>
<td>402</td>
<td>F0h 92h</td>
<td>Enable Picklist Mode in Hand-held Mode</td>
<td>77</td>
</tr>
<tr>
<td>Continuous Barcode Read</td>
<td>649</td>
<td>F1h 89h</td>
<td>Disable</td>
<td>78</td>
</tr>
<tr>
<td>Unique Barcode Reporting</td>
<td>723</td>
<td>F1h D3h</td>
<td>Enable</td>
<td>78</td>
</tr>
<tr>
<td>Decode Session Timeout</td>
<td>136</td>
<td>88h</td>
<td>9.9 Seconds</td>
<td>79</td>
</tr>
<tr>
<td>Timeout Between Decodes, Same Symbol</td>
<td>137</td>
<td>89h</td>
<td>0.5 Seconds</td>
<td>79</td>
</tr>
<tr>
<td>Timeout Between Decodes, Different Symbols</td>
<td>144</td>
<td>90h</td>
<td>0.1 Seconds</td>
<td>80</td>
</tr>
<tr>
<td>Triggered Timeout, Same Symbol</td>
<td>724</td>
<td>F1h D4h</td>
<td>Disable</td>
<td>80</td>
</tr>
<tr>
<td>Mobile Phone/Display Mode</td>
<td>716</td>
<td>F1h CCh</td>
<td>Normal</td>
<td>81</td>
</tr>
<tr>
<td>PDF Prioritization</td>
<td>719</td>
<td>F1h CFh</td>
<td>Disable</td>
<td>82</td>
</tr>
<tr>
<td>PDF Prioritization Timeout</td>
<td>720</td>
<td>F1h D0h</td>
<td>200 ms</td>
<td>82</td>
</tr>
<tr>
<td>Decoding Illumination</td>
<td>298</td>
<td>F0h 2Ah</td>
<td>Enable</td>
<td>83</td>
</tr>
<tr>
<td>Illumination Brightness</td>
<td>669</td>
<td>F1h 9Dh</td>
<td>High</td>
<td>83</td>
</tr>
<tr>
<td>Motion Tolerance (Hand-held Trigger Mode Only)</td>
<td>858</td>
<td>F2h 5Ah</td>
<td>Less Motion Tolerance</td>
<td>85</td>
</tr>
<tr>
<td>Product ID (PID) Type</td>
<td>1281</td>
<td>F8h 05h 01h</td>
<td>Host Type Unique</td>
<td>85</td>
</tr>
<tr>
<td>Product ID (PID) Value</td>
<td>1725</td>
<td>F8h 06h BDh</td>
<td>0</td>
<td>86</td>
</tr>
<tr>
<td>ECLevel</td>
<td>1710</td>
<td>F8h 06h AEh</td>
<td>0</td>
<td>86</td>
</tr>
</tbody>
</table>

Miscellaneous Options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Key</td>
<td>N/A</td>
</tr>
<tr>
<td>Tab Key</td>
<td>N/A</td>
</tr>
<tr>
<td>Transmit Code ID Character</td>
<td>2Dh</td>
</tr>
<tr>
<td>Prefix Value</td>
<td>63h, 69h</td>
</tr>
<tr>
<td>Suffix 1 Value</td>
<td>62h, 68h</td>
</tr>
<tr>
<td>Suffix 2 Value</td>
<td>64h, 6Ah</td>
</tr>
<tr>
<td>Scan Data Transmission Format</td>
<td>EBh</td>
</tr>
<tr>
<td>FN1 Substitution Values</td>
<td>67h, 6Dh</td>
</tr>
<tr>
<td>Transmit "No Read" Message</td>
<td>5E</td>
</tr>
<tr>
<td>Unsolicited Heartbeat Interval</td>
<td>0Fh 04h 5Eh</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
Standard User Preferences

Default Parameters

Scan one of the following barcodes to reset the scanner to its default settings as follows:

- **Restore Defaults** resets all default parameters as follows:
 - If you configured custom default parameter values via the Write to Custom Defaults barcode, scanning the Restore Defaults barcode restores these custom values.
 - If you did not configure custom default parameter values, scanning the Restore Defaults barcode restores the factory default values. See Parameter Defaults for these values.

- **Set Factory Defaults** clears all custom default values and sets the factory default values. See Parameter Defaults for these values.

Write to Custom Defaults

To create a set of custom defaults, select the desired parameter values in this guide, and then scan Write to Custom Defaults.

Table 8 User Preferences Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>securPharm Decoding</td>
<td>1752</td>
<td>F8h 06h D8h</td>
<td>Disable</td>
<td>95</td>
</tr>
<tr>
<td>securPharm Output Formatting</td>
<td>1753</td>
<td>F8h 06h D9h</td>
<td>No Formatting</td>
<td>96</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
Parameter Barcode Scanning
Parameter # 236
SSI # ECh

Scan one of the following barcodes to select whether to enable or disable the decoding of parameter barcodes, including the Set Defaults barcodes.

* Enable Parameter Barcode Scanning
 (1)

* Disable Parameter Barcode Scanning
 (0)

Beep After Good Decode
Parameter # 56
SSI # 38h

Scan one of the following barcodes to select whether or not the scanner beeps after a good decode. If you select Do Not Beep After Good Decode, the beeper still operates during parameter menu scanning and to indicate error conditions.

* Enable Beep After Good Decode
 (1)

* Disable Beep After Good Decode
 (0)
Beep Volume
Parameter # 140
SSI # 8Ch

Scan one of the following barcodes to select a beep volume.

- Low Volume
 (2)

- Medium Volume
 (1)

* High Volume
 (0)
Beep Tone
Parameter # 145
SSI # 91h
Scan one of the following barcodes to select a beep tone for audible feedback indicating a good decode. Select from the Standard Beep Tones below or from the Beep Duration on page 66.
Scan Disable Beep Tone to disable all tones.

Standard Beep Tones

- Low Beep Tone (2)
- * Medium Beep Tone (1)
- High Beep Tone (0)
- Medium to High Beep Tone (2-tone) (4)
Beep Duration
Parameter # 628
SSI # F1h 74h

Scan one of the following barcodes to select the duration for the good decode beep.

* Short Duration
(0)

Medium Duration
(1)

Long Duration
(2)
Volume Adjustment Trigger Timeout

Parameter # 403

SSI # F0h 93h

Scan one of the following barcodes to set the length of time needed to hold the trigger to adjust the volume. The scanner changes volume and beeps with the new volume.

- 3 Seconds (30)
- 5 Seconds (50)
- 7 Seconds (70)
- 10 Seconds (100)
Suppress Power Up Beeps

Parameter # 721

SSI # F1h D1h

Scan one of the following barcodes to select whether or not to suppress the scanner’s power-up beeps.

* Do Not Suppress Power Up Beeps
 (0)

Suppress Power Up Beeps
 (1)
Direct Decode Indicator

Parameter # 859

SSI # F2h 5Bh

This parameter is only supported in Standard (Level) Trigger Mode. Scan one of the following barcodes to select optional blinking of the illumination on a successful decode if you continue to hold the trigger. If you release the trigger upon decode, the blinking does not occur. This allows you to choose additional feedback for a successful decode by holding the trigger, or to continue to scan as normal.

- * Disable Direct Decode Indicator - Illumination does not blink on a successful decode.
- 1 Blink - Illumination blinks once upon a successful decode.
- 2 Blinks - Illumination blinks twice upon a successful decode.
Low Power Mode

Parameter # 128

SSI # 80h

NOTE: The Low Power Mode parameter only applies for non-USB and non-RS485 host interfaces, and when Trigger Mode is set to Level (Standard).

Scan one of the following barcodes to select whether or not the scanner enters low power mode after a decode attempt or host communication. This applies to serial and keyboard wedge connections. If disabled, power remains on after each decode attempt.

If you enable this, see Time Delay to Low Power Mode to set the inactivity time period.

Enable Low Power Mode
(1)

* Disable Low Power Mode
(0)
Time Delay to Low Power Mode
Parameter # 146
SSI # 92h

NOTE: This parameter only applies when **Low Power Mode** is enabled.

Scan one of the following barcodes to set the time the scanner remains active before entering low power mode. The scanner wakes upon trigger press or when the host attempts to communicate with the scanner.

- **1 Second**
 - (17)

- **10 Seconds**
 - (26)

- **1 Minute**
 - (33)

- **5 Minutes**
 - (37)

- **15 Minutes**
 - (43)
Time Delay to Low Power Mode (continued)

- **30 Minutes**
 - (45)

- **45 Minutes**
 - (46)

- **1 Hour**
 - (49)

- **3 Hours**
 - (51)

- **6 Hours**
 - (54)

- **9 Hours**
 - (57)
Trigger Mode

Parameter # 138

SSI # 8Ah

Scan one of the following barcodes to select a trigger mode for the scanner:

- **Standard (Level)** - A trigger press activates decode processing. Decode processing continues until the barcode decodes, you release the trigger, or the Decode Session Timeout on page 79 occurs.
- **Presentation (Blink)** - The scanner activates decode processing when it detects a barcode in its field of view. After a period of non-use, the LEDs turn off until the scanner senses motion.
Hand-held Decode Aiming Pattern

Parameter # 306

SSI # F0h 32h

NOTE: The decode aiming pattern flashes even if you disable the Hand-held Decode Aiming Pattern if the trigger button is pressed.

Scan one of the following barcodes to select when to project the aiming pattern in hand-held mode:

- **Enable Hand-held Decode Aiming Pattern** - This projects the aiming pattern during barcode capture.
- **Disable Hand-held Decode Aiming Pattern** - This turns the aiming pattern off.
- **Enable Hand-held Decode Aiming Pattern on PDF** - This projects the aiming pattern when the scanner detects a PDF barcode.

* Enable Hand-held Decode Aiming Pattern
 (2)

Disable Hand-held Decode Aiming Pattern
 (0)

Enable Hand-held Decode Aiming Pattern on PDF
 (3)
Presentation (Hands-free) Decode Aiming Pattern
Parameter # 590
SSI # F1h 4Eh

Scan one of the following barcodes to select when to project the aiming pattern in hands-free mode:

- **Enable Presentation (Hands-free) Decode Aiming Pattern** - This projects the aiming pattern during barcode capture.
- **Disable Presentation (Hands-free) Decode Aiming Pattern** - This turns the aiming pattern off.
- **Enable Presentation (Hands-free) Decode Aiming Pattern on PDF** - This projects the aiming pattern when the scanner detects a PDF barcode.

NOTE: With Momentary Trigger Mode Timeout on page 76 enabled, the decode aiming pattern flashes even when you disable the Hands-free Decode Aiming Pattern.

* Enable Presentation (Hands-free) Decode Aiming Pattern
(1)

* Disable Presentation (Hands-free) Decode Aiming Pattern
(0)

Enable Presentation (Hands-free) Decode Aiming Pattern on PDF
(2)
Momentary Trigger Mode Timeout
Parameter # 2030
SSI # EDh

In momentary trigger mode, the aiming pattern appears upon pressing the trigger. Once in this mode, upon each trigger press the scanner attempts to decode the barcode in front of it. After a period of inactivity while the trigger is not pressed, the scanner reverts to presentation mode where there is no illumination until an item is presented.

Scan one of the following barcodes to set the length of the period of inactivity in momentary trigger mode before the scanner reverts to presentation mode.

2 Seconds
(20)

3 Seconds
(30)

4 Seconds
(40)

* 5 Seconds
(50)
Picklist Mode
Parameter # 402
SSI # F0h 92h

Scan one of the following barcodes to select a Picklist Mode. In this mode, you can pick out and decode a barcode from a group of barcodes that are printed close together by placing the aiming pattern on the barcode you want to decode.

NOTES: Enabling Picklist Mode overrides the Disable Decode Aiming Pattern options. You can not disable the decode aiming pattern when Picklist Mode is enabled. Enabling Picklist Mode can slow decode speed and hinder the ability to decode longer barcodes.

• Enable Picklist Mode Always - Picklist Mode is always enabled.
• Enable Picklist Mode in Hand-held Mode - Picklist Mode is enabled when the scanner is out of hands-free mode and disabled when the scanner is in presentation mode.
• Enable Picklist Mode in Hands-free Mode - Picklist Mode is enabled when the scanner is in hands-free mode only.

NOTE: When using Picklist Mode in Hands-free Mode, increase the time of the Timeout Between Decodes, Same Symbol on page 79.

• Disable Picklist Mode Always - Picklist Mode is always disabled.

Enable Picklist Mode Always (2)

* Enable Picklist Mode in Hand-held Mode (1)

Enable Picklist Mode in Hands-free Mode (3)

Disable Picklist Mode Always (0)
Continuous Barcode Read
Parameter # 649
SSI # F1h 89h

Scan Enable Continuous Barcode Read to report every barcode while the trigger is pressed.

NOTE: We strongly recommend enabling Momentary Trigger Mode Timeout on page 76 with this parameter. Disabling Picklist Mode can cause accidental decodes when more than one barcode is in the scanner's field of view.

Enable Continuous Barcode Read
(1)

* Disable Continuous Barcode Read
(0)

Unique Barcode Reporting
Parameter # 723
SSI # F1h D3h

Scan Enable Continuous Barcode Read Uniqueness to report only unique barcodes while the trigger is pressed. This option only applies when Continuous Barcode Read is enabled.

* Enable Unique Barcode Reporting
(1)

Disable Unique Barcode Reporting
(0)
Decode Session Timeout

Parameter # 136

SSI # 88h

This parameter sets the maximum time decode processing continues during a scan attempt. It is programmable in 0.1 second increments from 0.5 to 9.9 seconds. The default timeout is 9.9 seconds.

To set a Decode Session Timeout, scan the following barcode, and then scan two barcodes from Numeric Barcodes that correspond to the desired on time. Enter a leading zero for single digit numbers. For example, to set a Decode Session Timeout of 0.5 seconds, scan this barcode, and then scan the 0 and 5 barcodes. To correct an error or change the selection, scan Cancel.

![Decode Session Timeout](image)

Timeout Between Decodes, Same Symbol

Parameter # 137

SSI # 89h

Use this option in presentation mode or Continuous Barcode Read mode to prevent the scanner from continuously decoding the same barcode when it is left in the scanner’s field of view. The barcode must be out of the field of view for the timeout period before the scanner reads the same consecutive symbol. It is programmable in 0.1 second increments from 0.0 to 9.9 seconds. The default interval is 0.5 seconds.

To select the timeout between decodes for the same symbol, scan the following barcode, and then scan two barcodes from Numeric Barcodes that correspond to the desired interval, in 0.1 second increments.

![Timeout Between Decodes, Same Symbol](image)
Timeout Between Decodes, Different Symbols

Parameter # 144

SSI # 90h

Use this option in presentation mode or Continuous Barcode Read to control the time the scanner waits before decoding a different symbol. It is programmable in 0.1 second increments from 0.1 to 9.9 seconds. The default is 0.1 seconds.

To select the timeout between decodes for different symbols, scan the following barcode, and then scan two barcodes from Numeric Barcodes that correspond to the desired interval, in 0.1 second increments.

NOTE: Timeout Between Decodes, Different Symbols cannot be greater than or equal to the Decode Session Timeout.

Triggered Timeout, Same Symbol

Parameter # 724 (SSI # F1h D4h)

NOTE: This feature does not apply to Timeout Between Decodes, Different Symbols.

NOTE: Timeout Between Decodes, Same Symbol cannot be greater than or equal to the Time Delay to Low Power Mode (parameter #146 on page 71).

Scan Enable Triggered Timeout, Same Symbol below to apply Timeout Between Decodes, Same Symbol (parameter #137 on page 79) in hand-held trigger mode. Subsequent scans of Enable Triggered Timeout, Same Symbol are ignored until Timeout Between Decodes, Same Symbol expires.

Enable Triggered Timeout, Same Symbol

(1)

* Disable Triggered Timeout, Same Symbol

(0)
Mobile Phone/Display Mode

Parameter # 716

SSI # F1h CCh

This mode improves barcode reading performance off mobile phones and electronic displays. Scan one of the following barcodes to select the desired mode.

* Normal Mobile Phone/Display Mode
 (0)

Enhanced in Hand-held Mode
 (1)

Enhanced in Hands-free Mode
 (2)

Enhanced in Both Modes
 (3)
PDF Prioritization
Parameter # 719
SSI # F1h CFh

Scan Enable PDF Prioritization to delay decoding certain 1D barcodes (see Note below) by the value specified in PDF Prioritization Timeout. During that time the scanner attempts to decode a PDF417 symbol (e.g., on a US driver's license), and if successful, reports this only. If it does not decode (can not find) a PDF417 symbol, it reports the 1D symbol after the timeout. The 1D symbol must be in the device's field of view for the scanner to report it. This parameter does not affect decoding other symbologies.

NOTE: To use PDF Prioritization in hand-held mode, you must disable Picklist Mode.

NOTE: The 1D Code 128 barcode lengths include the following:
• 7 to 10 characters
• 14 to 22 characters
• 27 to 28 characters

In addition, a Code 39 barcode with the following lengths are considered to potentially be part of a US driver's license:
• 8 characters
• 12 characters

Enable PDF Prioritization
(1)

* Disable PDF Prioritization
(0)

PDF Prioritization Timeout
Parameter # 720
SSI # F1h D0h

If you enabled PDF Prioritization, set this timeout to indicate how long the scanner attempts to decode a PDF417 symbol before reporting the 1D barcode in the field of view.
Scan the following barcode, and then scan four barcodes from Numeric Barcodes that specify the timeout in milliseconds. For example, to enter 400 ms, scan the following barcode, and then scan 0400. The range is 0 to 5000 ms, and the default is 200 ms.

Decoding Illumination
Parameter # 298
SSI # F0h 2Ah
Scan one of the following barcodes to determine whether the scanner turns on illumination to aid decoding. Enabling illumination usually results in superior images and better decode performance. The effectiveness of the illumination decreases as the distance to the target increases.

* Enable Decoding Illumination
 (1)

Disable Decoding Illumination
 (0)

Illumination Brightness
Parameter # 669
SSI # F1h 9Dh
Scan one of the following barcodes to set the illumination brightness used during an active decode session. This only applies in hand-held mode (not in presentation mode).

NOTE: Selecting a lower brightness level can affect decode performance.
User Preferences & Miscellaneous Options

Low Illumination Brightness
(0)

Medium Illumination Brightness
(3)

* High Illumination Brightness
(10)
Motion Tolerance (Hand-held Trigger Modes Only)
Parameter # 858
SSI # F2h 5Ah

Scan one of the following barcodes to select a motion tolerance option:

- **Less Motion Tolerance** - This provides optimal decoding performance on 1D barcodes.
- **More Motion Tolerance** - This increases motion tolerance and speeds decoding when scanning a series of 1D barcodes in rapid progression.

Product ID (PID) Type
Parameter # 1281
SSI # F8h 05h 01h

Scan one of the following barcodes to define the PID value reported in USB enumeration.
Product ID (PID) Value
Parameter # 1725
SSI # F8h 06h BDh

To set a Product ID value, scan Set PID Value, and then scan four numeric barcodes in Numeric Barcodes that correspond to the value. Enter a leading zero for single digit numbers. To correct an error, or change a selection, scan Cancel on page 431. The range is (0,1600-1649).

NOTE: This parameter is applicable to customers using a Firmware Flash Update per the Toshiba Global Commerce Solutions (TGCS) Universal Serial Bus OEM Point-of-Sale Device Interface.

ECLevel
Parameter # 1710
SSI # F8h 06h AEh

To set an ECLevel value, scan Set ECLevel, and then scan five numeric barcodes in Numeric Barcodes that correspond to the desired level. Enter a leading zero for single digit numbers. To correct an error, or change a selection, scan Cancel on page 431.

NOTE: This parameter is applicable to customers using a Firmware Flash Update per the Toshiba Global Commerce Solutions (TGCS) Universal Serial Bus OEM Point-of-Sale Device Interface. It allows a customer to define an ECLevel value in order to manage and control Flash Update operations on the 4690 operating system.

Contact the Zebra Customer Support Center online at: www.zebra.com/support for more information.
Miscellaneous Scanner Parameters

Enter Key
Scan the following barcode to add an Enter key (carriage return/line feed) after scanned data.
To program other prefixes and/or suffixes, see Prefix/Suffix Values on page 89.

Tab Key
Scan the following barcode to add a Tab key after scanned data.
Transmit Code ID Character

Parameter # 45

SSI # 2Dh

A Code ID character identifies the code type of a scanned barcode. This is useful when decoding more than one code type. In addition to any single character prefix selected, the Code ID character is inserted between the prefix and the decoded symbol.

Select no Code ID character, a Symbol Code ID character, or an AIM Code ID character. For Code ID characters, see Symbol Code Identifiers on page 461 and AIM Code Identifiers on page 462.

NOTE: If you enable Symbol Code ID Character or AIM Code ID Character, and enable Transmit “No Read” Message on page 93, the scanner appends the code ID for Code 39 to the NR message.

![Symbol Code ID Character](image1)

Symbol Code ID Character

(2)

![AIM Code ID Character](image2)

AIM Code ID Character

(1)

* None

(0)
Prefix/Suffix Values

Key Category Parameter # P = 99, S1 = 98, S2 = 100
SSI # P = 63h, S1 = 62h, S2 = 64h

Decimal Value Parameter # P = 105, S1 = 104, S2 = 106
SSI # P = 69h, S1 = 68h, S2 = 6Ah

NOTE: To use Prefix/Suffix values, first set the Scan Data Transmission Format on page 90.

You can append a prefix and/or one or two suffixes to scan data for use in data editing. To set a value for a prefix or suffix, scan one of the following barcodes, and then scan four barcodes from Numeric Barcodes that correspond to that value. See ASCII Character Sets for the four-digit codes.

When using host commands to set the prefix or suffix, set the key category parameter to 1, and then set the 3-digit decimal value. See ASCII Character Sets for the four-digit codes.

The default prefix and suffix value is 7013 <CR><LF> (Enter key). To correct an error or change a selection, scan Cancel on page 431.
Scan Data Transmission Format
Parameter # 235
SSI # EBh

NOTE: If using this parameter do not use ADF rules to set the prefix/suffix.

To change the scan data format, scan one of the following barcodes corresponding to the desired format.

To set values for the prefix and/or suffix, see Prefix/Suffix Values on page 89.

* Data As Is
 (0)

<DATA> <SUFFIX 1>
(1)

<DATA> <SUFFIX 2>
(2)

<DATA> <SUFFIX 1> <SUFFIX 2>
(3)
Scan Data Transmission Format (continued)

<PREFIX> <DATA>
(4)

<PREFIX> <DATA> <SUFFIX 1>
(5)

<PREFIX> <DATA> <SUFFIX 2>
(6)

<PREFIX> <DATA> <SUFFIX 1> <SUFFIX 2>
(7)
User Preferences & Miscellaneous Options

FN1 Substitution Values

Key Category Parameter # 103

Key Category SSI # 67h

Decimal Value Parameter # 109

Decimal Value SSI # 6Dh

Keyboard wedge and USB HID keyboard hosts support a FN1 substitution feature. Enabling this substitutes any FN1 character (0x1b) in an EAN128 barcode with a value. This value defaults to 7013 <CR><LF> (Enter key).

When using host commands to set the FN1 substitution value, set the key category parameter to 1, and then set the 3-digit keystroke value. See the ASCII Character Set table for the current host interface for the desired value.

To select a FN1 substitution value via barcode menus:

1. Scan the following barcode.

![Set FN1 Substitution Value](image)

2. Locate the keystroke desired for FN1 Substitution in the ASCII Character Set table for the current host interface, and enter the 4-digit ASCII value by scanning four barcodes from Numeric Barcodes.

To correct an error or change the selection, scan Cancel.

To enable FN1 substitution for USB HID keyboard, scan Enable USB Keyboard FN1 Substitution on page 245. To enable FN1 substitution for keyboard wedge, scan Enable FN1 Substitution on page 312.
Transmit “No Read” Message
Parameter # 94
SSI # 5Eh

Scan one of the following barcodes to set an option for transmitting the No Read (NR) characters.

- **Enable No Read** - This transmits the characters NR when a successful decode does not occur before trigger release or the **Decode Session Timeout** expires. See **Decode Session Timeout** on page 79.
- **Disable No Read** - This sends nothing to the host if a symbol does not decode.

NOTE: If you enable **Transmit No Read**, and also enable Symbol Code ID Character or AIM Code ID Character for **Transmit Code ID Character** on page 88, the scanner appends the code ID for Code 39 to the NR message.

NOTE: This does not apply in presentation mode.

Enable No Read
(1)

* Disable No Read
(0)
Unsolicited Heartbeat Interval
Parameter # 1118
SSI # F8h 04h 5Eh

The scanner can send unsolicited heartbeat messages to assist in diagnostics. To enable this parameter and set the desired unsolicited heartbeat interval, scan one of the following time interval barcodes, or scan Set Another Interval followed by four barcodes from Numeric Barcodes that correspond to the desired number of seconds.

Scan Disable Unsolicited Heartbeat Interval to turn off the feature.

The heartbeat event is sent as decode data (with no decode beep) in the form of:

```
MOTEVTHB:nnn
```

where `nnn` is a three-digit sequence number starting at 001 and wrapping after 100.

10 Seconds
(10)

1 Minute
(60)

Set Another Interval

Disable Unsolicited Heartbeat Interval
(0)
securPharm Decoding

Parameter # 1752

SSI # F8h 06h D8h

securPharm implements the IFA and GS1 Coding System for the European pharmaceutical industry. securPharm code is used to prevent pharmaceutical counterfeiting.

When this feature is enabled, if a GS1 symbol is decoded and includes any aspects of the Application Identifier associated with the securPharm GS1 specifications, the entire GS1 symbol is processed as a securPharm symbol. For this reason, it is expected that under certain circumstances, a GS1 barcodes that is a securPharm symbol may not be processed properly; if the GS1 symbol is not created as per the specification. The output cannot be guaranteed as valid.

Although the GS1-128 type and the GS1 DataBar family are not specifically indicated in the IFA specification, they are supported.

The securPharm output is in XML format and can include the product number, serial number, lot number, expiration and Date of Manufacturing. The XML tags can be arranged in any order. Tags that are not in the barcode are omitted. For example:

```xml
<content dfi="value_dfi">
  <Daten_1>value_Daten_1</Daten_1>
  <Daten_2>value_Daten_2</Daten_2>
  <Daten_n>value_Daten_n</Daten_n>
</content>
```

Where:

- `value_dfi` = IFA or GS1
- `Daten_1` to `Daten_n` is the production number, serial number, etc.

Scan a barcode below to enable or disable the ability to process pharmaceutical type barcodes.

* Disable securPharm Decoding
 (0)

Enable securPharm Decoding
(1)
securPharm Output Formatting
Parameter # 1753
SSI # F8h 06h D9h

NOTE: securPharm output formatting is effective only when securPharm Decoding on page 95 is enabled. securPharm Output Formatting parameter options represent bit positions. Therefore, any combination of formatting can be used.

When you scan a securPharm Output Formatting barcode, the securPharm output is formatted in a number of ways.

Sample GS1 Format
Product Number: GTIN Data Identifier DI Data Format Identifier: GS1

<table>
<thead>
<tr>
<th>Data Carrier</th>
<th>> Scanned Barcode ></th>
</tr>
</thead>
<tbody>
<tr>
<td>FNC1 04150123456782</td>
<td></td>
</tr>
<tr>
<td>101A234B5 FNC1</td>
<td></td>
</tr>
<tr>
<td>1717231</td>
<td></td>
</tr>
</tbody>
</table>

Sample GS1 Output - Feature Disabled
The output has no format:
0104150123456782101A234B517151231211234567890123456

Sample GS1 Output - No Formatting (0)
The output is a single line of characters:
<content dfi="GS1"><gtin>04150123456782</gtin><lot>1A234B5</lot><exp>151231</exp><sn>1234567890123456</sn></content>

Sample GS1 Output - Insert Tab (1)
The output is a single line of characters with a tab inserted in the XML body:
<content dfi="GS1"><tab><gtin>04150123456782</gtin><lot>1A234B5</lot><tab><exp>151231</exp><tab><sn>1234567890123456</sn></content>

Sample GS1 Output - Insert New Line (2)
The output consists of multiple lines of characters with a new line character at the end of each line.
<content dfi="GS1">
<gtin>04150123456782</gtin>
<lot>1A234B5</lot>
<exp>151231</exp>
<sn>1234567890123456</sn>
</content>
Sample GS1 Output - Insert Tab and New Line (3)
The output consists of multiple lines of characters with tabs and a new line character at the end of each line.

```xml
<content dfi="GS1">
  [tab]<gtin>04150123456782</gtin>
  [tab]<lot>1A234B5</lot>
  [tab]<exp>151231</exp>
  [tab]<sn>1234567890123456</sn>
</content>
```

Sample IFA Format
Product Number: PPNData Identifier DI Data Format Identifier: IFA

```
Data Carrier
Mac069N11123456782 Gs
1T1A234B5 Gs
D151231 Gs

Sample GS1 Output - Feature Disabled
The output has no format:

```
>069N1112345678421T1A234B5S1234567890123456
```

Sample GS1 Output - No Formatting (0)
The output is a single line of characters:

```
<content dfi="IFA"><ppn>111234567842</ppn><lot>1A234B5</lot><sn>1234567890123456</sn></content>
```

Sample GS1 Output - Insert Tab (1)
The output is a single line of characters with a tab inserted in the XML body:

```
<content dfi="IFA">[tab]<ppn>111234567842</ppn>[tab]<lot>1A234B5</lot>[tab]<sn>1234567890123456</sn></content>
```

Sample GS1 Output - Insert New Line (2)
The output consists of multiple lines of characters with a new line character at the end of each line.

```
<content dfi="IFA">
 <ppn>111234567842</ppn>
 <lot>1A234B5</lot>
 <sn>1234567890123456</sn>
</content>
```
Sample GS1 Output - Insert Tab and New Line (3)

The output consists of multiple lines of characters with tabs and a new line character at the end of each line.

<content dfi="IFA">

\[tab\]<ppn>111234567842</ppn>
\[tab\]<lot>1A234B5</lot>
\[tab\]<sn>1234567890123456</sn>
</content>

securPharm Output Formatting Barcodes

Scan a barcode below to format the securPharm output.

* No Formatting
(0)

Insert Tab
(1)

Insert New Line
(2)

Insert Tab and New Line
(3)
Imager Preferences

Introduction

You can program the imager to perform various functions, or activate different features. This chapter describes image capture preference features and provides programming barcodes for selecting these features.

NOTE: Only the Symbol Native API (SNAPI) with Imaging interface supports image capture. See USB Device Type on page 237 to enable this host.

The imager ships with the settings shown in Table 9 on page 100 (also see Parameter Defaults for all defaults). If the default values suit requirements, programming is not necessary.

Setting Parameters

To set feature values, scan a single barcode or a short barcode sequence. The settings are stored in non-volatile memory and are preserved even when the imager powers down.

NOTE: Most computer monitors allow scanning barcodes directly on the screen. When scanning from the screen, be sure to set the document magnification to a level where you can see the barcode clearly, and bars and/or spaces do not merge.

To return all features to default values, scan the Set Factory Defaults on page 62. Throughout the programming barcode menus, asterisks (*) indicate default values.
Scanning Sequence Examples

In most cases scanning one barcode sets the parameter value. For example, to disable image capture illumination, scan the Disable Image Capture Illumination barcode under Image Capture Illumination on page 103. The imager issues a fast warble beep and the LED turns green, signifying a successful parameter entry.

Other parameters require scanning several barcodes. See the parameter descriptions for this procedure.

Errors While Scanning

Unless otherwise specified, to correct an error during a scanning sequence, just re-scan the correct parameter.

Image Capture Preferences Parameter Defaults

Table 9 lists defaults for image capture preference parameters. Change these values in one of two ways:

- Scan the appropriate barcodes in this chapter. The new value replaces the standard default value in memory. To recall default parameter values, see Default Parameters on page 62.
- Configure the scanner using the 123Scan configuration program. See 123Scan and Software Tools.

NOTE: See Parameter Defaults for all user preference, host, symbology, and miscellaneous default parameters.

Table 9 Image Capture Preferences Parameter Defaults

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Capture Preferences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational Modes</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>102</td>
</tr>
<tr>
<td>Image Capture Illumination</td>
<td>361</td>
<td>F0h 69h</td>
<td>Enable</td>
<td>103</td>
</tr>
<tr>
<td>Image Capture Autoexposure</td>
<td>360</td>
<td>F0h 68h</td>
<td>Enable</td>
<td>103</td>
</tr>
<tr>
<td>Fixed Exposure</td>
<td>567</td>
<td>F4h F1h 37h</td>
<td>100</td>
<td>104</td>
</tr>
<tr>
<td>Analog Gain</td>
<td>1232</td>
<td>F4h D0h</td>
<td>Analog Gain x 2</td>
<td>105</td>
</tr>
<tr>
<td>Digital Gain</td>
<td>1233</td>
<td>F4h D1h</td>
<td>32</td>
<td>105</td>
</tr>
<tr>
<td>Gain / Exposure Priority for Snapshot Mode</td>
<td>562</td>
<td>F1h 32h</td>
<td>Autodetect</td>
<td>106</td>
</tr>
<tr>
<td>Snapshot Mode Timeout</td>
<td>323</td>
<td>F0h 43h</td>
<td>0 (30 seconds)</td>
<td>107</td>
</tr>
<tr>
<td>Snapshot Aiming Pattern</td>
<td>300</td>
<td>F0h 2Ch</td>
<td>Enable</td>
<td>108</td>
</tr>
<tr>
<td>Silence Operational Mode Changes</td>
<td>1293</td>
<td>F8h 05h 0Dh</td>
<td>Disable (do not silence)</td>
<td>108</td>
</tr>
<tr>
<td>Image Cropping</td>
<td>301</td>
<td>F0h 2Dh</td>
<td>Disable</td>
<td>109</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
### Table 9 Image Capture Preferences Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number</th>
<th>SSI Number</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop to Pixel Addresses</td>
<td>315</td>
<td>F4h F0h 3Bh</td>
<td>0 top</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>316</td>
<td>F4h F0h 3Ch</td>
<td>0 left</td>
<td></td>
</tr>
<tr>
<td></td>
<td>317</td>
<td>F4h F0h 3Dh</td>
<td>799 bottom</td>
<td></td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>F4h F0h 3Eh</td>
<td>1279 right</td>
<td></td>
</tr>
<tr>
<td>Image Size (Number of Pixels)</td>
<td>302</td>
<td>F0h 2Eh</td>
<td>Full</td>
<td>111</td>
</tr>
<tr>
<td>Image Brightness (Target White)</td>
<td>390</td>
<td>F0h 86h</td>
<td>180</td>
<td>112</td>
</tr>
<tr>
<td>JPEG Image Options</td>
<td>299</td>
<td>F0h 2Bh</td>
<td>Quality</td>
<td>112</td>
</tr>
<tr>
<td>JPEG Quality Value</td>
<td>305</td>
<td>F0h 31h</td>
<td>65</td>
<td>113</td>
</tr>
<tr>
<td>JPEG Size Value</td>
<td>561</td>
<td>F1h 31h</td>
<td>160 kB</td>
<td>113</td>
</tr>
<tr>
<td>Image Enhancement</td>
<td>564</td>
<td>F1h 34h</td>
<td>Low (1)</td>
<td>114</td>
</tr>
<tr>
<td>Image File Format Selection</td>
<td>304</td>
<td>F0h 30h</td>
<td>JPEG</td>
<td>115</td>
</tr>
<tr>
<td>Image Rotation</td>
<td>665</td>
<td>F1h 99h</td>
<td>0</td>
<td>116</td>
</tr>
<tr>
<td>Bits per Pixel (BPP)</td>
<td>303</td>
<td>F0h 2Fh</td>
<td>8 BPP</td>
<td>117</td>
</tr>
<tr>
<td>Signature Capture</td>
<td>93</td>
<td>5Dh</td>
<td>Disable</td>
<td>118</td>
</tr>
<tr>
<td>Signature Capture Image File Format Selection</td>
<td>313</td>
<td>F0h 39h</td>
<td>JPEG</td>
<td>119</td>
</tr>
<tr>
<td>Signature Capture Bits per Pixel (BPP)</td>
<td>314</td>
<td>F0h 3Ah</td>
<td>8 BPP</td>
<td>120</td>
</tr>
<tr>
<td>Signature Capture Width</td>
<td>366</td>
<td>F4h F0h 6Eh</td>
<td>400</td>
<td>121</td>
</tr>
<tr>
<td>Signature Capture Height</td>
<td>367</td>
<td>F4h F0h 6Fh</td>
<td>100</td>
<td>121</td>
</tr>
<tr>
<td>Signature Capture JPEG Quality</td>
<td>421</td>
<td>F0h A5h</td>
<td>65</td>
<td>121</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
Image Capture Preferences

The parameters in this chapter control image capture characteristics.

Operational Modes

The imager has two modes of operation:

- Decode Mode
- Snapshot Mode

Decode Mode

By default, when you press the trigger the imager attempts to locate and decode enabled barcodes within its field of view. The imager remains in this mode until it decodes a barcode or you release the trigger.

Snapshot Mode

Use Snapshot Mode to capture a high-quality image and transmit it to the host. Scan the Snapshot Mode barcode to temporarily enter this mode. While in this mode the imager blinks the green LED at one-second intervals to indicate it is not in standard operating (decode) mode.

In Snapshot Mode, the imager turns on its aiming pattern to highlight the area to capture in the image. The next trigger press instructs the imager to capture a high quality image and transmit it to the host. A short time may pass (less than two seconds) between when the trigger is pressed and the image is captured as the imager adjusts to lighting conditions. Hold the imager steady until a single beep indicates that it captured the image.

If you do not press the trigger within the Snapshot Mode Timeout period, the imager returns to Decode Mode. Use Snapshot Mode Timeout on page 107 to adjust this timeout period. The default timeout period is 30 seconds.

To disable the aiming pattern during Snapshot Mode, see Snapshot Aiming Pattern on page 108.

Snapshot Mode
Image Capture Illumination
Parameter # 361
SSI # F0h 69h

Scan **Enable Image Capture Illumination** to turn on illumination during every image capture. This usually results in superior images. The effectiveness of illumination decreases as the distance to the target increases.

Scan **Disable Image Capture Illumination** to prevent the imager from using illumination.

![Barcode for Enable Image Capture Illumination]

* Enable Image Capture Illumination (1)

![Barcode for Disable Image Capture Illumination]

Disable Image Capture Illumination (0)

Image Capture Autoexposure
Parameter # 360
SSI # F0h 68h

Scan **Enable Image Capture Autoexposure** to allow the imager to control gain settings and exposure (integration) time to best capture an image for the selected operation mode.

Scan **Disable Image Capture Autoexposure** to manually adjust the gain and exposure time (see the following pages). This option is only recommended for advanced users with difficult image capture situations.

![Barcode for Enable Image Capture Autoexposure]

* Enable Image Capture Autoexposure (1)

![Barcode for Disable Image Capture Autoexposure]

Disable Image Capture Autoexposure (0)
Fixed Exposure
Parameter # 567
SSI # F4h F1h 37h

Type: Word

Range: 5 to 30,000

This parameter configures the exposure used in manual mode for Snapshot mode. Each integer value represents 100 $\mu$s of exposure. The default value is 100 which results in an exposure setting of 10 ms.

To set the exposure, scan the Fixed Exposure barcode, and then scan four numeric barcodes from Numeric Barcodes representing the value. Leading zeros are required. For example, to set a Fixed Exposure value of 99, scan 0, 0, 9, 9.

Fixed Exposure
(4 digits)
Analog and Digital Gain

If you disable Image Capture Autoexposure you can modify the engine’s analog and digital gain using these parameters. Total gain = analog gain x digital gain.

Analog Gain

Parameter # 1232

SSI # F4h D0h

Select an option to set an analog gain value.

- **Analog Gain x 1**
  - (00h)

- **Analog Gain x 2**
  - (01h)

- **Analog Gain x 4**
  - (02h)

- **Analog Gain x 8**
  - (03h)

Digital Gain

Parameter # 1233

SSI # F4h D1h

To set the digital gain, scan the following barcode, then scan two barcodes from Numeric Barcodes to enter a 2-digit value for the digital gain. The default is 32.

A value of 32 = x 1 digital gain; i.e., digital gain = 1/32 x digital gain parameter value.
Gain/Exposure Priority for Snapshot Mode
Parameter # 562
SSI # F1h 32h

This parameter alters the imager’s gain exposure priority when it acquires an image in Snapshot Mode while in autoexposure mode. Scan one of the following barcodes:

• **Low Exposure Priority** - The imager favors higher gain over exposure to capture an image, resulting in an image that is less susceptible to motion blur at the expense of noise artifacts. However, for most applications, the amount of noise is acceptable.

• **Low Gain Priority** - The imager favors longer exposure time rather than higher gain to capture an image, ensuring the image is less noisy and produces fewer artifacts during post processing activities like image enhancement (sharpening). This mode is recommended for fixed mount / fixed object image capture since the image acquired is susceptible to motion blur.

• **Autodetect** (default) - The imager automatically selects Gain Priority or Low Exposure Priority mode for Snapshot Mode. If the imager is in a magnetic reed switch-enabled stand (or it is configured in Blink Mode), it uses Low Gain Priority. Otherwise, it uses the Low Exposure Priority.
**Snapshot Mode Timeout**

**Parameter # 323**

**SSI # F0h 43h**

This parameter sets the amount of time the imager remains in Snapshot Mode. The imager exits Snapshot Mode when you press the trigger, or when the Snapshot Mode Timeout elapses. To set this timeout value, scan the **Set Snapshot Mode Timeout** barcode, and then scan a barcode from Numeric Barcodes. The default value is 0 which represents 30 seconds; values increment by 30. For example, 0 = 30 seconds, 1 = 60 seconds, 2 = 90 seconds, etc. The maximum timeout value that can be set on the scanner is 9 = 300 seconds.

To quickly re-set the default timeout to 30 seconds, scan the **30 Seconds** barcode.

If you scan **No Timeout**, the imager remains in Snapshot Mode until you press the trigger.

---

**Set Snapshot Mode Timeout**

![Barcode Image](Barcode1)

**30 Seconds**

![Barcode Image](Barcode2)

**No Timeout**

![Barcode Image](Barcode3)
Snapshot Aiming Pattern
Parameter # 300
SSI # F0h 2Ch

Scan one of the following barcodes to select whether or not to project the aiming pattern when in Snapshot Mode.

- Enable Snapshot Aiming Pattern (1)
- Disable Snapshot Aiming Pattern (0)

NOTE: If enabled, the aiming pattern frames the image for aiming purposes and does not appear in the captured image.

Silence Operational Mode Changes
Parameter # 1293
SSI # F8h 05h 0Dh

Scan Silence Operational Mode Changes to silence the beeper when switching between operational modes (e.g., from Decode Mode to Snapshot Mode).

- Silence Operational Mode Changes (Enable) (1)
- * Do Not Silence Operational Mode Changes (Disable) (0)
Image Cropping
Parameter # 301
SSI # F0h 2Dh

Scan the Enable Image Cropping barcode to crop a captured image to the pixel addresses set in Crop to Pixel Addresses on page 109. Scan Disable Image Cropping to present the full 1280 x 800 pixels.

Enable Image Cropping
(1)

* Disable Image Cropping
(Use Full 1280 x 800 Pixels)
(0)

Crop to Pixel Addresses
Parameter # 315
SSI # F4h F0h 3Bh (Top)
Parameter # 316
SSI # F4h F0h 3Ch (Left)
Parameter # 317
SSI # F4h F0h 3Dh (Bottom)
Parameter # 318
SSI # F4h F0h 3Eh (Right)

NOTE: The imager has a cropping resolution of 4 pixels. Setting the cropping area to less than 4 pixels (after resolution adjustment, see Image Size (Number of Pixels) on page 111) transfers the entire image.

If you enabled Image Cropping, set the pixel addresses from (0,0) to (1279 x 799) to crop to.
Columns are numbered from 0 to 1279, rows from 0 to 799. Specify values for Top, Left, Bottom, and Right, where Top and Bottom correspond to row pixel addresses, and Left and Right correspond to column pixel addresses. For example, for a 4 row x 8 column image in the extreme bottom-right section of the image, set the following values:

Top = 796, Bottom = 799, Left = 1272, Right = 1279

To set the pixel addresses, scan each of the following barcodes, and then scan four numeric barcodes from Numeric Barcodes representing the value. Leading zeros are required. For example, to crop the top pixel address to 3, scan 0, 0, 0, 3. The defaults are:

Top = 0, Bottom = 799, Left = 0, Right = 1279
Crop to Pixel Address (continued)

Top Pixel Address
(0 - 799 Decimal)

Left Pixel Address
(0 - 1279 Decimal)

Bottom Pixel Address
(0 - 799 Decimal)

Right Pixel Address
(0 - 1279 Decimal)
Image Size (Number of Pixels)

Parameter # 302

SSI # F0h 2Eh

This option alters image resolution before compression. Multiple pixels are combined to one pixel, resulting in a smaller image containing the original content with reduced resolution.

Scan a barcode below to select an image size.

Table 10  Image Size

<table>
<thead>
<tr>
<th>Resolution Value</th>
<th>Uncropped Image Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>1280 x 800</td>
</tr>
<tr>
<td>1/2</td>
<td>640 x 400</td>
</tr>
<tr>
<td>1/4</td>
<td>320 x 200</td>
</tr>
</tbody>
</table>

* Full Resolution (0)

1/2 Resolution (1)

1/4 Resolution (3)
Image Brightness (Target White)
Parameter # 390
SSI # F0h 86h

Type: Byte
Range: 1 - 240

This parameter sets the Target White value used in Snapshot mode when using autoexposure. White and black are defined as 240 decimal and 1, respectively. Setting the value to the factory default of 180 sets the white level of the image to \(~180\).

Scan the Image Brightness barcode, and then scan three numeric barcodes from Numeric Barcodes representing the value. Leading zeros are required. For example, to set an Image Brightness value of 99, scan 0, 9, 9.

JPEG Quality Selector
(1)

JPEG Size Selector
(0)

JPEG Image Options
Parameter # 299
SSI # F0h 2Bh

Scan one of the following barcodes to optimize JPEG images for either size or quality:

- JPEG Quality Selector - Enter a quality value via the JPEG Quality Value parameter; the imager then selects the corresponding image size.
- JPEG Size Selector - Enter a size value via the JPEG Size Value parameter; the imager then selects the best image quality.
JPEG Quality Value
Parameter # 305
SSI # F0h 31h

If you selected JPEG Quality Selector, scan the JPEG Quality Value barcode, and then scan three barcodes from Numeric Barcodes corresponding to a value from 5 to 100, where 100 represents the highest quality image. Leading zeros are required. For example, to set an image quality value of 55, scan 0, 5, 5.

JPEG Quality Value
(Default: 065)
(5 - 100 Decimal)

JPEG Size Value
Parameter # 561
SSI # F1h 31h

Type: Word
Range: 5-350

If you selected JPEG Size Selector, scan the JPEG Size Value barcode, and then scan three numeric barcodes from Numeric Barcodes representing the target JPEG file size in kilobytes (KB). Leading zeros are required. For example, to set an image file size value of 99, scan 0, 9, 9.

CAUTION: JPEG compression may take 10 to 15 seconds based on the amount of information in the target image. Scanning JPEG Quality Selector (default setting) on page 112 produces a compressed image that is consistent in quality and compression time.
Image Enhancement
Parameter # 564
SSI # F1h 34h

This parameter uses a combination of edge sharpening and contrast enhancement to produce an image that is visually pleasing.

Scan one of the following barcodes to select the level of image enhancement:

- Off (0)
- Low (1) - Default
- Medium (2)
- High (3)
Image File Format Selector

Parameter # 304

SSI # F0h 30h

Scan one of the following barcodes to select an image format appropriate for the system (BMP, TIFF, or JPEG). The imager stores captured images in the selected format.

BMP File Format (3)

* JPEG File Format (1)

TIFF File Format (04h)
Image Rotation
Parameter # 665
SSI # F1h 99h

Scan one of the following barcodes to rotate the image 0, 90, 180, or 270 degrees.

* Rotate 0°
   (0)

Rotate 90°
   (1)

Rotate 180°
   (2)

Rotate 270°
   (3)
Bits Per Pixel
Parameter # 303
SSI # F0h 2Fh

Scan one of the following barcodes to select the number of significant bits per pixel (BPP) to use when capturing an image:

- **1 BPP** - For a black and white image.
- **4 BPP** - Assigns 1 of 16 levels of grey to each pixel.
- **8 BPP** - Assigns 1 of 256 levels of grey to each pixel.

**NOTE:** The imager ignores these settings for JPEG file formats, which only support **8 BPP**. TIFF file formats only support **4 BPP** and **8 BPP**. Selecting **1 BPP** for TIFF applies the **4 BPP** option.
Signature Capture
Parameter # 93
SSI # 5Dh

A signature capture barcode is a special-purpose symbology which delineates a signature capture area in a document with a machine-readable format. The recognition pattern is variable so it can optionally provide an index to various signatures. The region inside the barcode pattern is considered the signature capture area. See Signature Capture for more information.

Output File Format

Decoding a signature capture barcode de-skews the signature image and converts the image to a BMP, JPEG, or TIFF file format. The output data includes the file descriptor followed by the formatted signature image.

Table 11  Output File Format

<table>
<thead>
<tr>
<th>Output Format (1 byte)</th>
<th>Signature Type (1 byte)</th>
<th>Signature Image Size (4 bytes) (BIG Endian)</th>
<th>Signature Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG - 1</td>
<td>1-8</td>
<td>0x00000400</td>
<td>0x00010203…….</td>
</tr>
<tr>
<td>BMP - 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIFF - 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scan one of the following barcodes to enable or disable Signature Capture.

Enable Signature Capture
(1)

* Disable Signature Capture
(0)
Signature Capture File Format Selector
Parameter # 313
SSI # F0h 39h

Scan one of the following barcodes to select a signature file format appropriate for the system (BMP, TIFF, or JPEG). The imager stores captured signatures in the selected format.

**BMP Signature Format**
(3)

**JPEG Signature Format**
(1)

**TIFF Signature Format**
(4)
Signature Capture Bits Per Pixel
Parameter # 314
SSI # F0h 3Ah

Scan one of the following barcodes to select the number of significant bits per pixel (BPP) to use when capturing a signature:

- **1 BPP** - For a black and white image.
- **4 BPP** - Assigns 1 of 16 levels of grey to each pixel.
- **8 BPP** - Assigns 1 of 256 levels of grey to each pixel.

**NOTE:** The imager ignores these settings for JPEG file formats, which only support **8 BPP**.

1 BPP (0)

4 BPP (1)

* 8 BPP (2)
Signature Capture Width
Parameter # 366
SSI # F4h F0h 6Eh

The aspect ratio of the Signature Capture Width and Signature Capture Height parameters must match that of the signature capture area. For example, a 4 x 1 inch signature capture area requires a 4 to 1 aspect ratio of width to height.

To set the width of the signature capture box, scan the Signature Capture Width barcode, and then scan four barcodes from Numeric Barcodes corresponding to a value in the range of 16 to 1280 decimal.

![Signature Capture Width barcode]

Signature Capture Width (Default: 400)
(16 - 1280 Decimal)

Signature Capture Height
Parameter # 367
SSI # F4h F0h 6Fh

To set the height of the signature capture box, scan the Signature Capture Height barcode, and then scan three barcodes from Numeric Barcodes corresponding to a value in the range of 16 to 960 decimal.

![Signature Capture Height barcode]

Signature Capture Height (Default: 100)
(16 - 960 Decimal)

Signature Capture JPEG Quality
Parameter # 421
SSI # F0h A5h

Scan the JPEG Quality Value barcode, and then scan three barcodes from Numeric Barcodes corresponding to a value from 005 to 100, where 100 represents the highest quality image.

![JPEG Quality Value barcode]

JPEG Quality Value (Default: 065)
(5 - 100 Decimal)
Introduction

You can program the scanner to perform various functions, or activate different features. This chapter describes symbology features and provides programming barcodes for selecting these features.

The scanner ships with the settings shown in Table 12 on page 124 (also see Parameter Defaults for all defaults). If the default values suit requirements, programming is not necessary.

Setting Parameters

To set feature values, scan a single barcode or a short barcode sequence. The settings are stored in non-volatile memory and are preserved even when the scanner powers down.

NOTE: Most computer monitors allow scanning barcodes directly on the screen. When scanning from the screen, be sure to set the document magnification to a level where you can see the barcode clearly, and bars and/or spaces do not merge.

If not using a USB cable, select a host type (see each host chapter for specific host information) after the power-up beeps sound. This is only necessary upon the first power-up when connected to a new host.

To return all features to default values, see Default Parameters on page 62. Throughout the programming barcode menus, asterisks (*) indicate default values.
Scanning Sequence Examples

In most cases, scanning one barcode sets the parameter value. For example, to transmit barcode data without the UPC-A check digit, scan the Do Not Transmit UPC-A Check Digit barcode under Transmit UPC-A Check Digit on page 142. The scanner issues a fast warble beep and the LED turns green, signifying a successful parameter entry.

Other parameters require scanning several barcodes. See the parameter descriptions for this procedure.

Errors While Scanning

Unless otherwise specified, to correct an error during a scanning sequence, just re-scan the correct parameter.

Symbology Parameter Defaults

Table 12 lists defaults for all symbology parameters. Change these values in one of two ways:

- Scan the appropriate barcodes in this chapter. The new value replaces the standard default value in memory. To recall the default parameter values, see Default Parameters on page 62.
- Configure the scanner using the 123Scan configuration program. See 123Scan and Software Tools.

NOTE: See Parameter Defaults for all user preference, host, symbology, and miscellaneous default parameters.

Table 12 Symbology Parameter Defaults

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable/Disable All Code Types</td>
<td>131</td>
<td></td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>1D Symbologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPC/EAN/JAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPC-A</td>
<td>1</td>
<td>01h</td>
<td>Enable</td>
<td>131</td>
</tr>
<tr>
<td>UPC-E</td>
<td>2</td>
<td>02h</td>
<td>Enable</td>
<td>132</td>
</tr>
<tr>
<td>UPC-E1</td>
<td>12</td>
<td>0Ch</td>
<td>Disable</td>
<td>132</td>
</tr>
<tr>
<td>EAN-8/JAN 8</td>
<td>4</td>
<td>04h</td>
<td>Enable</td>
<td>133</td>
</tr>
<tr>
<td>EAN-13/JAN 13</td>
<td></td>
<td>03h</td>
<td>Enable</td>
<td>133</td>
</tr>
<tr>
<td>Bookland EAN</td>
<td>83</td>
<td>53h</td>
<td>Disable</td>
<td>134</td>
</tr>
<tr>
<td>Bookland ISBN Format</td>
<td>576</td>
<td>F1h 40h</td>
<td>ISBN-10</td>
<td>135</td>
</tr>
<tr>
<td>ISSN EAN</td>
<td>617</td>
<td>F1h 69h</td>
<td>Disable</td>
<td>136</td>
</tr>
<tr>
<td>Decode UPC/EAN/JAN Supplementals (2 and 5 digits)</td>
<td>16</td>
<td>10h</td>
<td>Ignore</td>
<td>137</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
## Table 12  Symbology Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number</th>
<th>SSI Number</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Programmable Supplementals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplemental 1:</td>
<td>579</td>
<td>F1h 43h</td>
<td>000</td>
<td>140</td>
</tr>
<tr>
<td>Supplemental 2:</td>
<td>580</td>
<td>F1h 44h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPC/EAN/JAN Supplemental Redundancy</td>
<td>80</td>
<td>50h</td>
<td>10</td>
<td>140</td>
</tr>
<tr>
<td>Decode UPC/EAN/JAN Supplemental AIM ID</td>
<td>672</td>
<td>F1h A0h</td>
<td>Combined</td>
<td>141</td>
</tr>
<tr>
<td>Transmit UPC-A Check Digit</td>
<td>40</td>
<td>28h</td>
<td>Enable</td>
<td>142</td>
</tr>
<tr>
<td>Transmit UPC-E Check Digit</td>
<td>41</td>
<td>29h</td>
<td>Enable</td>
<td>142</td>
</tr>
<tr>
<td>Transmit UPC-E1 Check Digit</td>
<td>42</td>
<td>2Ah</td>
<td>Enable</td>
<td>143</td>
</tr>
<tr>
<td>UPC-A Preamble</td>
<td>34</td>
<td>22h</td>
<td>System Character</td>
<td>144</td>
</tr>
<tr>
<td>UPC-E Preamble</td>
<td>35</td>
<td>23h</td>
<td>System Character</td>
<td>145</td>
</tr>
<tr>
<td>UPC-E1 Preamble</td>
<td>36</td>
<td>24h</td>
<td>System Character</td>
<td>146</td>
</tr>
<tr>
<td>Convert UPC-E to UPC-A</td>
<td>37</td>
<td>25h</td>
<td>Disable</td>
<td>147</td>
</tr>
<tr>
<td>Convert UPC-E1 to UPC-A</td>
<td>38</td>
<td>26h</td>
<td>Disable</td>
<td>147</td>
</tr>
<tr>
<td>EAN/JAN Zero Extend</td>
<td>39</td>
<td>27h</td>
<td>Disable</td>
<td>148</td>
</tr>
<tr>
<td>UCC Coupon Extended Code</td>
<td>85</td>
<td>55h</td>
<td>Disable</td>
<td>148</td>
</tr>
<tr>
<td>Coupon Report</td>
<td>730</td>
<td>F1h DAh</td>
<td>New Coupon Format</td>
<td>149</td>
</tr>
<tr>
<td>UPC Reduced Quiet Zone</td>
<td>1289</td>
<td>F8h 05h 09h</td>
<td>Disable</td>
<td>150</td>
</tr>
</tbody>
</table>

### Code 128

Code 128	8	08h	Enable	150
Set Length(s) for Code 128	209, 210	D1h, D2h	Any Length	151
GS1-128 (formerly UCC/EAN-128)	14	0Eh	Enable	152
ISBT 128	84	54h	Enable	153
ISBT Concatenation	577	F1h 41h	Disable	153
Check ISBT Table	578	F1h 42h	Enable	154
ISBT Concatenation Redundancy	223	DFh	10	155
Code 128 <FNC4>	1254	F8h 04h E6h	Honor	155
Code 128 Security Level	751	F1h EFh	Security Level 1	156
Code 128 Reduced Quiet Zone	1208	F8h 04h B8h	Disable	157

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
Table 12  Symbology Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 39</td>
<td>0</td>
<td>00h</td>
<td>Enable</td>
<td>157</td>
</tr>
<tr>
<td>Trioptic Code 39</td>
<td>13</td>
<td>0Dh</td>
<td>Disable</td>
<td>158</td>
</tr>
<tr>
<td>Convert Code 39 to Code 32 (Italian Pharmacy Code)</td>
<td>86</td>
<td>56h</td>
<td>Disable</td>
<td>158</td>
</tr>
<tr>
<td>Code 32 Prefix</td>
<td>231</td>
<td>E7h</td>
<td>Disable</td>
<td>159</td>
</tr>
<tr>
<td>Set Length(s) for Code 39</td>
<td>18, 19</td>
<td>12h, 13h</td>
<td>1 to 55</td>
<td>159</td>
</tr>
<tr>
<td>Code 39 Check Digit Verification</td>
<td>48</td>
<td>30h</td>
<td>Disable</td>
<td>161</td>
</tr>
<tr>
<td>Transmit Code 39 Check Digit</td>
<td>43</td>
<td>2Bh</td>
<td>Disable</td>
<td>161</td>
</tr>
<tr>
<td>Code 39 Full ASCII Conversion</td>
<td>17</td>
<td>11h</td>
<td>Disable</td>
<td>162</td>
</tr>
<tr>
<td>Code 39 Security Level</td>
<td>750</td>
<td>F1h EEh</td>
<td>Security Level 1</td>
<td>163</td>
</tr>
<tr>
<td>Code 39 Reduced Quiet Zone</td>
<td>1209</td>
<td>F8h 04h B9h</td>
<td>Disable</td>
<td>164</td>
</tr>
<tr>
<td>Code 93</td>
<td>9</td>
<td>09h</td>
<td>Enable</td>
<td>164</td>
</tr>
<tr>
<td>Set Length(s) for Code 93</td>
<td>26, 27</td>
<td>1Ah, 1Bh</td>
<td>1 to 55</td>
<td>165</td>
</tr>
<tr>
<td>Code 11</td>
<td>10</td>
<td>0Ah</td>
<td>Disable</td>
<td>167</td>
</tr>
<tr>
<td>Set Lengths for Code 11</td>
<td>28, 29</td>
<td>1Ch, 1Dh</td>
<td>4 to 55</td>
<td>167</td>
</tr>
<tr>
<td>Code 11 Check Digit Verification</td>
<td>52</td>
<td>34h</td>
<td>Disable</td>
<td>169</td>
</tr>
<tr>
<td>Transmit Code 11 Check Digit(s)</td>
<td>47</td>
<td>2Fh</td>
<td>Disable</td>
<td>170</td>
</tr>
<tr>
<td>Interleaved 2 of 5 (ITF)</td>
<td>6</td>
<td>06h</td>
<td>Enable</td>
<td>170</td>
</tr>
<tr>
<td>Set Lengths for I 2 of 5</td>
<td>22, 23</td>
<td>16h, 17h</td>
<td>6 to 55</td>
<td>171</td>
</tr>
<tr>
<td>I 2 of 5 Check Digit Verification</td>
<td>49</td>
<td>31h</td>
<td>Disable</td>
<td>172</td>
</tr>
<tr>
<td>Transmit I 2 of 5 Check Digit</td>
<td>44</td>
<td>2Ch</td>
<td>Disable</td>
<td>173</td>
</tr>
<tr>
<td>Convert I 2 of 5 to EAN 13</td>
<td>82</td>
<td>52h</td>
<td>Disable</td>
<td>173</td>
</tr>
<tr>
<td>Febraban</td>
<td>1750</td>
<td>F8h 06h D6h</td>
<td>Disable</td>
<td>174</td>
</tr>
<tr>
<td>I 2 of 5 Security Level</td>
<td>1121</td>
<td>F8h 04h 61h</td>
<td>Security Level 1</td>
<td>175</td>
</tr>
<tr>
<td>I 2 of 5 Reduced Quiet Zone</td>
<td>1210</td>
<td>F8h 04h BAh</td>
<td>Disable</td>
<td>176</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
### Symbology Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number &lt;sup&gt;1&lt;/sup&gt;</th>
<th>SSI Number &lt;sup&gt;2&lt;/sup&gt;</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Discrete 2 of 5 (DTF)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete 2 of 5</td>
<td>5</td>
<td>05h</td>
<td>Disable</td>
<td>176</td>
</tr>
<tr>
<td>Set Length(s) for D 2 of 5</td>
<td>20, 21</td>
<td>14h 15h</td>
<td>1 to 55</td>
<td>177</td>
</tr>
<tr>
<td><strong>Codabar (NW - 7)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Codabar</td>
<td>7</td>
<td>07h</td>
<td>Enable</td>
<td>179</td>
</tr>
<tr>
<td>Set Lengths for Codabar</td>
<td>24, 25</td>
<td>18h, 19h</td>
<td>4 to 55</td>
<td>179</td>
</tr>
<tr>
<td>CLSI Editing</td>
<td>54</td>
<td>36h</td>
<td>Disable</td>
<td>181</td>
</tr>
<tr>
<td>NOTIS Editing</td>
<td>55</td>
<td>37h</td>
<td>Disable</td>
<td>181</td>
</tr>
<tr>
<td>Codabar Security Level</td>
<td>1776</td>
<td>F8h 06h F0h</td>
<td>Security Level 1</td>
<td>182</td>
</tr>
<tr>
<td>Codabar Upper or Lower Case Start/Stop Characters Detection</td>
<td>855</td>
<td>F2h 57h</td>
<td>Upper Case</td>
<td>183</td>
</tr>
<tr>
<td>Codabar Mod 16 Check Digit Verification</td>
<td>1784</td>
<td>F8h 06h F8h</td>
<td>Disable</td>
<td>183</td>
</tr>
<tr>
<td>Transmit Codabar Check Digit</td>
<td>704</td>
<td>F1h C0h</td>
<td>Disable</td>
<td>184</td>
</tr>
<tr>
<td><strong>MSI</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSI</td>
<td>11</td>
<td>0Bh</td>
<td>Disable</td>
<td>184</td>
</tr>
<tr>
<td>Set Length(s) for MSI</td>
<td>30, 31</td>
<td>1Eh, 1Fh</td>
<td>4 to 55</td>
<td>185</td>
</tr>
<tr>
<td>MSI Check Digits</td>
<td>50</td>
<td>32h</td>
<td>One MSI Check Digit</td>
<td>187</td>
</tr>
<tr>
<td>Transmit MSI Check Digit</td>
<td>46</td>
<td>2Eh</td>
<td>Disable</td>
<td>187</td>
</tr>
<tr>
<td>MSI Check Digit Algorithm</td>
<td>51</td>
<td>33h</td>
<td>Mod 10/Mod 10</td>
<td>189</td>
</tr>
<tr>
<td>MSI Reduced Quiet Zone</td>
<td>1392</td>
<td>F8h 05h 70h</td>
<td>Disable</td>
<td>189</td>
</tr>
<tr>
<td><strong>Chinese 2 of 5</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese 2 of 5</td>
<td>408</td>
<td>F0h 98h</td>
<td>Disable</td>
<td>190</td>
</tr>
<tr>
<td><strong>Matrix 2 of 5</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix 2 of 5</td>
<td>618</td>
<td>F1h 6Ah</td>
<td>Disable</td>
<td>190</td>
</tr>
<tr>
<td>Matrix 2 of 5 Lengths</td>
<td>619 620</td>
<td>F1h 6Bh F1h 6Ch</td>
<td>4 to 55</td>
<td>191</td>
</tr>
<tr>
<td>Matrix 2 of 5 Check Digit</td>
<td>622</td>
<td>F1h 6Eh</td>
<td>Disable</td>
<td>193</td>
</tr>
<tr>
<td>Transmit Matrix 2 of 5 Check Digit</td>
<td>623</td>
<td>F1h 6Fh</td>
<td>Disable</td>
<td>193</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
Table 12  Symbology Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number</th>
<th>SSI Number</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korean 3 of 5</td>
<td>581</td>
<td>F1h 45h</td>
<td>Disable</td>
<td>194</td>
</tr>
<tr>
<td>Inverse 1D</td>
<td>586</td>
<td>F1h 4Ah</td>
<td>Regular</td>
<td>194</td>
</tr>
<tr>
<td>GS1 DataBar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS1 DataBar Omnidirectional (formerly GS1 DataBar-14), GS1 DataBar Truncated, GS1 DataBar Stacked, GS1 DataBar Stacked Omnidirectional</td>
<td>338</td>
<td>F0h 52h</td>
<td>Enable</td>
<td>196</td>
</tr>
<tr>
<td>GS1 DataBar Limited</td>
<td>339</td>
<td>F0h 53h</td>
<td>Enable</td>
<td>197</td>
</tr>
<tr>
<td>GS1 DataBar Expanded, GS1 DataBar Expanded Stacked</td>
<td>340</td>
<td>F0h 54h</td>
<td>Enable</td>
<td>197</td>
</tr>
<tr>
<td>Convert GS1 DataBar to UPC/EAN/JAN</td>
<td>397</td>
<td>F0h 8Dh</td>
<td>Disable</td>
<td>198</td>
</tr>
<tr>
<td>GS1 DataBar Security Level</td>
<td>1706</td>
<td>F8h 06h AAh</td>
<td>Level 1</td>
<td>199</td>
</tr>
<tr>
<td>GS1 DataBar Limited Margin Check</td>
<td>728</td>
<td>F1h D8h</td>
<td>Level 3</td>
<td>200</td>
</tr>
<tr>
<td>Symbology-Specific Security Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redundancy Level</td>
<td>78</td>
<td>4Eh</td>
<td>1</td>
<td>201</td>
</tr>
<tr>
<td>Security Level</td>
<td>77</td>
<td>4Dh</td>
<td>1</td>
<td>203</td>
</tr>
<tr>
<td>1D Quiet Zone Level</td>
<td>1288</td>
<td>F8h 05h 08h</td>
<td>1</td>
<td>204</td>
</tr>
<tr>
<td>Intercharacter Gap Size</td>
<td>381</td>
<td>F0h 7Dh</td>
<td>Normal</td>
<td>205</td>
</tr>
<tr>
<td>Composite Codes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite CC-C</td>
<td>341</td>
<td>F0h 55h</td>
<td>Disable</td>
<td>205</td>
</tr>
<tr>
<td>Composite CC-A/B</td>
<td>342</td>
<td>F0h 56h</td>
<td>Disable</td>
<td>206</td>
</tr>
<tr>
<td>Composite TLC-39</td>
<td>371</td>
<td>F0h 73h</td>
<td>Disable</td>
<td>206</td>
</tr>
<tr>
<td>Composite Inverse</td>
<td>1113</td>
<td>F8h 04h 59h</td>
<td>Regular Only</td>
<td>206</td>
</tr>
<tr>
<td>UPC Composite Mode</td>
<td>344</td>
<td>F0h 58h</td>
<td>UPC Never Linked</td>
<td>208</td>
</tr>
<tr>
<td>Composite Beep Mode</td>
<td>398</td>
<td>F0h 8Eh</td>
<td>Beep As Each Code Type is Decoded</td>
<td>209</td>
</tr>
<tr>
<td>GS1-128 Emulation Mode for UCC/EAN Composite Codes</td>
<td>427</td>
<td>F0h ABh</td>
<td>Disable</td>
<td>209</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>2D Symbologies</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDF417</td>
<td>15</td>
<td>0Fh</td>
<td>Enable</td>
<td>210</td>
</tr>
<tr>
<td>MicroPDF417</td>
<td>227</td>
<td>E3h</td>
<td>Disable</td>
<td>210</td>
</tr>
<tr>
<td>Code 128 Emulation</td>
<td>123</td>
<td>7Bh</td>
<td>Disable</td>
<td>211</td>
</tr>
<tr>
<td>Data Matrix</td>
<td>292</td>
<td>F0h 24h</td>
<td>Enable</td>
<td>212</td>
</tr>
<tr>
<td>GS1 Data Matrix</td>
<td>1336</td>
<td>F8h 05h 38h</td>
<td>Disable</td>
<td>212</td>
</tr>
<tr>
<td>Data Matrix Inverse</td>
<td>588</td>
<td>F1h 4Ch</td>
<td>Inverse Autodetect</td>
<td>213</td>
</tr>
<tr>
<td>Decode Data Matrix Mirror Images</td>
<td>537</td>
<td>F1h 19h</td>
<td>Auto</td>
<td>214</td>
</tr>
<tr>
<td>Maxicode</td>
<td>294</td>
<td>F0h 26h</td>
<td>Disable</td>
<td>215</td>
</tr>
<tr>
<td>QR Code</td>
<td>293</td>
<td>F0h 25h</td>
<td>Enable</td>
<td>215</td>
</tr>
<tr>
<td>GS1 QR</td>
<td>1343</td>
<td>F8h 05h 3Fh</td>
<td>Enable</td>
<td>216</td>
</tr>
<tr>
<td>MicroQR</td>
<td>573</td>
<td>F1h 3Dh</td>
<td>Enable</td>
<td>216</td>
</tr>
<tr>
<td>Linked QR Mode</td>
<td>1847</td>
<td>737h</td>
<td>Linked QR Only</td>
<td>217</td>
</tr>
<tr>
<td>Aztec</td>
<td>574</td>
<td>F1h 3Eh</td>
<td>Enable</td>
<td>218</td>
</tr>
<tr>
<td>Aztec Inverse</td>
<td>589</td>
<td>F1h 4Dh</td>
<td>Inverse Autodetect</td>
<td>218</td>
</tr>
<tr>
<td>Han Xin</td>
<td>1167</td>
<td>F8h 04h 8Fh</td>
<td>Disable</td>
<td>219</td>
</tr>
<tr>
<td>Han Xin Inverse</td>
<td>1168</td>
<td>F8h 04h 90h</td>
<td>Regular</td>
<td>219</td>
</tr>
<tr>
<td>Grid Matrix</td>
<td>1718</td>
<td>F8h 06h B6h</td>
<td>Disable</td>
<td>220</td>
</tr>
<tr>
<td>Grid Matrix Inverse</td>
<td>1719</td>
<td>F8h 06h B7h</td>
<td>Regular Only</td>
<td>220</td>
</tr>
<tr>
<td>Grid Matrix Mirror</td>
<td>1736</td>
<td>F8h 06h C8h</td>
<td>Regular Only</td>
<td>221</td>
</tr>
<tr>
<td>DotCode</td>
<td>1906</td>
<td>F8 07 72h</td>
<td>Disable</td>
<td>222</td>
</tr>
<tr>
<td>DotCode Inverse</td>
<td>1907</td>
<td>F8 07 73h</td>
<td>Inverse Autodetect</td>
<td>223</td>
</tr>
<tr>
<td>DotCode Mirrored</td>
<td>1908</td>
<td>F8 07 74h</td>
<td>Autodetect</td>
<td>224</td>
</tr>
<tr>
<td>DotCode Prioritize</td>
<td>1937</td>
<td>F8 07 91h</td>
<td>Enable</td>
<td>225</td>
</tr>
<tr>
<td><strong>Macro PDF</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flush Macro PDF Buffer</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>226</td>
</tr>
<tr>
<td>Abort Macro PDF Entry</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>226</td>
</tr>
<tr>
<td><strong>Postal Codes</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Postnet</td>
<td>89</td>
<td>59h</td>
<td>Disable</td>
<td>226</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
Table 12  Symbology Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Planet</td>
<td>90</td>
<td>5Ah</td>
<td>Disable</td>
<td>227</td>
</tr>
<tr>
<td>Transmit US Postal Check Digit</td>
<td>95</td>
<td>5Fh</td>
<td>Enable</td>
<td>227</td>
</tr>
<tr>
<td>UK Postal</td>
<td>91</td>
<td>5Bh</td>
<td>Disable</td>
<td>228</td>
</tr>
<tr>
<td>Transmit UK Postal Check Digit</td>
<td>96</td>
<td>60h</td>
<td>Enable</td>
<td>228</td>
</tr>
<tr>
<td>Japan Postal</td>
<td>290</td>
<td>F0h 22h</td>
<td>Disable</td>
<td>229</td>
</tr>
<tr>
<td>Australia Post</td>
<td>291</td>
<td>F0h 23h</td>
<td>Disable</td>
<td>229</td>
</tr>
<tr>
<td>Australia Post Format</td>
<td>718</td>
<td>F1h CEh</td>
<td>Autodiscriminate</td>
<td>230</td>
</tr>
<tr>
<td>Netherlands KIX Code</td>
<td>326</td>
<td>F0h 46h</td>
<td>Disable</td>
<td>231</td>
</tr>
<tr>
<td>USPS 4CB/One Code/Intelligent Mail</td>
<td>592</td>
<td>F1h 50h</td>
<td>Disable</td>
<td>231</td>
</tr>
<tr>
<td>UPU FICS Postal</td>
<td>611</td>
<td>F1h 63h</td>
<td>Disable</td>
<td>232</td>
</tr>
<tr>
<td>Mailmark</td>
<td>1337</td>
<td>F8h 05h 39h</td>
<td>Disable</td>
<td>232</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
Enable/Disable All Code Types

Scan the **Disable All Code Types** barcode to disable all symbologies. This is useful when enabling only a few code types.

Scan **Enable All Code Types** to enable all symbologies. This is useful if you need to disable only a few code types.

---

**UPC/EAN/JAN**

**UPC-A**

Parameter # 1

SSI # 01h

Scan one of the following barcodes to enable or disable UPC-A.

---

* Enable UPC-A

(1)

---

Disable UPC-A

(0)
UPC-E
Parameter # 2
SSI # 02h

Scan one of the following barcodes to enable or disable UPC-E.

* Enable UPC-E
(1)

 Disable UPC-E
(0)

NOTE: UPC-E1 is not a UCC (Uniform Code Council) approved symbology.

UPC-E1
Parameter # 12
SSI # 0Ch

Scan one of the following barcodes to enable or disable UPC-E1.

Enable UPC-E1
(1)

* Disable UPC-E1
(0)
EAN-8/JAN-8
Parameter # 4
SSI # 04h

Scan one of the following barcodes to enable or disable EAN-8/JAN-8.

- * Enable EAN-8/JAN-8
  (1)

- Disable EAN-8/JAN-8
  (0)

EAN-13/JAN-13
Parameter # 3
SSI # 03h

Scan one of the following barcodes to enable or disable EAN-13/JAN-13.

- * Enable EAN-13/JAN-13
  (1)

- Disable EAN-13/JAN-13
  (0)
Bookland EAN
Parameter # 83
SSI # 53h

NOTE: If you enable Bookland EAN, select a Bookland ISBN Format. Also set Decode UPC/EAN/JAN Supplementals on page 137 to either Decode UPC/EAN/JAN with Supplementals Only, Autodiscriminate UPC/EAN/JAN With Supplementals, or Enable 978/979 Supplemental Mode.

Scan one of the following barcodes to enable or disable Bookland EAN.

Enable Bookland EAN
(1)

* Disable Bookland EAN
(0)
Bookland ISBN Format

Parameter # 576

SSI # F1h 40h

NOTE: For Bookland EAN to function properly, first enable Bookland EAN using Bookland EAN on page 134, and then set Decode UPC/EAN/JAN Supplementals on page 137 to either Decode UPC/EAN/JAN with Supplementals Only, Autodiscriminate UPC/EAN/JAN With Supplementals, or Enable 978/979 Supplemental Mode.

If you enabled Bookland EAN using Bookland EAN on page 134, select one of the following formats for Bookland data:

- **Bookland ISBN-10** - The scanner reports Bookland data starting with 978 in traditional 10-digit format with the special Bookland check digit for backward-compatibility. Data starting with 979 is not considered Bookland in this mode.
ISSN EAN
Parameter # 617
SSI # F1h 69h

Scan one of the following barcodes to enable or disable ISSN EAN.

Enable ISSN EAN
(1)

* Disable ISSN EAN
(0)
Decode UPC/EAN/JAN Supplementals

Parameter # 16

SSI # 10h

Supplementals are barcodes appended according to specific format conventions (e.g., UPC A+2, UPC E+2, EAN 13+2). The following options are available:

- **Decode UPC/EAN/JAN with Supplementals Only** - The scanner only decodes UPC/EAN/JAN symbols with supplemental characters, and ignores symbols without supplementals.

- **Ignore UPC/EAN/JAN Supplementals** - When presented with a UPC/EAN/JAN plus supplemental symbol, the scanner decodes UPC/EAN/JAN and ignores the supplemental characters.

- **Autodiscriminate UPC/EAN/JAN with Supplementals** - The scanner decodes UPC/EAN/JAN symbols with supplemental characters immediately. If the symbol does not have a supplemental, the scanner must decode the barcode the number of times set via **UPC/EAN/JAN Supplemental Redundancy** on page 140 before transmitting its data to confirm that there is no supplemental.

Select one of the following **Supplemental Mode** options to immediately transmit EAN-13 barcodes starting with that prefix that have supplemental characters. If the symbol does not have a supplemental, the scanner must decode the barcode the number of times set via **UPC/EAN/JAN Supplemental Redundancy** on page 140 before transmitting the data to confirm that there is no supplemental. The scanner transmits UPC/EAN/JAN barcodes that do not have that prefix immediately.

- **Enable 378/379 Supplemental Mode**
- **Enable 978/979 Supplemental Mode**

**NOTE:** If you select 978/979 Supplemental Mode and are scanning Bookland EAN barcodes, see **Bookland EAN** on page 134 to enable Bookland EAN, and select a format using **Bookland ISBN Format** on page 135.

- **Enable 977 Supplemental Mode**
- **Enable 414/419/434/439 Supplemental Mode**
- **Enable 491 Supplemental Mode**

- **Enable Smart Supplemental Mode** - This applies to EAN-13 barcodes starting with any prefix listed previously.

- **Supplemental User-Programmable Type 1** - This applies to EAN-13 barcodes starting with a 3-digit user-defined prefix. Set this using **User-Programmable Supplementals** on page 140.

- **Supplemental User-Programmable Type 1 and 2** - This applies to EAN-13 barcodes starting with either of two 3-digit user-defined prefixes. Set the prefixes using **User-Programmable Supplementals** on page 140.

- **Smart Supplemental Plus User-Programmable 1** - This applies to EAN-13 barcodes starting with any prefix listed previously or the prefix set using **User-Programmable Supplementals** on page 140.

- **Smart Supplemental Plus User-Programmable 1 and 2** - This applies to EAN-13 barcodes starting with any prefix listed previously or one of the two user-defined prefixes set using **User-Programmable Supplementals** on page 140.
NOTE: To minimize the risk of invalid data transmission, select either to decode or ignore supplemental characters.

- Decode UPC/EAN/JAN With Supplementals Only
  (1)

- * Ignore UPC/EAN/JAN Supplementals
  (0)

- Autodiscriminate UPC/EAN/JAN with Supplementals
  (2)

- Enable 378/379 Supplemental Mode
  (4)

- Enable 978/979 Supplemental Mode
  (5)

- Enable 977 Supplemental Mode
  (7)
Decode UPC/EAN/JAN Supplementals (continued)

Enable 414/419/434/439 Supplemental Mode
(6)

Enable 491 Supplemental Mode
(8)

Enable Smart Supplemental Mode
(3)

Supplemental User-Programmable Type 1
(9)

Supplemental User-Programmable Type 1 and 2
(10)

Smart Supplemental Plus User-Programmable 1
(11)

Smart Supplemental Plus User-Programmable 1 and 2
(12)
User-Programmable Supplementals

Supplemental 1: Parameter # 579
SSI # F1h 43h

Supplemental 2: Parameter # 580
SSI # F1h 44h

If you selected a Supplemental User-Programmable option from Decode UPC/EAN/JAN Supplementals on page 137, scan User-Programmable Supplemental 1, and then scan three barcodes from Numeric Barcodes to set the 3-digit prefix. To set a second 3-digit prefix, scan User-Programmable Supplemental 2, and then scan three barcodes from Numeric Barcodes. The default is 000 (zeroes).

UPC/EAN/JAN Supplemental Redundancy

Parameter # 80
SSI # 50h

If you selected Autodiscriminate UPC/EAN/JAN Supplementals, this option adjusts the number of times to decode a symbol without supplementals before transmission. The range is from two to thirty times. Five or above is recommended when decoding a mix of UPC/EAN/JAN symbols with and without supplementals. The default is 10.

Scan the barcode below to set a decode redundancy value. Next, scan two numeric barcodes in Numeric Barcodes. Enter a leading zero for single digit numbers. To correct an error or change a selection, scan Cancel on page 431.
UPC/EAN/JAN Supplemental AIM ID Format

Parameter # 672

SSI # F1h A0h

If Transmit Code ID Character on page 88 is set to AIM Code ID Character, scan one of the following barcodes to select an output format when reporting UPC/EAN/JAN barcodes with supplementals:

- **Separate** - Transmit UPC/EAN/JAN with supplementals with separate AIM IDs but one transmission, i.e., 
  [E<0 or 4><data>]E<1 or 2>[supplemental data]

- **Combined** – Transmit UPC/EAN/JAN with supplementals with one AIM ID and one transmission, i.e.,
  [E3<data+supplemental data>]

- **Separate Transmissions** - Transmit UPC/EAN/JAN with supplementals with separate AIM IDs and separate transmissions, i.e.,
  [E<0 or 4><data>]
  [E<1 or 2>[supplemental data]
Transmit UPC-A Check Digit
Parameter # 40
SSI # 28h

The check digit is the last character of the symbol used to verify the integrity of the data. Scan one of the following barcodes to transmit the barcode data with or without the UPC-A check digit. It is always verified to guarantee the integrity of the data.

* Transmit UPC-A Check Digit (1)

Do Not Transmit UPC-A Check Digit (0)

Transmit UPC-E Check Digit
Parameter # 41
SSI # 29h

The check digit is the last character of the symbol used to verify the integrity of the data. Scan one of the following barcodes to transmit the barcode data with or without the UPC-E check digit. It is always verified to guarantee the integrity of the data.

* Transmit UPC-E Check Digit (1)

Do Not Transmit UPC-E Check Digit (0)
Transmit UPC-E1 Check Digit

Parameter # 42

SSI # 2Ah

The check digit is the last character of the symbol used to verify the integrity of the data. Scan one of the following barcodes to transmit the barcode data with or without the UPC-E1 check digit. It is always verified to guarantee the integrity of the data.

* Transmit UPC-E1 Check Digit
  (1)

Do Not Transmit UPC-E1 Check Digit
  (0)
UPC-A Preamble
Parameter # 34
SSI # 22h

Preamble characters are part of the UPC symbol, and include Country Code and System Character. Select the appropriate option for transmitting a UPC-A preamble to match the host system:

- Transmit System Character only
- Transmit System Character and Country Code ("0" for USA)
- Transmit no preamble.

<table>
<thead>
<tr>
<th>No Preamble (&lt;DATA&gt;)</th>
<th>(0)</th>
</tr>
</thead>
</table>
* System Character    | (1) |
| (<SYSTEM CHARACTER> <DATA>) |
System Character & Country Code
| (< COUNTRY CODE> <SYSTEM CHARACTER> <DATA>) | (2) |
UPC-E Preamble
Parameter # 35
SSI # 23h

Preamble characters are part of the UPC symbol, and include Country Code and System Character. Select the appropriate option for transmitting a UPC-E preamble to match the host system:

- Transmit System Character only
- Transmit System Character and Country Code ("0" for USA)
- Transmit no preamble.

No Preamble (<DATA>)
(0)

* System Character
(<SYSTEM CHARACTER> <DATA>)
(1)

System Character & Country Code
(<COUNTRY CODE> <SYSTEM CHARACTER> <DATA>)
(2)
UPC-E1 Preamble
Parameter # 36
SSI # 24h

Preamble characters are part of the UPC symbol, and include Country Code and System Character. Select the appropriate option for transmitting a UPC-E1 preamble to match the host system:

- Transmit System Character only
- Transmit System Character and Country Code ("0" for USA)
- Transmit no preamble.

No Preamble (<DATA>)
(0)

* System Character
(<SYSTEM CHARACTER> <DATA>)
(1)

System Character & Country Code
(<COUNTRY CODE> <SYSTEM CHARACTER> <DATA>)
(2)
Convert UPC-E to UPC-A

Parameter # 37

SSI # 25h

Enable this to convert UPC-E (zero suppressed) decoded data to UPC-A format before transmission. After conversion, the data follows UPC-A format and is affected by UPC-A programming selections (e.g., Preamble, Check Digit).

Disable this to transmit UPC-E decoded data as UPC-E data, without conversion.

---

Convert UPC-E1 to UPC-A

Parameter # 38

SSI # 26h

Scan Convert UPC-E1 to UPC-A (Enable) to convert UPC-E1 decoded data to UPC-A format before transmission. After conversion, the data follows UPC-A format and is affected by UPC-A programming selections (e.g., Preamble, Check Digit).

Scan Do Not Convert UPC-E1 to UPC-A (Disable) to transmit UPC-E1 decoded data as UPC-E1 data, without conversion.
EAN/JAN Zero Extend
Parameter # 39
SSI # 27h

Scan **Enable EAN/JAN Zero Extend** to add five leading zeros to decoded EAN-8 symbols to make them compatible in length to EAN-13 symbols. Scan **Disable EAN/JAN Zero Extend** to transmit EAN-8 symbols as is.

<table>
<thead>
<tr>
<th>Enable EAN/JAN Zero Extend (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable EAN/JAN Zero Extend (0)</td>
</tr>
</tbody>
</table>

**NOTE:** See **UPC/EAN/JAN Supplemental Redundancy on page 140** to control autodiscrimination of the GS1-128 portion (right half) of a coupon code.

UCC Coupon Extended Code
Parameter # 85
SSI # 55h

Scan **Enable UCC Coupon Extended Code** to decode UPC-A barcodes starting with digit '5', EAN-13 barcodes starting with digit '99', and UPC-A/GS1-128 coupon codes. UPC-A, EAN-13, and GS1-128 must be enabled to use this feature.

<table>
<thead>
<tr>
<th>Enable UCC Coupon Extended Code (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable UCC Coupon Extended Code (0)</td>
</tr>
</tbody>
</table>
Coupon Report
Parameter # 730
SSI # F1h DAh

Scan one of the following barcodes to select the type of coupon format to support.

- **New Coupon Format** - An interim format to support UPC-A/GS1-DataBar and EAN-13/GS1-DataBar.
- **Autodiscriminate Format** - Support both Old Coupon Format and New Coupon Format.
UPC Reduced Quiet Zone
Parameter # 1289
SSI # F8h 05h 09h

Scan one of the following barcodes to enable or disable decoding UPC barcodes with reduced quiet zones (the margins on either side of the barcode). If you select **Enable**, select **1D Quiet Zone Level on page 204**.

```
Enable UPC Reduced Quiet Zone
(1)
```

```
* Disable UPC Reduced Quiet Zone
(0)
```

---

Code 128

Parameter # 8
SSI # 08h

Scan one of the following barcodes to enable or disable Code 128.

```
* Enable Code 128
(1)
```

```
Disable Code 128
(0)
```
Set Lengths for Code 128

L1 = Parameter # 209
SSI # D1h

L2 = Parameter # 210
SSI # D2h

The length of a code refers to the number of characters (i.e., human readable characters), including check digit(s) the code contains. Set lengths for Code 128 to any length, one or two discrete lengths, or lengths within a specific range. The default Any Length.

NOTE: When setting lengths, enter a leading zero for single digit numbers.

Scan one of the following barcodes to select a length option:

- **One Discrete Length** - Decode only Code 128 symbols containing a selected length. Select the length using the barcodes in Numeric Barcodes. For example, to decode only Code 128 symbols with 14 characters, scan Code 128 - One Discrete Length, and then scan 1, 4. To correct an error or change the selection, scan Cancel on page 431.

- **Two Discrete Lengths** - Decode only Code 128 symbols containing either of two lengths. Select lengths using the barcodes in Numeric Barcodes. For example, to decode only Code 128 symbols containing either 2 or 14 characters, scan Code 128 - Two Discrete Lengths, and then scan 0, 2, 1, 4. To correct an error or change the selection, scan Cancel on page 431.

- **Length Within Range** - Decode Code 128 symbols with a specific length range. Select lengths using the barcodes in Numeric Barcodes. For example, to decode Code 128 symbols containing between 4 and 12 characters, scan Code 128 - Length Within Range, and then scan 0, 4, 1, 2. To correct an error or change the selection, scan Cancel on page 431.

- **Any Length** - Decode Code 128 symbols containing any number of characters within the scanner’s capability.
Set Lengths for Code 128 (continued)

Code 128 - One Discrete Length

Code 128 - Two Discrete Lengths

Code 128 - Length Within Range

* Code 128 - Any Length

GS1-128 (formerly UCC/EAN-128)
Parameter # 14
SSI # 0Eh

Scan one of the following barcodes to enable or disable GS1-128.

* Enable GS1-128
  (1)

Disable GS1-128
  (0)
ISBT 128
Parameter # 84
SSI # 54h

ISBT 128 is a variant of Code 128 used in the blood bank industry. Scan one of the following barcodes to enable or disable ISBT 128.

* Enable ISBT 128
(1)

ISBT Concatenation
Parameter # 577
SSI # F1h 41h

Select an option for concatenating pairs of ISBT code types:

- **Enable ISBT Concatenation** - There must be two ISBT codes in order for the scanner to decode and perform concatenation. The scanner does not decode single ISBT symbols.

- **Disable ISBT Concatenation** - The scanner does not concatenate pairs of ISBT codes it encounters. This is the default.

- **Autodiscriminate ISBT Concatenation** - The scanner decodes and concatenates pairs of ISBT codes immediately. If only a single ISBT symbol is present, the scanner must decode the symbol the number of times set via *ISBT Concatenation Redundancy on page 155* before transmitting its data to confirm that there is no additional ISBT symbol.

**NOTE:** When enabling ISBT Concatenation or Autodiscriminate ISBT Concatenation set Code 128 security level to Level 2.
ISBT Concatenation (continued)

The ISBT specification includes a table that lists several types of ISBT barcodes that are commonly used in pairs. If you set ISBT Concatenation to Enable, enable Check ISBT Table to concatenate only those pairs found in this table. Other types of ISBT codes are not concatenated.

Check ISBT Table
Parameter # 578
SSI # F1h 42h

* Enable Check ISBT Table (1)

* Disable Check ISBT Table (0)
ISBT Concatenation Redundancy

Parameter # 223

SSI # DFh

If you set ISBT Concatenation to Autodiscriminate, use this parameter to set the number of times the scanner must decode an ISBT symbol before determining that there is no additional symbol.

Scan the following barcode, and then scan barcodes in Numeric Barcodes to set a value between 2 and 20. Enter a leading zero for single digit numbers. To correct an error or change a selection, scan Cancel on page 431. The default is 10.

Code 128 <FNC4>

Parameter # 1254

SSI # F8h 04h E6h

This feature applies to Code 128 barcodes with an embedded <FNC4> character. Select Ignore Code 128 <FNC4> to strip the <FNC4> character from the decode data. The remaining characters are sent to the host unchanged. When disabled, the <FNC4> character is processed normally as per Code 128 standard.
Code 128 Security Level

Parameter # 751

SSI # F1h EFh

Code 128 barcodes are vulnerable to misdecodes, particularly when Code 128 Lengths is set to Any Length. The scanner offers four levels of decode security for Code 128 barcodes. There is an inverse relationship between security and scanner aggressiveness. Increasing the level of security can reduce scanning aggressiveness, so select only the level of security necessary.

- **Code 128 Security Level 0** - The scanner operates in its most aggressive state, while providing sufficient security in decoding most in-spec barcodes.
- **Code 128 Security Level 1** - This option eliminates most misdecodes while maintaining reasonable aggressiveness. This is the default.
- **Code 128 Security Level 2** - This option applies greater barcode security requirements if Security Level 1 fails to eliminate misdecodes.
- **Code 128 Security Level 3** - If you selected Security Level 2, and misdecodes still occur, select this security level to apply the highest safety requirements.

**NOTE:** Selecting this option is an extreme measure against mis-decoding severely out-of-spec barcodes, and significantly impairs the decoding ability of the scanner. If this level of security is required, try to improve the quality of the barcodes.
Code 128 Reduced Quiet Zone

Parameter # 1208

SSI # F8h 04h B8h

Scan one of the following barcodes to enable or disable decoding Code 128 barcodes with reduced quiet zones (the margins on either side of the barcode). If you select Enable, select a 1D Quiet Zone Level on page 204.

 Enable Code 128 Reduced Quiet Zone (1)

* Disable Code 128 Reduced Quiet Zone (0)

Code 39

Parameter # 0

SSI # 00h

Scan one of the following barcodes to enable or disable Code 39.

* Enable Code 39 (1)

Disable Code 39 (0)
Trioptic Code 39
Parameter # 13
SSI # 0Dh

Trioptic Code 39 is a variant of Code 39 used in the marking of computer tape cartridges. Trioptic Code 39 symbols always contain six characters. Scan one of the following barcodes to enable or disable Trioptic Code 39.


Enable Trioptic Code 39
(1)

* Disable Trioptic Code 39
(0)

NOTE: Code 39 (on page 157) must be enabled for this parameter to function.

Convert Code 39 to Code 32
Parameter # 86
SSI # 56h

Code 32 is a variant of Code 39 used by the Italian pharmaceutical industry. Scan one of the following barcodes to enable or disable converting Code 39 to Code 32.

Enable Convert Code 39 to Code 32
(1)

* Disable Convert Code 39 to Code 32
(0)
Symbologies

Code 32 Prefix
Parameter # 231
SSI # E7h

Scan one of the following barcodes to enable or disable adding the prefix character “A” to all Code 32 barcodes.

**NOTE:** Convert Code 39 to Code 32 (on page 158) must be enabled for this parameter to function.

Set Lengths for Code 39
L1 = Parameter # 18
SSI # 12h
L2 = Parameter # 19
SSI # 13h

The length of a code refers to the number of characters (i.e., human readable characters), including check digit(s) the code contains. Set lengths for Code 128 to any length, one or two discrete lengths, or lengths within a specific range. If Code 39 Full ASCII is enabled, Length Within Range or Any Length are the preferred options. The default is Length Within Range: 1 to 55.

**NOTE:** When setting lengths, enter a leading zero for single digit numbers.
Set Lengths for Code 39 (continued)

Scan one of the following barcodes to select a length option:

- **One Discrete Length** - Decode only Code 39 symbols containing a selected length. Select the length using the barcodes in **Numeric Barcodes**. For example, to decode only Code 39 symbols with 14 characters, scan **Code 39 - One Discrete Length**, and then scan 1, 4. To correct an error or change the selection, scan **Cancel on page 431**.

- **Two Discrete Lengths** - Decode only Code 39 symbols containing either of two lengths. Select lengths using the barcodes in **Numeric Barcodes**. For example, to decode only Code 39 symbols containing either 2 or 14 characters, scan **Code 39 - Two Discrete Lengths**, and then scan 0, 2, 1, 4. To correct an error or change the selection, scan **Cancel on page 431**.

- **Length Within Range** - Decode Code 39 symbols with a specific length range. Select lengths using the barcodes in **Numeric Barcodes**. For example, to decode Code 39 symbols containing between 4 and 12 characters, scan **Code 39 - Length Within Range**, and then scan 0, 4, 1, 2. To correct an error or change the selection, scan **Cancel on page 431**.

- **Any Length** - Decode Code 39 symbols containing any number of characters within the scanner's capability.

---

**Code 39 - One Discrete Length**

**Code 39 - Two Discrete Lengths**

* **Code 39 - Length Within Range**

**Code 39 - Any Length**
Symbologies

Code 39 Check Digit Verification
Parameter # 48
SSI # 30h

Scan Enable Code 39 Check Digit to check the integrity of all Code 39 symbols to verify that the data complies with specified check digit algorithm. Only Code 39 symbols which include a modulo 43 check digit are decoded. Enable this feature if the Code 39 symbols contain a Modulo 43 check digit.

- Enable Code 39 Check Digit
  (1)

- * Disable Code 39 Check Digit
  (0)

Transmit Code 39 Check Digit
Parameter # 43
SSI # 2Bh

Scan one of the following barcodes to transmit Code 39 data with or without the check digit.

- Transmit Code 39 Check Digit (Enable)
  (1)

- * Do Not Transmit Code 39 Check Digit (Disable)
  (0)

NOTE: Code 39 Check Digit Verification must be enabled for this parameter to function.
Code 39 Full ASCII Conversion
Parameter # 17
SSI # 11h

Code 39 Full ASCII is a variant of Code 39 which pairs characters to encode the full ASCII character set. Scan one of the following barcodes to enable or disable Code 39 Full ASCII.

**NOTE:** You cannot enable Trioptic Code 39 and Code 39 Full ASCII simultaneously.

Code 39 Full ASCII to Full ASCII Correlation is host-dependent, and is therefore described in the ASCII character set table for the appropriate interface. See Table 33 on page 450.

Enable Code 39 Full ASCII
(1)

* Disable Code 39 Full ASCII
(0)
Code 39 Security Level
Parameter # 750
SSI # F1h EEh

The scanner offers four levels of decode security for Code 39 barcodes. There is an inverse relationship between security and scanner aggressiveness. Increasing the level of security can reduce scanning aggressiveness, so select only the level of security necessary.

- **Code 39 Security Level 0**: The scanner operates in its most aggressive state, while providing sufficient security in decoding most in-spec barcodes.
- **Code 39 Security Level 1**: This default setting eliminates most misdecodes.
- **Code 39 Security Level 2**: This option applies greater barcode security requirements if Security Level 1 fails to eliminate misdecodes.
- **Code 39 Level 3**: If you selected Security Level 2, and misdecodes still occur, select this security level to apply the highest safety requirements.

**NOTE**: Selecting this option is an extreme measure against mis-decoding severely out-of-spec barcodes, and significantly impairs the decoding ability of the scanner. If this level of security is required, try to improve the quality of the barcodes.

---

**Code 39 Security Level 0**
(0)

* Code 39 Security Level 1
(1)

**Code 39 Security Level 2**
(2)

Code 39 Security Level 3
(3)
Code 39 Reduced Quiet Zone
Parameter # 1209
SSI # F8h 04h B9h

Scan one of the following barcodes to enable or disable decoding Code 39 barcodes with reduced quiet zones (the margins on either side of the barcode). If you select Enable, select a 1D Quiet Zone Level on page 204.

Enable Code 39 Reduced Quiet Zone
(1)

* Disable Code 39 Reduced Quiet Zone
(0)

Code 93

Parameter # 9
SSI # 09h

Scan one of the following barcodes to enable or disable Code 93.

* Enable Code 93
(1)

Disable Code 93
(0)
Set Lengths for Code 93

L1 = Parameter # 26
SSI # 1Ah

L2 = Parameter # 27
SSI # 1Bh

The length of a code refers to the number of characters (i.e., human readable characters), including check digit(s) the code contains. Set lengths for Code 93 to any length, one or two discrete lengths, or lengths within a specific range. The default is **Length Within Range**: 1 to 55.

**NOTE:** When setting lengths, enter a leading zero for single digit numbers.

Scan one of the following barcodes to select a length option:

- **One Discrete Length** - Decode only Code 93 symbols containing a selected length. Select the length using the barcodes in **Numeric Barcodes**. For example, to decode only Code 93 symbols with 14 characters, scan **Code 93 - One Discrete Length**, and then scan 1, 4. To correct an error or change the selection, scan **Cancel on page 431**.

- **Two Discrete Lengths** - Decode only Code 93 symbols containing either of two lengths. Select lengths using the barcodes in **Numeric Barcodes**. For example, to decode only Code 93 symbols containing either 2 or 14 characters, scan **Code 93 - Two Discrete Lengths**, and then scan 0, 2, 1, 4. To correct an error or change the selection, scan **Cancel on page 431**.

- **Length Within Range** - Decode Code 93 symbols with a specific length range. Select lengths using the barcodes in **Numeric Barcodes**. For example, to decode Code 93 symbols containing between 4 and 12 characters, scan **Code 93 - Length Within Range**, and then scan 0, 4, 1, 2. To correct an error or change the selection, scan **Cancel on page 431**.

- **Any Length** - Decode Code 93 symbols containing any number of characters within the scanner's capability.
Set Lengths for Code 93 (continued)

Code 93 - One Discrete Length

Code 93 - Two Discrete Lengths

* Code 93 - Length Within Range

Code 93 - Any Length
Code 11

Parameter # 10
SSI # 0Ah

Scan one of the following barcodes to enable or disable Code 11

Enable Code 11
(1)

* Disable Code 11
(0)

Set Lengths for Code 11

L1 = Parameter # 28
SSI # 1Ch

L2 = Parameter # 29
SSI # 1Dh

The length of a code refers to the number of characters (i.e., human readable characters), including check digit(s) the code contains. Set lengths for Code 11 to any length, one or two discrete lengths, or lengths within a specific range. The default is **Length Within Range:** 4 to 55.

**NOTE:** When setting lengths, enter a leading zero for single digit numbers

Scan one of the following barcodes to select a length option:

- **One Discrete Length** - Decode only Code 11 symbols containing a selected length. Select the length using the barcodes in Numeric Barcodes. For example, to decode only Code 11 symbols with 14 characters, scan **Code 11 - One Discrete Length**, and then scan 1, 4. To correct an error or change the selection, scan **Cancel on page 431**.

- **Two Discrete Lengths** - Decode only Code 11 symbols containing either of two lengths. Select lengths using the barcodes in Numeric Barcodes. For example, to decode only Code 11 symbols containing either 2 or 14 characters, scan **Code 11 - Two Discrete Lengths**, and then scan 0, 2, 1, 4. To correct an error or change the selection, scan **Cancel on page 431**.

- **Length Within Range** - Decode Code 11 symbols with a specific length range. Select lengths using the barcodes in Numeric Barcodes. For example, to decode Code 11 symbols containing between 4 and 12 characters, scan **Code 11 - Length Within Range**, and then scan 0, 4, 1, 2. To correct an error or change the selection, scan **Cancel on page 431**.

- **Any Length** - Decode Code 11 symbols containing any number of characters within the scanner’s capability.
Set Lengths for Code 11 (continued)

* Code 11 - Length Within Range

Code 11 - One Discrete Length

Code 11 - Two Discrete Lengths

Code 11 - Any Length
Code 11 Check Digit Verification

Parameter # 52

SSI # 34h

This feature allows the scanner to check the integrity of all Code 11 symbols to verify that the data complies with the specified check digit algorithm.

Scan one of the following barcodes to specify the number of check digits encoded in the Code 11 symbols, or to disable this feature.

- * Disable
  - (0)

- One Check Digit
  - (1)

- Two Check Digits
  - (2)
Transmit Code 11 Check Digits
Parameter # 47
SSI # 2Fh

Scan one of the following barcodes to select whether or not to transmit the Code 11 check digit(s).

NOTE: Code 11 Check Digit Verification must be enabled for this parameter to function.

Interleaved 2 of 5 (ITF)
Parameter # 6
SSI # 06h

Scan one of the following barcodes to enable or disable Interleaved 2 of 5.
Set Lengths for Interleaved 2 of 5

L1 = Parameter # 22
SSI # 16h

L2 = Parameter # 23
SSI # 17h

The length of a code refers to the number of characters (i.e., human readable characters), including check digit(s) the code contains. Set lengths for I 2 of 5 to any length, one or two discrete lengths, or lengths within a specific range. The range for Interleaved 2 of 5 lengths is 0 - 80. The default is Length Within Range: 6 to 55.

NOTE: When setting lengths, enter a leading zero for single digit numbers.

Scan one of the following barcodes to select a length option:

- **One Discrete Length** - Decode only I 2 of 5 symbols containing a selected length. Select the length using the barcodes in Numeric Barcodes. For example, to decode only I 2 of 5 symbols with 14 characters, scan I 2 of 5 - One Discrete Length, and then scan 1, 4. To correct an error or change the selection, scan Cancel on page 431.

- **Two Discrete Lengths** - Decode only I 2 of 5 symbols containing either of two lengths. Select lengths using the barcodes in Numeric Barcodes. For example, to decode only I 2 of 5 symbols containing either 2 or 14 characters, scan I 2 of 5 - Two Discrete Lengths, and then scan 0, 2, 1, 4. To correct an error or change the selection, scan Cancel on page 431.

- **Length Within Range** - Decode I 2 of 5 symbols with a specific length range. Select lengths using the barcodes in Numeric Barcodes. For example, to decode I 2 of 5 symbols containing between 4 and 12 characters, scan I 2 of 5 - Length Within Range, and then scan 0, 4, 1, 2. To correct an error or change the selection, scan Cancel on page 431.

- **Any Length** - Decode I 2 of 5 symbols containing any number of characters within the scanner’s capability.

NOTE: Due to the construction of the I 2 of 5 symbology, it is possible for a scan line covering only a portion of the code to transmit as a complete scan, yielding less data than is encoded in the barcode. To prevent this, select specific lengths (I 2 of 5 - One Discrete Length, Two Discrete Lengths) for I 2 of 5 applications, or increase the I 2 of 5 Security Level on page 175.
Set Lengths for Interleaved 2 of 5 (continued)

* I 2 of 5 - One Discrete Length

* I 2 of 5 - Two Discrete Lengths

* I 2 of 5 - Length Within Range

* I 2 of 5 - Any Length

I 2 of 5 Check Digit Verification

Parameter # 49

SSI # 31h

Scan one of the following barcodes to check the integrity of all I 2 of 5 symbols to verify the data complies with either the specified Uniform Symbology Specification (USS), or the Optical Product Code Council (OPCC) check digit algorithm.

* Disable
(0)

USS Check Digit
(1)

OPCC Check Digit
(2)
Transmit I 2 of 5 Check Digit
Parameter # 44
SSI # 2Ch

Scan one of the following barcodes to transmit I 2 of 5 data with or without the check digit.

Convert I 2 of 5 to EAN-13
Parameter # 82
SSI # 52h

Scan Convert I 2 of 5 to EAN-13 (Enable) to convert 14-character I 2 of 5 codes to EAN-13, and transmit to the host as EAN-13. To accomplish this, the I 2 of 5 code must be enabled, and the code must have a leading zero and a valid EAN-13 check digit.
Febraban

Parameter # 1750

SSI # F8h 06h D6h

Febraban is an I 2 of 5 barcode of length 44 that requires special check characters to be inserted in the transmitted data stream. When enabled, the I 2 of 5 internal check digit calculation and transmission is disabled. When disabled, all I 2 of 5 functionality works as usual.

Recommendations for Length Setting

I 2 of 5 Length 1: Larger of the fixed length and the FEBRABAN length (==44).
I 2 of 5 Length 2: Smaller of the fixed length and the FEBRABAN length (==44).
Interleaved 2 of 5 barcodes are vulnerable to misdecodes, particularly when I 2 of 5 Lengths is set to Any Length. The scanner offers four levels of decode security for Interleaved 2 of 5 barcodes. There is an inverse relationship between security and scanner aggressiveness. Increasing the level of security can reduce scanning aggressiveness, so select only the level of security necessary.

- **I 2 of 5 Security Level 0**: The scanner operates in its most aggressive state, while providing sufficient security in decoding most in-spec barcodes.

- **I 2 of 5 Security Level 1**: A barcode must be successfully read twice, and satisfy certain safety requirements before being decoded. This default setting eliminates most misdecodes.

- **I 2 of 5 Security Level 2**: This option applies greater barcode security requirements if Security Level 1 fails to eliminate misdecodes.

- **I 2 of 5 Security Level 3**: If you selected Security Level 2, and misdecodes still occur, select this security level. The highest safety requirements are applied. A barcode must be successfully read three times before being decoded.

**NOTE:** Selecting this option is an extreme measure against mis-decoding severely out-of-spec barcodes, and significantly impairs the decoding ability of the scanner. If this level of security is required, try to improve the quality of the barcodes.
I 2 of 5 Reduced Quiet Zone
Parameter # 1210
SSI # F8h 04h BAh

Scan one of the following barcodes to enable or disable decoding I 2 of 5 barcodes with reduced quiet zones (the margins on either side of the barcode). If you select Enable, select a 1D Quiet Zone Level on page 204.

Enable I 2 of 5 Reduced Quiet Zone
(1)

* Disable I 2 of 5 Reduced Quiet Zone
(0)

Discrete 2 of 5 (DTF)
Parameter # 5
SSI # 05h

Scan one of the following barcodes to enable or disable Discrete 2 of 5.

Enable Discrete 2 of 5
(1)

* Disable Discrete 2 of 5
(0)
Set Lengths for Discrete 2 of 5

L1 = Parameter # 20
SSI # 14h

L2 = Parameter # 21
SSI # 15h

The length of a code refers to the number of characters (i.e., human readable characters), including check digit(s) the code contains. Set lengths for D 2 of 5 to any length, one or two discrete lengths, or lengths within a specific range. The default is **Length Within Range**: 1 to 55.

**NOTE:** When setting lengths, enter a leading zero for single digit numbers.

Scan one of the following barcodes to select a length option:

- **One Discrete Length** - Decode only D 2 of 5 symbols containing a selected length. Select the length using the barcodes in **Numeric Barcodes**. For example, to decode only D 2 of 5 symbols with 14 characters, scan **D 2 of 5 - One Discrete Length**, and then scan **1, 4**. To correct an error or change the selection, scan **Cancel on page 431**.

- **Two Discrete Lengths** - Decode only D 2 of 5 symbols containing either of two lengths. Select lengths using the barcodes in **Numeric Barcodes**. For example, to decode only D 2 of 5 symbols containing either 2 or 14 characters, scan **D 2 of 5 - Two Discrete Lengths**, and then scan **0, 2, 1, 4**. To correct an error or change the selection, scan **Cancel on page 431**.

- **Length Within Range** - Decode D 2 of 5 symbols with a specific length range. Select lengths using the barcodes in **Numeric Barcodes**. For example, to decode D 2 of 5 symbols containing between 4 and 12 characters, scan **D 2 of 5 - Length Within Range**, and then scan **0, 4, 1, 2**. To correct an error or change the selection, scan **Cancel on page 431**.

- **Any Length** - Decode D 2 of 5 symbols containing any number of characters within the scanner's capability.
Set Lengths for Discrete 2 of 5 (continued)

NOTE: Due to the construction of the D 2 of 5 symbology, it is possible for a scan line covering only a portion of the code to transmit as a complete scan, yielding less data than is encoded in the barcode. To prevent this, select specific lengths (D 2 of 5 - One Discrete Length, Two Discrete Lengths) for D 2 of 5 applications.

- D 2 of 5 - One Discrete Length
- D 2 of 5 - Two Discrete Lengths
- * D 2 of 5 - Length Within Range
- D 2 of 5 - Any Length
Codabar (NW - 7)

Parameter # 7
SSI # 07h

Scan one of the following barcodes to enable or disable Codabar.

* Enable Codabar
   (1)

Disabling Codabar
   (0)

Set Lengths for Codabar

L1 = Parameter # 24
SSI # 18h

L2 = Parameter # 25
SSI # 19h

The length of a code refers to the number of characters (i.e., human readable characters), including check digit(s) the code contains. Set lengths for Codabar to any length, one or two discrete lengths, or lengths within a specific range. The default is **Length Within Range**: 4 to 55.

**NOTE:** When setting lengths, enter a leading zero for single digit numbers.

Scan one of the following barcodes to select a length option:

- **One Discrete Length** - Decode only Codabar symbols containing a selected length. Select the length using the barcodes in *Numeric Barcodes*. For example, to decode only Codabar symbols with 14 characters, scan **Codabar - One Discrete Length**, and then scan 1, 4. To correct an error or change the selection, scan **Cancel on page 431**.

- **Two Discrete Lengths** - Decode only Codabar symbols containing either of two lengths. Select lengths using the barcodes in *Numeric Barcodes*. For example, to decode only Codabar symbols containing either 2 or 14 characters, scan **Codabar - Two Discrete Lengths**, and then scan 0, 2, 1, 4. To correct an error or change the selection, scan **Cancel on page 431**.

- **Length Within Range** - Decode Codabar symbols with a specific length range. Select lengths using the barcodes in *Numeric Barcodes*. For example, to decode Codabar symbols containing between 4 and 12 characters, scan **Codabar - Length Within Range**, and then scan 0, 4, 1, 2. To correct an error or change the selection, scan **Cancel on page 431**.

- **Any Length** - Decode Codabar symbols containing any number of characters within the scanner’s capability.
Set Lengths for Codabar (continued)

- Codabar - One Discrete Length
- Codabar - Two Discrete Lengths
- * Codabar - Length Within Range
- Codabar - Any Length
CLSI Editing
Parameter # 54
SSI # 36h

Scan **Enable CLSI Editing** to strip the start and stop characters and insert a space after the first, fifth, and tenth characters of a 14-character Codabar symbol if the host system requires this data format.

**NOTE:** Symbol length does not include start and stop characters.

---

NOTIS Editing
Parameter # 55
SSI # 37h

Scan **Enable NOTIS Editing** to strip the start and stop characters from a decoded Codabar symbol if the host system requires this data format.
Symbologies

Codabar Security Level
Parameter # 1776
SSI # F8h 06h F0h

The scanner offers four levels of decode security for Codabar barcodes. There is an inverse relationship between security and scanner aggressiveness. Increasing the level of security can reduce scanning aggressiveness, so select only the level of security necessary.

- **Codabar Security Level 0**: This setting allows the scanner to operate in its most aggressive state, while providing sufficient security in decoding most in-spec barcodes.
- **Codabar Security Level 1**: This default setting eliminates most misdecodes.
- **Codabar Security Level 2**: Select this option with greater barcode security requirements if Security Level 1 fails to eliminate misdecodes.
- **Codabar Security Level 3**: If you selected Security Level 2, and misdecodes still occur, select this security level to apply the highest safety requirements.

**NOTE:** Selecting this option is an extreme measure against mis-decoding severely out-of-spec barcodes, and significantly impairs the decoding ability of the scanner. If this level of security is required, try to improve the quality of the barcodes.
Codabar Upper or Lower Case Start/Stop Characters
Parameter # 855
SSI # F2h 57h
Scan one of the following barcodes to select whether to transmit upper case or lower case Codabar start/stop characters.

- [ ] Lower Case (1)
- [ ] * Upper Case (0)

Codabar Mod 16 Check Digit Verification
Parameter # 1784
SSI # F8h 06h F8h
Enable this feature to check the Codabar Mod 16 Check Digit to verify that the data complies with the specified check digit algorithm.

- [ ] Enable Codabar Mod 16 Check Digit (1)
- [ ] * Disable Codabar Mod 16 Check Digit (0)
Transmit Codabar Check Digit
Parameter # 704
SSI # F1h C0h

Scan one of the following barcodes to select whether or not to transmit the Codabar check digit(s).

NOTE: Codabar Mod 16 Check Digit Verification must be enabled for this parameter to function.

---

Enable Codabar Check Digit Transmission
(1)

* Disable Codabar Check Digit Transmission
(0)

---

MSI

Parameter # 11
SSI # 0Bh

Scan one of the following barcodes to enable or disable MSI.

Enable MSI
(1)

* Disable MSI
(0)
Set Lengths for MSI

L1 = Parameter # 30
SSI # 1Eh

L2 = Parameter # 31
SSI # 1Fh

The length of a code refers to the number of characters (i.e., human readable characters), including check digit(s) the code contains. Set lengths for MSI to any length, one or two discrete lengths, or lengths within a specific range. The default is Length Within Range: 4 to 55.

**NOTE:** When setting lengths, enter a leading zero for single digit numbers.

Scan one of the following barcodes to select a length option:

- **One Discrete Length** - Decode only MSI symbols containing a selected length. Select the length using the barcodes in Numeric Barcodes. For example, to decode only MSI symbols with 14 characters, scan MSI - One Discrete Length, and then scan 1, 4. To correct an error or change the selection, scan Cancel on page 431.

- **Two Discrete Lengths** - Decode only MSI symbols containing either of two lengths. Select lengths using the barcodes in Numeric Barcodes. For example, to decode only MSI symbols containing either 2 or 14 characters, scan MSI - Two Discrete Lengths, and then scan 0, 2, 1, 4. To correct an error or change the selection, scan Cancel on page 431.

- **Length Within Range** - Decode MSI symbols with a specific length range. Select lengths using the barcodes in Numeric Barcodes. For example, to decode MSI symbols containing between 4 and 12 characters, scan MSI - Length Within Range, and then scan 0, 4, 1, 2. To correct an error or change the selection, scan Cancel on page 431.

- **Any Length** - Decode MSI symbols containing any number of characters within the scanner's capability.
**NOTE:** Due to the construction of the MSI symbology, it is possible for a scan line covering only a portion of the code to transmit as a complete scan, yielding less data than is encoded in the barcode. To prevent this, select specific lengths (**MSI - One Discrete Length**, **Two Discrete Lengths**) for MSI applications.

- **MSI - One Discrete Length**
- **MSI - Two Discrete Lengths**
- **MSI - Length Within Range**
- **MSI - Any Length**
**MSI Check Digits**

**Parameter # 50**

**SSI # 32h**

With MSI symbols, one check digit is mandatory and always verified by the reader. The second check digit is optional. If the MSI codes include two check digits, scan the **Two MSI Check Digits** barcode to enable verification of the second check digit.

See [MSI Check Digit Algorithm on page 189](#) to select second digit algorithms.

---

**Transmit MSI Check Digit(s)**

**Parameter # 46**

**SSI # 2Eh**

Scan one of the following barcodes to transmit MSI data with or without the check digit.
Transmit MSI Check Digit(s) (Enable)  
(1)

* Do Not Transmit MSI Check Digit(s) (Disable)  
(0)
MSI Check Digit Algorithm

Parameter # 51

SSI # 33h

Two algorithms are available for verifying the second MSI check digit. Scan one of the following barcodes to select the algorithm used to encode the check digit.

- MOD 11/MOD 10
  - (0)

- * MOD 10/MOD 10
  - (1)

MSI Reduced Quiet Zone

Parameter # 1392

SSI # F8h 05h 70h

Scan one of the following barcodes to enable or disable decoding MSI barcodes with reduced quiet zones. If you select Enable, select a 1D Quiet Zone Level on page 204.

- * Disable MSI Reduced Quiet Zone
  - (0)

- Enable MSI Reduced Quiet Zone
  - (1)
Chinese 2 of 5
Parameter # 408
SSI # F0h 98h
Scan one of the following barcodes to enable or disable Chinese 2 of 5.

Enable Chinese 2 of 5
(1)

* Disable Chinese 2 of 5
(0)

Matrix 2 of 5
Parameter # 618
SSI # F1h 6Ah
Scan one of the following barcodes to enable or disable Matrix 2 of 5.

Enable Matrix 2 of 5
(1)

* Disable Matrix 2 of 5
(0)
Set Lengths for Matrix 2 of 5

L1 = Parameter # 619
SSI # F1h 6Bh

L2 = Parameter # 620
SSI # F1h 6Ch

The length of a code refers to the number of characters (i.e., human readable characters), including check digit(s) the code contains. Set lengths for Matrix 2 of 5 to any length, one or two discrete lengths, or lengths within a specific range. The default is **Length Within Range**: 4 to 55.

**NOTE:** When setting lengths, enter a leading zero for single digit numbers.

Scan one of the following barcodes to select a length option:

- **One Discrete Length** - Decode only Matrix 2 of 5 symbols containing a selected length. Select the length using the barcodes in **Numeric Barcodes**. For example, to decode only Matrix 2 of 5 symbols with 14 characters, scan **Matrix 2 of 5 - One Discrete Length**, and then scan 1, 4. To correct an error or change the selection, scan **Cancel on page 431**.

- **Two Discrete Lengths** - Decode only Matrix 2 of 5 symbols containing either of two lengths. Select lengths using the barcodes in **Numeric Barcodes**. For example, to decode only Matrix 2 of 5 symbols containing either 2 or 14 characters, scan **Matrix 2 of 5 - Two Discrete Lengths**, and then scan 0, 2, 1, 4. To correct an error or change the selection, scan **Cancel on page 431**.

- **Length Within Range** - Decode Matrix 2 of 5 symbols with a specific length range. Select lengths using the barcodes in **Numeric Barcodes**. For example, to decode Matrix 2 of 5 symbols containing between 4 and 12 characters, scan **Matrix 2 of 5 - Length Within Range**, and then scan 0, 4, 1, 2. To correct an error or change the selection, scan **Cancel on page 431**.

- **Any Length** - Decode Matrix 2 of 5 symbols containing any number of characters within the scanner’s capability.
Set Lengths for Matrix 2 of 5 (continued)

Matrix 2 of 5 - One Discrete Length

Matrix 2 of 5 - Two Discrete Lengths

* Matrix 2 of 5 - Length Within Range

Matrix 2 of 5 - Any Length
Matrix 2 of 5 Check Digit
Parameter # 622
SSI # F1h 6Eh

The check digit is the last character of the symbol used to verify the integrity of the data. Scan one of the following barcodes to determine whether to include the Matrix 2 of 5 check digit with the barcode data.

Enable Matrix 2 of 5 Check Digit
(1)

* Disable Matrix 2 of 5 Check Digit
(0)

Transmit Matrix 2 of 5 Check Digit
Parameter # 623
SSI # F1h 6Fh

Scan one of the following barcodes to transmit Matrix 2 of 5 data with or without the check digit.

Transmit Matrix 2 of 5 Check Digit
(1)

* Do Not Transmit Matrix 2 of 5 Check Digit
(0)
Korean 3 of 5
Parameter # 581
SSI # F1h 45h

Scan one of the following barcodes to enable or disable Korean 3 of 5.

NOTE: The length for Korean 3 of 5 is fixed at 6.

Inverse 1D
Parameter # 586
SSI # F1h 4Ah

NOTE: The Inverse 1D setting may impact Composite or Inverse Composite decoding. See Composite Inverse on page 206.

Scan one of the following barcodes to set the 1D inverse decoder setting:

- Regular Only - The scanner decodes regular 1D barcodes only.
- Inverse Only - The scanner decodes inverse 1D barcodes only.
- Inverse Autodetect - The scanner decodes both regular and inverse 1D barcodes.
Inverse 1D (continued)

* Regular
(0)

Inverse Only
(1)

Inverse Autodetect
(2)
GS1 DataBar

The variants of GS1 DataBar are GS1 DataBar Omnidirectional, GS1 DataBar Truncated, GS1 DataBar Stacked, GS1 DataBar Stacked Omnidirectional, DataBar Expanded, GS1 DataBar Expanded Stacked and DataBar Limited. The limited and expanded versions have stacked variants. Scan the appropriate barcodes to enable or disable each variant of GS1 DataBar.

GS1 DataBar Omnidirectional (formerly GS1 DataBar-14), GS1 DataBar Truncated, GS1 DataBar Stacked, GS1 DataBar Stacked Omnidirectional

Parameter # 338

SSI # F0h 52h

NOTE: When GS1 DataBar Omnidirectional is enabled the variants are also enabled.

* Enable GS1 DataBar Omnidirectional
(1)

Disable GS1 DataBar Omnidirectional
(0)
GS1 DataBar Limited
Parameter # 339
SSI # F0h 53h

* Enable GS1 DataBar Limited
(1)

Disable GS1 DataBar Limited
(0)

NOTE: When GS1 DataBar Expanded is enabled GS1 DataBar Expanded Stacked is also enabled.

GS1 DataBar Expanded, GS1 DataBar Expanded Stacked
Parameter # 340
SSI # F0h 54h

* Enable GS1 DataBar Expanded
(1)

Disable GS1 DataBar Expanded
(0)
**Convert GS1 DataBar to UPC/EAN/JAN**

**Parameter # 397**

**SSI # F0h, 8Dh**

This parameter only applies to GS1 DataBar Omnidirectional and GS1 DataBar Limited symbols not decoded as part of a Composite symbol. Scan **Enable Convert GS1 DataBar to UPC/EAN/JAN** to strip the leading '010' from DataBar-14 and DataBar Limited symbols encoding a single zero as the first digit, and report the barcode as EAN-13.

For barcodes beginning with between two and five zeros, this strips the leading '0100' and reports the barcode as UPC-A. The **UPC-A Preamble** option that transmits the system character and country code applies to converted barcodes. Note that neither the system character nor the check digit can be stripped.

---

Enable Convert GS1 DataBar to UPC/EAN/JAN
(1)

* Disable Convert GS1 DataBar to UPC/EAN/JAN
(0)
GS1 DataBar Security Level
Parameter # 1706
SSI # F8h 06h AAh

The scanner offers four levels of decode security for GS1 DataBar (GS1 DataBar Omnidirectional, GS1 DataBar Limited, GS1 DataBar Expanded) barcodes.

- **Security Level 0** - The scanner operates in its most aggressive state, while providing sufficient security decoding most in-spec barcodes.
- **Security Level 1** - This setting eliminates most misdecodes while maintaining reasonable aggressiveness.
- **Security Level 2** - Select this option with greater barcode security requirements if Security Level 1 fails to eliminate misdecodes.
- **Security Level 3** - If you selected Security Level 2 and misdecodes still occur, select this security level to apply the highest safety requirements.
GS1 DataBar Limited Margin Check
Parameter # 728
SSI # F1h D8h

The scanner offers four levels of decode security for GS1 DataBar Limited barcodes. There is an inverse relationship between the level of margin check and scanner aggressiveness. Increasing the level of margin check can reduce scanning aggressiveness, so select only the level of margin check necessary.

- **Margin Check Level 1** – No clear margin required. This complies with the original GS1 standard, yet can result in erroneous decoding of a DataBar Limited barcode when scanning some UPC symbols that start with digits 9 and 7.

- **Margin Check Level 2** – Automatic risk detection. This level of margin check can result in erroneous decoding of DataBar Limited barcodes when scanning some UPC symbols. If a misdecode is detected, the scanner operates in Level 3 or Level 1.

- **Margin Check Level 3** – Margin check level reflects the newly proposed GS1 standard that requires a five times trailing clear margin.

- **Margin Check Level 4** – Security level extends beyond the standard required by GS1. This level of margin check requires a five times leading and trailing clear margin.
Symbology-Specific Security Features

Redundancy Level
Parameter # 78
SSI # 4Eh

The scanner offers four levels of decode redundancy. Select higher redundancy levels for decreasing levels of barcode quality. As redundancy levels increase, the scanner’s aggressiveness decreases.

Scan one of the following barcodes to select the redundancy level appropriate for the barcode quality:

- **Redundancy Level 1** - The scanner must read the following code types twice before decoding:
  - Codabar (8 characters or less)
  - MSI (4 characters or less)
  - D 2 of 5 (8 characters or less)
  - I 2 of 5 (8 characters or less)

- **Redundancy Level 2** - The scanner must read all code types twice before decoding.

- **Redundancy Level 3** - The scanner must read code types other than the following twice before decoding, but must read the following codes three times:
  - Codabar (8 characters or less)
  - MSI (4 characters or less)
  - D 2 of 5 (8 characters or less)
  - I 2 of 5 (8 characters or less)

- **Redundancy Level 4** - The scanner must read all code types three times before decoding.
Security Level

Parameter # 77

SSI # 4Dh

The scanner offers four levels of decode security for delta barcodes, which include the Code 128 family, UPC/EAN/JAN, and Code 93. Select increasing levels of security for decreasing levels of barcode quality. There is an inverse relationship between security and scanner aggressiveness, so choose only that level of security necessary for the application.

- **Security Level 0** - The scanner operates in its most aggressive state, while providing sufficient security decoding most in-spec barcodes.
- **Security Level 1** - This default setting eliminates most misdecodes.
- **Security Level 2** - Select this option if Security Level 1 fails to eliminate misdecodes.
- **Security Level 3** - If you selected Security Level 2 and misdecodes still occur, select this security level.

**NOTE:** Selecting this option is an extreme measure against mis-decoding severely out-of-spec barcodes, and significantly impairs the decoding ability of the scanner. If this level of security is required, try to improve the quality of the barcodes.
1D Quiet Zone Level

Parameter # 1288

SSI # F8h 05h 08h

This feature sets the level of aggressiveness when decoding barcodes with a reduced quiet zone (the margin on either side of a barcode), and applies to symbologies enabled by a Reduced Quiet Zone parameter. Because higher levels increase the decoding time and risk of misdecodes, Zebra strongly recommends enabling only the symbologies which require higher quiet zone levels, and leaving Reduced Quiet Zone disabled for all other symbologies. Options are:

- **1D Quiet Zone Level 0** - The scanner performs normally in terms of quiet zone.
- **1D Quiet Zone Level 1** - The scanner performs more aggressively in terms of quiet zone.
- **1D Quiet Zone Level 2** - The scanner only requires a quiet zone at the end of barcode for decoding.
- **1D Quiet Zone Level 3** - The scanner decodes anything in terms of quiet zone or end of barcode.
Intercharacter Gap Size
Parameter # 381
SSI # F0h, 7Dh

The Code 39 and Codabar symbologies have an intercharacter gap that is fairly quite small. Due to various barcode printing technologies, this gap can grow larger than the maximum size allowed, preventing the scanner from decoding the symbol. If this problem occurs, scan the Large Intercharacter Gaps parameter to tolerate these out-of-specification barcodes.

---

Composite
Composite CC-C
Parameter # 341
SSI # F0h 55h

Scan one of the following barcodes to enable or disable Composite barcodes of type CC-C.
Composite CC-A/B
Parameter # 342
SSI # F0h 56h
Scan one of the following barcodes to enable or disable Composite barcodes of type CC-A/B.

Enable CC-A/B
(1)

* Disable CC-A/B
(0)

Composite TLC-39
Parameter # 371
SSI # F0h 73h
Scan one of the following barcodes to enable or disable Composite barcodes of type TLC-39.

Enable TLC39
(1)

* Disable TLC39
(0)

Composite Inverse
Parameter # 1113
SSI # F8h 04h 59h
Select an option to set Composite for either regular decode or inverse decode. This mode only supports Composite Inverse that includes DataBar combined with CCAB, and does not support other 1D/2D combinations.

For this parameter to function, first enable Composite CC-A/B on page 206.
• **Regular Only** - The scanner decodes regular Composite barcodes only. Before selecting this, set Inverse 1D on page 194 to Regular Only or Inverse Autodetect.

• **Inverse Only** - The scanner decodes inverse Composite barcodes only. Before selecting this, set Inverse 1D on page 194 to Inverse Only or Inverse Autodetect.
UPC Composite Mode

Parameter # 344

SSI # F0h 58h

Select an option for linking UPC symbols with a 2D symbol during transmission as if they were one symbol:

- **UPC Never Linked** - Transmit UPC barcodes regardless of whether a 2D symbol is detected.
- **UPC Always Linked** - Transmit UPC barcodes and the 2D portion. If 2D is not present, do not transmit the barcode.
- **Autodiscriminate UPC Composites** - The scanner determines if there is a 2D portion, then transmits the UPC, as well as the 2D portion if present.

* UPC Never Linked (0)

UPC Always Linked (1)

Autodiscriminate UPC Composites (2)
Composite Beep Mode
Parameter # 398
SSI # F0h, 8Eh
Scan one of the following barcodes to select the number of decode beeps that sound upon decoding a Composite barcode.

- Single Beep After Both are Decoded (0)
- * Beep as Each Code Type is Decoded (1)
- Double Beep After Both are Decoded (2)

GS1-128 Emulation Mode for UCC/EAN Composite Codes
Parameter # 427
SSI # F0h, ABh
Scan one of the following barcodes to enable or disable this mode.

- Enable GS1-128 Emulation Mode for UCC/EAN Composite Codes (1)
- * Disable GS1-128 Emulation Mode for UCC/EAN Composite Codes (0)
2D Symbologies

PDF417
Parameter # 15
SSI # 0Fh

Scan one of the following barcodes to enable or disable PDF417.

* Enable PDF417
   (1)

* Disable PDF417
   (0)

MicroPDF417
Parameter # 227
SSI # E3h

Scan one of the following barcodes to enable or disable MicroPDF417.

Enable MicroPDF417
   (1)

* Disable MicroPDF417
   (0)
Code 128 Emulation

Parameter # 123

SSI # 7Bh

Enable this parameter to transmit data from certain MicroPDF417 symbols as Code 128. You must enable AIM Code ID Character (1) on page 88 for this parameter to work.

**NOTE:** Linked MicroPDF codewords 906, 907, 912, 914, and 915 are not supported. Use GS1 Composites instead.

Enable Code 128 Emulation to transmit these MicroPDF417 symbols with one of the following prefixes:

- JC1  if the first codeword is 903-905
- JC2  if the first codeword is 908 or 909
- JC0  if the first codeword is 910 or 911

Disable Code 128 Emulation to transmit these MicroPDF417 symbols with one of the following prefixes:

- JL3  if the first codeword is 903-905
- JL4  if the first codeword is 908 or 909
- JL5  if the first codeword is 910 or 911

Scan one of the following barcodes to enable or disable Code 128 Emulation.

Enable Code 128 Emulation

(1)

* Disable Code 128 Emulation

(0)
Data Matrix
Parameter # 292
SSI # F0h, 24h
Scan one of the following barcodes to enable or disable Data Matrix.

* Enable Data Matrix
   (1)

Enable GS1 Data Matrix
   (1)

GS1 Data Matrix
Parameter # 1336
SSI # F8h 05h 38h
Scan one of the following barcodes to enable or disable GS1 Data Matrix.

* Enable Data Matrix
   (1)

Enable GS1 Data Matrix
   (1)

* Disable GS1 Data Matrix
   (0)

Disable Data Matrix
   (0)
Data Matrix Inverse
Parameter # 588
SSI # F1h 4Ch

Scan one of the following barcodes to select the Data Matrix inverse decoder setting:

- **Regular Only** - The scanner decodes regular Data Matrix barcodes only.
- **Inverse Only** - The scanner decodes inverse Data Matrix barcodes only.
- **Inverse Autodetect** - The scanner decodes both regular and inverse Data Matrix barcodes.
Decode Data Matrix Mirror Images
Parameter # 537
SSI # F1h 19h

Scan one of the following barcodes to select an option for decoding mirror image Data Matrix barcodes:

- **Never** - Do not decode Data Matrix barcodes that are mirror images.
- **Always** - Decode only Data Matrix barcodes that are mirror images.
- **Auto** - Decode both mirrored and unmirrored Data Matrix barcodes.

![Barcode for Never (0)](image1)
![Barcode for Always (1)](image2)
![Barcode for Auto (2)](image3)
Maxicode
Parameter # 294
SSI # F0h, 26h

Scan one of the following barcodes to enable or disable Maxicode.

* Enable Maxicode
   (1)

* Disable Maxicode
   (0)

NOTE: Inverse QR barcodes decode if QR Code is enabled.

QR Code
Parameter # 293
SSI # F0h, 25h

Scan one of the following barcodes to enable or disable QR Code.

* Enable QR Code
   (1)

Disable QR Code
   (0)
GS1 QR
Parameter # 1343
SSI # F8h 05h 3Fh
Scan one of the following barcodes to enable or disable GS1 QR.

* Enable GS1 QR
(1)

Disable GS1 QR
(0)

MicroQR
Parameter # 573
SSI # F1h 3Dh
Scan one of the following barcodes to enable or disable MicroQR.

* Enable MicroQR
(1)

Disable MicroQR
(0)
Linked QR Mode

Parameter # 1847
SSI # 737h

Scan one of the following barcodes to select a linked QR mode.

- **Linked QR Only** - Does not decode individual QRs from a set of linked QR codes.
- **Individual QR With Headers** - Decodes individual QRs from a set of linked QR codes and keeps the header information and data.
- **Individual QR No Headers** - Decodes individual QRs from a set of linked QR codes and just transmits data without header information.

* Linked QR Only
  (0)

Individual QR With Headers
  (1)

Individual QR No Headers
  (2)
Aztec
Parameter # 574
SSI # F1h 3Eh
Scan one of the following barcodes to enable or disable Aztec.

NOTE: Enabling Aztec also enables Linked Aztec.

* Enable Aztec
(1)

* Disable Aztec
(0)

Aztec Inverse
Parameter # 589
SSI # F1h 4Dh
Scan one of the following barcodes to select the Aztec inverse decoder setting:

- Regular Only - The scanner decodes regular Aztec barcodes only.
- Inverse Only - The scanner decodes inverse Aztec barcodes only.
- Inverse Autodetect - The scanner decodes both regular and inverse Aztec barcodes.

Regular Only
(0)

Inverse Only
(1)

* Inverse Autodetect
(2)

218
Han Xin
Parameter # 1167
SSI # F8h 04h 8Fh
Scan one of the following barcodes to enable or disable Han Xin.

Enable Han Xin
(1)

* Disable Han Xin
(0)

Han Xin Inverse
Parameter # 1168
SSI # F8h 04h 90h
Scan one of the following barcodes to select a Han Xin inverse decoder setting:

- Regular Only - The scanner decodes Han Xin barcodes with normal reflectance only.
- Inverse Only - The scanner decodes Han Xin barcodes with inverse reflectance only.
- Inverse Autodetect - The scanner decodes both regular and inverse Han Xin barcodes.

* Regular Only
(0)

Inverse Only
(1)

Inverse Autodetect
(2)
Grid Matrix
Parameter # 1718
SSI # F8h 06h B6h
Scan one of the following barcodes to enable or disable Grid Matrix.

Enable (1)

* Disable (0)

Grid Matrix Inverse
Parameter # 1719
SSI # F8h 06h B7h
Scan one of the following barcodes to select a Grid Matrix inverse decoder setting:

- **Regular Only** - The scanner decodes regular Grid Matrix barcodes only.
- **Inverse Only** - The scanner decodes inverse Grid Matrix barcodes only.
- **Autodiscriminate** - The scanner decodes both regular and inverse Grid Matrix barcodes.

* Regular Only (0)

Inverse Only (1)

Autodiscriminate (2)
Grid Matrix Mirror
Parameter # 1736
SSI # F8h 06h C8h

Scan one of the following barcodes to select a Grid Matrix mirror decoder setting:

- **Regular Only** - The scanner decodes regular Grid Matrix barcodes only.
- **Mirrored Only** - The scanner decodes mirrored Grid Matrix barcodes only.
- **Auto-discriminate** - The scanner decodes both regular and mirrored Grid Matrix barcodes.
DotCode
Parameter # 1906
SSI # F8 07 72h

Scan one of the following barcodes to enable or disable DotCode.

* Disable DotCode
   (0)

Enable DotCode
   (1)
DotCode Inverse
Parameter # 1907
SSI # F8 07 73h

Scan one of the following barcodes to select a DotCode Inverse decoder setting. Setting options are:

- **Regular Only** - Decoder decodes DotCode barcodes with normal reflectance only.
- **Inverse Only** - Decoder decodes DotCode barcodes with inverse reflectance only.
- **Inverse Autodetect** - Decoder decodes both regular and inverse DotCode barcodes.

Regular
(0)

Inverse Only
(1)

*Inverse Autodetect
(2)
DotCode Mirrored
Parameter # 1908
SSI # F8 07 74h

Scan one of the following barcodes to select a DotCode Mirror decoder setting:

- **Non-Mirrored Only** - Digital scanner decodes non-mirrored DotCode barcodes only.
- **Mirrored Only** - Digital scanner decodes mirrored DotCode barcodes only.
- **Autodetect** - Digital scanner decodes both mirrored and non-mirrored DotCode barcodes.

* Autodetect

Never
(0)

Always
(1)

(2)
DotCode Prioritize
Parameter # 1937
SSI # F8 07 91h

Enable DotCode Prioritize to give priority to DotCode decoding as compared to other symbologies.

Macro PDF Features

Macro PDF is a special feature for concatenating multiple PDF symbols into one file. The scanner can decode symbols encoded with this feature, and can store more than 64 Kb of decoded data from up to 50 MacroPDF symbols.

CAUTION: When printing, keep each Macro PDF sequence separate, as each sequence has unique identifiers. Do not mix barcodes from several Macro PDF sequences, even if they encode the same data. When scanning a Macro PDF sequence, scan the entire sequence without interruption. When scanning a mixed sequence, two long low beeps (low / low) indicate an inconsistent file ID or inconsistent symbology error.
Flush Macro Buffer

Scan the following barcode to flush the buffer of all decoded Macro PDF data stored to that point, transmit it to the host device, and abort from Macro PDF mode.

Abort Macro PDF Entry

Scan the following barcode to clear all currently-stored Macro PDF data in the buffer without transmission and abort from Macro PDF mode.

Postal Codes

US Postnet
Parameter # 89
SSI # 59h

Scan one of the following barcodes to enable or disable US Postnet.

Enable US Postnet
(1)

* Disable US Postnet
(0)
US Planet
Parameter # 90
SSI # 5Ah

Scan one of the following barcodes to enable or disable US Planet.

Enable US Planet (1)

* Disable US Planet (0)

Transmit US Postal Check Digit
Parameter # 95
SSI # 5Fh

Scan one of the following barcodes to select whether to transmit US Postal data, which includes both US Postnet and US Planet, with or without the check digit.

* Transmit US Postal Check Digit (1)

Do Not Transmit US Postal Check Digit (0)
UK Postal
Parameter # 91
SSI # 5Bh

Scan one of the following barcodes to enable or disable UK Postal.

Enable UK Postal (1)

* Disable UK Postal (0)

Transmit UK Postal Check Digit
Parameter # 96
SSI # 60h

Scan one of the following barcodes to select whether to transmit UK Postal data with or without the check digit.

* Transmit UK Postal Check Digit (1)

Do Not Transmit UK Postal Check Digit (0)
Japan Postal
Parameter # 290
SSI # F0h, 22h
Scan one of the following barcodes to enable or disable Japan Postal.

Enable Japan Postal
(1)

* Disable Japan Postal
(0)

Australia Post
Parameter # 291
SSI # F0h, 23h
Scan one of the following barcodes to enable or disable Australia Post.

Enable Australia Post
(1)

* Disable Australia Post
(0)
Australia Post Format
Parameter # 718
SSI # F1h, CEh

Scan one of the following barcodes to select a format for Australia Post:

- **Autodiscriminate** (or Smart mode) - Decode the Customer Information Field using the N and C Encoding Tables.
  
  NOTE: This option increases the risk of misdecodes because the encoded data format does not specify the Encoding Table used for encoding.

- **Raw Format** - Output raw bar patterns as a series of numbers 0 through 3.
- **Alphanumeric Encoding** - Decode the Customer Information Field using the C Encoding Table.
- **Numeric Encoding** - Decode the Customer Information Field using the N Encoding Table.

For more information on Australia Post Encoding Tables, refer to the Australia Post Customer Barcoding Technical Specifications available at auspost.com.au.
Netherlands KIX Code

Parameter # 326
SSI # F0h, 46h

Scan one of the following barcodes to enable or disable Netherlands KIX Code.

Enable Netherlands KIX Code
(1)

* Disable Netherlands KIX Code
(0)

USPS 4CB/One Code/Intelligent Mail

Parameter # 592
SSI # F1h 50h

Scan one of the following barcodes to enable or disable USPS 4CB/One Code/Intelligent Mail.

Enable USPS 4CB/One Code/Intelligent Mail
(1)

* Disable USPS 4CB/One Code/Intelligent Mail
(0)
UPU FICS Postal
Parameter # 611
SSI # F1h 63h
Scan one of the following barcodes to enable or disable UPU FICS Postal.

Enable UPU FICS Postal
(1)

* Disable UPU FICS Postal
(0)

Mailmark
Parameter # 1337
SSI # F8h 05h 39h
Scan one of the following barcodes to enable or disable Mailmark.

* Disable Mailmark
(0)

Enable Mailmark
(1)
USB Interface

Introduction

This chapter describes how to set up the scanner with a USB host. The scanner connects directly to a USB host, or a powered USB hub, which powers it. No additional power supply is required.

The scanner ships with the settings shown in Table 13 on page 235 (also see Parameter Defaults for all defaults). If the default values suit requirements, programming is not necessary.

Setting Parameters

To set feature values, scan a single barcode or a short barcode sequence. The settings are stored in non-volatile memory and are preserved even when the scanner powers down.

**NOTE:** Most computer monitors allow scanning barcodes directly on the screen. When scanning from the screen, be sure to set the document magnification to a level where you can see the barcode clearly, and bars and/or spaces do not merge.

To return all features to default values, scan Set Factory Defaults on page 62. Throughout the programming barcode menus, asterisks (*) indicate default values.

Scanning Sequence Examples

In most cases scanning one barcode sets the parameter value. For example, to set the USB keystroke delay to medium, scan the Medium Delay (20 msec) barcode under USB Keystroke Delay on page 239. The scanner issues a fast warble beep and the LED turns green, signifying a successful parameter entry.

Other parameters require scanning several barcodes. See the parameter descriptions for this procedure.

Errors While Scanning

Unless otherwise specified, to correct an error during a scanning sequence, just re-scan the correct parameter.
Connecting a USB Interface

**Figure 19**  USB Connection

NOTE: When connecting via USB use the shielded connector cable (e.g., p/n CBA-U21-S07ZBR). Refer to Solution Builder for guidance about cables.


The scanner connects to USB-capable hosts including:

- TGCS (IBM) terminals
- Apple ™ desktop and notebooks
- Other network computers that support more than one keyboard.

The following operating systems support the scanner through USB:

- Windows® XP, 7, 8, 10
- MacOS 8.5 - MacOS 10.6
- IBM 4690 OS
- Linux.

The scanner also interfaces with other USB hosts that support USB Human Interface Devices (HID).

To set up the scanner:

1. Connect the modular connector of the USB interface cable to the cable interface port on the scanner. See Inserting the Interface Cable on page 31.

NOTE: Interface cables vary depending on configuration. The connectors illustrated in Figure 19 are examples only. The connectors may be different than those illustrated, but the steps to connect the scanner are the same.
2. Plug the series A connector in the USB host or hub, or plug the PowerPlus connector in an available port of the IBM SurePOS terminal.

3. The scanner automatically detects the host and uses the default USB device type. If the default (*) does not meet your requirements, select another USB device type by scanning the appropriate barcode from USB Device Type on page 237.

4. On first installation when using Windows, the software may prompt to select or install the Human Interface Device driver. To install this driver, provided by Windows, click **Next** at all choices and click **Finished** on the last choice. The scanner powers up during this installation.

5. To modify any other parameter options, scan the appropriate barcodes in this chapter.

If problems occur with the system, see Troubleshooting on page 51.

---

**USB Parameter Defaults**

Table 13 lists defaults for USB host parameters. Change these values in one of two ways:

- Scan the appropriate barcodes in this chapter. The new value replaces the standard default value in memory. To recall default parameter values, see Default Parameters on page 62.
- Configure the scanner using the 123Scan configuration program. See 123Scan and Software Tools.

**NOTE:** See Parameter Defaults for all user preference, host, symbology, and miscellaneous default parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>USB Host Parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB Device Type</td>
<td>USB Keyboard HID</td>
<td>237</td>
</tr>
<tr>
<td>Symbol Native API (SNAPI) Status Handshaking</td>
<td>Enable</td>
<td>239</td>
</tr>
<tr>
<td>USB Keystroke Delay</td>
<td>No Delay</td>
<td>239</td>
</tr>
<tr>
<td>USB Caps Lock Override</td>
<td>Disable</td>
<td>240</td>
</tr>
<tr>
<td>Barcodes with Unknown Characters</td>
<td>Send Barcodes with Unknown Characters</td>
<td>240</td>
</tr>
<tr>
<td>USB Convert Unknown to Code 39</td>
<td>Disable</td>
<td>241</td>
</tr>
<tr>
<td>USB Fast HID</td>
<td>Enable</td>
<td>241</td>
</tr>
<tr>
<td>USB Polling Interval</td>
<td>3 msec</td>
<td>242</td>
</tr>
<tr>
<td>Keypad Emulation</td>
<td>Enable</td>
<td>244</td>
</tr>
<tr>
<td>Quick Keypad Emulation</td>
<td>Enable</td>
<td>244</td>
</tr>
<tr>
<td>Keypad Emulation with Leading Zero</td>
<td>Enable</td>
<td>245</td>
</tr>
<tr>
<td>USB FN1 Substitution</td>
<td>Disable</td>
<td>245</td>
</tr>
<tr>
<td>Function Key Mapping</td>
<td>Disable</td>
<td>246</td>
</tr>
<tr>
<td>Parameter</td>
<td>Default</td>
<td>Page Number</td>
</tr>
<tr>
<td>-----------------------------------------------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Simulated Caps Lock</td>
<td>Disable</td>
<td>246</td>
</tr>
<tr>
<td>Convert Case</td>
<td>None</td>
<td>247</td>
</tr>
<tr>
<td>USB Static CDC</td>
<td>Enable</td>
<td>248</td>
</tr>
<tr>
<td>CDC Beep on <code>&lt;BEL&gt;</code></td>
<td>Enable</td>
<td>248</td>
</tr>
<tr>
<td>TGCS (IBM) USB Beep Directive</td>
<td>Ignore</td>
<td>248</td>
</tr>
<tr>
<td>TGCS (IBM) USB Barcode Configuration Directive</td>
<td>Ignore</td>
<td>249</td>
</tr>
<tr>
<td>TGCS (IBM) USB Specification Version</td>
<td>Version 2.2</td>
<td>249</td>
</tr>
<tr>
<td>USB CDC Host Variant</td>
<td>Standard CDC</td>
<td>250</td>
</tr>
</tbody>
</table>
USB Host Parameters

USB Device Type

Scan one of the following barcodes to select the USB device type. To select a country keyboard type for the USB Keyboard HID host, see Country Codes.

NOTES:

• When changing USB Device Types, the scanner resets and issues the standard startup beep sequences.
• When connecting two scanners to a host, IBM does not allow selecting two of the same device type. If you require two connections, select IBM Table-top USB for one scanner and IBM Hand-held USB for the second scanner.
• Select IBM Hand-held USB to disable data transmission when an IBM register issues a Scan Disable command. Aim, illumination, and decoding is still permitted. Select IBM OPOS (IBM Hand-held USB with Full Scan Disable) to completely shut off the scanner when an IBM register issues a Scan Disable command, including aim, illumination, decoding, and data transmission.
• To select the Toshiba TEC device type, refer to the Toshiba TEC Programmer’s Guide.
USB Device Type (continued)

**NOTES:**

- Before selecting USB CDC Host on page 238 or SSI over USB CDC on page 238, install the appropriate USB CDC Driver on the host to ensure the scanner does not stall during power up (due to a failure to enumerate USB). Go to zebra.com/support, Support & Downloads > Barcode Scanners > USB CDC Driver, select the appropriate Windows platform, and download the appropriate CDC Driver (64 bit or 32 bit). To recover a stalled scanner:
  - Install the USB CDC Driver
  - After power-up, hold the trigger for 10 seconds, which allows the scanner to power up using an alternate USB configuration. Upon power-up, scan another USB Device Type.
- Select USB HID POS to communicate over a USB cable with Universal Windows Platform (UWP) applications running on Windows 10 devices.
Symbol Native API (SNAPI) Status Handshaking

After selecting a SNAPI interface as the USB device type, scan one of the following barcodes to select whether to enable or disable status handshaking.

* Enable SNAPI Status Handshaking

Disable SNAPI Status Handshaking

USB Keystroke Delay

Scan one of the following barcodes to set the delay, in milliseconds, between emulated keystrokes. Select a longer delay for hosts that require slower data transmission.

* No Delay

Medium Delay (20 msec)

Long Delay (40 msec)
USB Interface

USB Caps Lock Override

This option applies only to the USB Keyboard HID device. Scan **Override Caps Lock Key** to preserve the case of the data regardless of the state of the Caps Lock key. This setting is always enabled for the Japanese Windows (ASCII) keyboard type and can not be disabled.

Barcodes with Unknown Characters

This option applies only to the USB Keyboard HID and IBM devices. Unknown characters are characters the host does not recognize. Scan **Send Barcodes With Unknown Characters** to send all barcode data except for unknown characters. The scanner issues no error beeps.

Scan **Do Not Send Barcodes With Unknown Characters** for IBM devices to prevent sending barcodes containing at least one unknown character to the host, or for USB Keyboard HID devices to send the barcode characters up to the unknown character. The scanner issues an error beep.
USB Interface

USB Convert Unknown to Code 39

This option applies only to the IBM hand-held, IBM table-top, and OPOS devices. Scan one of the following barcodes to enable or disable converting unknown barcode type data to Code 39.

Enable Convert Unknown to Code 39

* Disable Convert Unknown to Code 39

USB Fast HID

Scan Enable USB Fast HID to transmit USB HID data at a faster rate.

NOTE: Disable USB Fast HID if there are problems with transmission.

* Enable USB Fast HID

Disable USB Fast HID
USB Polling Interval

Scan one of the following barcodes to set the polling interval, which is the rate at which data transmits between the scanner and host computer. A lower number indicates a faster data rate.

**NOTE:** When changing the USB polling interval, the scanner restarts and issues a power-up beep sequence.

**IMPORTANT:** Ensure the host supports the selected data rate.

- **1 msec**
- **2 msec**
- **3 msec**
- **4 msec**
- **5 msec**
USB Interface

USB Polling Interval (continued)

- 6 msec
- 7 msec
- 8 msec
- 9 msec
**Keypad Emulation**

Scan **Enable Keypad Emulation** to send all characters as ASCII sequences over the numeric keypad. For example, ASCII A transmits as “ALT make” 0 6 5 “ALT Break”.

![NOTE:]
If your keyboard type is not listed in the country code list (see **Country Codes**), disable **Quick Keypad Emulation** and enable **Keypad Emulation** below.

---

**Quick Keypad Emulation**

This option applies only to the USB Keyboard HID device when **Keypad Emulation** is enabled. Scan **Enable Quick Keypad Emulation** for a quicker method of emulation using the numeric keypad where ASCII sequences are only sent for ASCII characters not found on the keyboard.
Keypad Emulation with Leading Zero

Scan **Enable Keypad Emulation with Leading Zero** to send character sequences sent over the numeric keypad as ISO characters which have a leading zero. For example, ASCII A transmits as “ALT MAKE” 0 0 6 5 “ALT BREAK”.

* Enable Keypad Emulation with Leading Zero

---

USB Keyboard FN1 Substitution

This option applies only to the USB Keyboard HID device. Scan **Enable USB Keyboard FN1 Substitution** to replace any FN1 character in a GS1 128 barcode with a user-selected Key Category and value. See **FN1 Substitution Values on page 92** to set the Key Category and Key Value.

* Enable USB Keyboard FN1 Substitution

---
**Function Key Mapping**

ASCII values under 32 are normally sent as a control-key sequence (see Table 33 on page 450). Scan **Enable Function Key Mapping** to send the keys in bold in place of the standard key mapping. Table entries that do not have a bold equivalent remain the same regardless of whether you enable this parameter.

Enable Function Key Mapping

* Disable Function Key Mapping

**Simulated Caps Lock**

Scan **Enable Simulated Caps Lock** to invert upper and lower case characters on the barcode as if the Caps Lock state is enabled on the keyboard. This inversion occurs regardless of the keyboard’s **Caps Lock** state.

Enable Simulated Caps Lock

* Disable Simulated Caps Lock

**NOTES:**
- Simulated Caps Lock applies to ASCII characters only.
- Do not enable this parameter if any of the following parameters are enabled:
  - USB Caps Lock Override on page 240
  - Convert All to Upper Case on page 247
  - Convert All to Lower Case on page 247
Convert Case

Scan one of the following barcodes to convert all barcode data to the selected case.

**NOTE:** Convert Case applies to ASCII characters only.

* No Case Conversion

Convert All to Upper Case

Convert All to Lower Case
**USB Static CDC**

When disabled, each device connected consumes another COM port (first device = COM1, second device = COM2, third device = COM3, etc.)

When enabled, each device connects to the same COM port.

* Enable USB Static CDC

**CDC Beep on <BEL>**

If you enable this parameter, the scanner issues a beep when it detects a <BEL> character in USB CDC communications. <BEL> indicates an illegal entry or other important event.

* Enable CDC Beep on <BEL>

Disable USB Static CDC

Disable CDC Beep on <BEL>
TGCS (IBM) USB Beep Directive

The host can send a beep configuration request to the scanner. Scan **Ignore Beep Directive** to prevent the scanner from processing the host request. All directives are still acknowledged to the USB host as if they were processed.

---

Honor Beep Directive

* Ignore Beep Directive

---

TGCS (IBM) USB Barcode Configuration Directive

The host can enable and disable code types. Scan **Ignore Barcode Configuration Directive** to prevent the scanner from processing the host request. All directives are still acknowledged to the USB host as if they were processed.

---

Honor Barcode Configuration Directive

* Ignore Barcode Configuration Directive

---

TGCS (IBM) USB Specification Version

Select **IBM Specification Level Version 0 (Original)** to send the following code types as Unknown:

- Data Matrix
- GS1 Data Matrix
- QR Code
- GS1 QR
- MicroQR Code
- Aztec
USB Interface

Select **IBM Specification Level Version 2.2** to send the code types with the appropriate IBM identifiers.

**USB CDC Host Variant**

**Parameter # 1713 (SSI # F8 06 B1)**

The USB Airline/Airport(CUTE/CUSS/CUPS) CDC Host Variant feature is similar to the RS232 host variant(CUTE). It is now supported over USB CDC host mode. The scanner transmits data in Airline/Airport(CUTE/CUSS/CUPS) data format <Prefix><Data><Suffix>.

The USB Airline/Airport(CUTE/CUSS/CUPS) feature supports 2 CDC Host Variants. One for each ISV (Independent Software Vendor) spec: STIA and ARINC. The default USB CDC Host Variant is Standard CDC host mode.

**Table 14  **USB CDC Host Variant Parameter Values

<table>
<thead>
<tr>
<th>CDC Host Variant</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC Standard (default)</td>
<td>N06B100</td>
</tr>
<tr>
<td>CDC SITA</td>
<td>N06B101</td>
</tr>
<tr>
<td>CDC TravelSky</td>
<td>N06B102</td>
</tr>
<tr>
<td>CDC ARINC</td>
<td>N06B103</td>
</tr>
</tbody>
</table>

**Parameter Scanning Lockout**

If the scanner is configured as USB CDC Host Variant (other than CDC Standard), it will disable all parameter barcodes scanning. To unlock, scan *Enable Parameter Barcode Scanning (1)* on page 63.

**Parameter Default**

Enabling of any of the USB CDC Host Variant (other than CDC Standard) requires coercion of other parameters. The scanner updates the following parameters (Table2) to the specified default values based on the USB CDC Host Variant selected.

**Table 15  **Parameter Defaults for Airport Device Types

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SITA Defaults</th>
<th>ARINC Defaults</th>
<th>Travel Sky Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>IATA 2 of 5 (D 2 of 5)</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Parameter Scanning</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>IATA 2 of 5 (D 2 of 5) Lengths</td>
<td>6 to 55</td>
<td>6 to 55</td>
<td>6 to 56</td>
</tr>
<tr>
<td>1 2 of 5</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
USB Interface

Transmitting Data Formatting

- **SITA Format** - The USB SITA feature transmits data in SITA format: `<STX><ID><DATA><CR><ETX>
  Where:
  `<STX>` - 0x02
  `<ID>` - Custom Code ID (see Table 16)
  `<DATA>` - Barcode decode data
  `<CR>` - 0x0d
  `<ETX>` - 0x03

Table 16  SITA Code ID

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code ID Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 2 of 5</td>
<td>1</td>
</tr>
<tr>
<td>D 2 of 5, IATA</td>
<td>2</td>
</tr>
<tr>
<td>Code 39 (all variants)</td>
<td>3</td>
</tr>
<tr>
<td>Data Matrix</td>
<td>4</td>
</tr>
<tr>
<td>Code 128 (all variants)</td>
<td>5</td>
</tr>
<tr>
<td>PDF (all variants)</td>
<td>6</td>
</tr>
<tr>
<td>QR Code (all variants)</td>
<td>7</td>
</tr>
<tr>
<td>Aztec Code (all variants)</td>
<td>8</td>
</tr>
<tr>
<td>UPC, EAN13, (all supplemental variants)</td>
<td>A</td>
</tr>
<tr>
<td>All others</td>
<td>None</td>
</tr>
</tbody>
</table>

- **ARINC Format** - The USB SITA feature transmits data in ARINC format: `<STX><DID><DOC><BID><DATA><ETX><CRC>
  Where:
  `<STX>` - 0x02
  `<DID>` - 0xB1 (DTYP and DNUM)
  `<DOC>` - 0x03 (Document Identifier)
  `<BID>` - Barcode Identifier (see Table 17)
  `<DATA>` - Barcode Decode Data
  `<ETX>` - 0x03
  `<CRC>` - CRC-16

Table 17  ARINC Barcode Identifier

<table>
<thead>
<tr>
<th>Code Type</th>
<th>ASCII Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 2 of 5</td>
<td>1</td>
</tr>
<tr>
<td>D 2 of 5</td>
<td>2</td>
</tr>
<tr>
<td>Code 39</td>
<td>3</td>
</tr>
</tbody>
</table>
### USB Interface

**TravelSky Format** - The USB SITA feature transmits data in TravelSky format: `<ID><DATA>`

Where:
- `<ID>` - Custom Code ID (same as Table 16 on page 251)
- `<DATA>` - Barcode Decode Data

Select a USB CDC Host Variant.

<table>
<thead>
<tr>
<th>Code Type</th>
<th>ASCII Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 128</td>
<td>5</td>
</tr>
<tr>
<td>Code 39 with Check Digit*</td>
<td>8</td>
</tr>
<tr>
<td>D 2 of 5 with Check Digit*</td>
<td>9</td>
</tr>
<tr>
<td>I 2 of 5 with Check Digit*</td>
<td>0</td>
</tr>
<tr>
<td>2D Data Matrix</td>
<td>4</td>
</tr>
<tr>
<td>2D QR</td>
<td>7</td>
</tr>
<tr>
<td>2D PDF</td>
<td>6</td>
</tr>
<tr>
<td>EAN 13 with Check Digit*</td>
<td>A</td>
</tr>
<tr>
<td>2D Aztec</td>
<td>8</td>
</tr>
<tr>
<td>All others</td>
<td>None</td>
</tr>
</tbody>
</table>

**Note:** Not supported on scanner; specified in ARINC spec.; No distinguish of Check Digits without AIM Code ID Transmit.
ASCII Character Sets

See ASCII Character Sets for the following information:

- ASCII Character Set, Table 33 on page 450
- ALT Key Character Set, Table 34 on page 455
- GUI Key Character Set, Table 35 on page 456
- PF Key Character Set, Table 36 on page 457
- F Key Character Set, Table 37 on page 458
- Numeric Key Character Set, Table 38 on page 458
- Extended Key Character Set, Table 39 on page 459
SSI Interface

Introduction

This chapter describes the system requirements of the Simple Serial Interface (SSI), which provides a communications link between Zebra decoders (e.g., scan engines, slot scanners, hand-held scanners, two-dimensional scanners, Hands-free scanners, and RF base stations) and a serial host. It provides the means for the host to control the decoder or scanner.

Communication

All communication between the scanner and host occurs over the hardware interface lines using the SSI protocol. Refer to the Simple Serial Interface Programmer’s Guide, p/n 72E-40451-xx, for more information on SSI.

The host and the scanner exchange messages in packets. A packet is a collection of bytes framed by the proper SSI protocol formatting bytes. The maximum number of bytes per packet that the SSI protocol allows for any transaction is 257 (255 bytes + 2 byte checksum).

Depending on the configuration, the scanner can send decode data as ASCII data (unpacketted), or as part of a larger message (packeted).

SSI performs the following functions for the host device:

- Maintains a bi-directional interface with the scanner
- Allows the host to send commands that control the scanner
- Passes data from the scanner to a host device in SSI packet format or straight decode message.

The SSI environment consists of a scanner, a serial cable which attaches to the host device, and if required, a power supply.

SSI transmits all decode data including special formatting (e.g., AIM ID). Parameter settings can control the format of the transmitted data.

The scanner can also send parameter information, product identification information, or event codes to the host.

All commands sent between the scanner and host must use the format described in the SSI Message Formats section. SSI Transactions on page 256 describes the required sequence of messages in specific cases.
SSI Commands

Table 18 lists all the SSI opcodes the scanner supports. The host transmits opcodes designated type H. The scanner (decoder) transmits type D opcodes, and either can transmit Host/Decoder (H/D) types.

Table 18 | SSI Commands
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Opcode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM_OFF</td>
<td>H</td>
<td>0xC4</td>
<td>Deactivate aim pattern.</td>
</tr>
<tr>
<td>AIM_ON</td>
<td>H</td>
<td>0xC5</td>
<td>Activate aim pattern.</td>
</tr>
<tr>
<td>BEEP</td>
<td>H</td>
<td>0xE6</td>
<td>Sound the beeper.</td>
</tr>
<tr>
<td>CAPABILITIES_REPLY</td>
<td>D</td>
<td>0xD4</td>
<td>Reply to CAPABILITIES_REQUEST; contains a list of the capabilities and commands the decoder supports.</td>
</tr>
<tr>
<td>CAPABILITIES_REQUEST</td>
<td>H</td>
<td>0xD3</td>
<td>Request capabilities report from the decoder.</td>
</tr>
<tr>
<td>CMD_ACK</td>
<td>H/D</td>
<td>0xD0</td>
<td>Positive acknowledgment of received packet.</td>
</tr>
<tr>
<td>CMD_NAK</td>
<td>H/D</td>
<td>0xD1</td>
<td>Negative acknowledgment of received packet.</td>
</tr>
<tr>
<td>DECODE_DATA</td>
<td>D</td>
<td>0xF3</td>
<td>Decode data in SSI packet format.</td>
</tr>
<tr>
<td>EVENT</td>
<td>D</td>
<td>0xF6</td>
<td>Event indicated by associated event code.</td>
</tr>
<tr>
<td>LED_OFF</td>
<td>H</td>
<td>0xE8</td>
<td>De-activate LED output.</td>
</tr>
<tr>
<td>LED_ON</td>
<td>H</td>
<td>0xE7</td>
<td>Activate LED output.</td>
</tr>
<tr>
<td>PARAM_DEFAULTS</td>
<td>H</td>
<td>0xC8</td>
<td>Set parameter default values.</td>
</tr>
<tr>
<td>PARAM_REQUEST</td>
<td>H</td>
<td>0xC7</td>
<td>Request values of certain parameters.</td>
</tr>
<tr>
<td>PARAM_SEND</td>
<td>H/D</td>
<td>0xC6</td>
<td>Send parameter values.</td>
</tr>
<tr>
<td>REPLY_REVISION</td>
<td>D</td>
<td>0xA4</td>
<td>Reply to REQUEST_REVISION, contains the decoder's software/hardware configuration.</td>
</tr>
<tr>
<td>REQUEST_REVISION</td>
<td>H</td>
<td>0xA3</td>
<td>Request the decoder's configuration.</td>
</tr>
<tr>
<td>SCAN_DISABLE</td>
<td>H</td>
<td>0xEA</td>
<td>Prevent the operator from scanning barcodes.</td>
</tr>
<tr>
<td>SCAN_ENABLE</td>
<td>H</td>
<td>0xE9</td>
<td>Permit barcode scanning.</td>
</tr>
<tr>
<td>SLEEP</td>
<td>H</td>
<td>0xEB</td>
<td>Request to place the decoder into low power.</td>
</tr>
<tr>
<td>START_DECODE</td>
<td>H</td>
<td>0xE4</td>
<td>Tell the decoder to attempt to decode a barcode.</td>
</tr>
<tr>
<td>STOP_DECODE</td>
<td>H</td>
<td>0xE5</td>
<td>Tell the decoder to abort a decode attempt.</td>
</tr>
<tr>
<td>WAKEUP</td>
<td>H</td>
<td>N/A</td>
<td>Wake the decoder from low power mode.</td>
</tr>
</tbody>
</table>

For details of the SSI protocol, refer to the Simple Serial Interface Programmer's Guide.
SSI Transactions

General Data Transactions

ACK/NAK Handshaking

If you enable ACK/NAK handshaking (the default), all packeted messages must have a CMD_ACK or CMD_NAK response, unless the command description states otherwise. Zebra recommends leaving this handshaking enabled to provide feedback to the host. Raw decode data and WAKEUP do not use ACK/NAK handshaking since they are not packeted data.

Following is an example of a problem which can occur if you disable ACK/NAK handshaking:

• The host sends a PARAM_SEND message to the scanner to change the baud rate from 9600 to 19200.
• The scanner cannot interpret the message.
• The scanner does not implement the change the host requested.
• The host assumes that the parameter change occurred and acts accordingly.
• Communication is lost because the change did not occur on both sides.

If you enable ACK/NAK handshaking, the following occurs:

• The host sends a PARAM_SEND message.
• The scanner cannot interpret the message.
• The scanner CMD_NAKs the message.
• The host resends the message.
• The scanner receives the message successfully, responds with CMD_ACK, and implements parameter changes.
Decoded Data Transmission

The **Decode Data Packet Format** parameter controls how decode data is sent to the host. Set this parameter to send the data in a DECODE_DATA packet. Clear this parameter to transmit the data as raw ASCII data.

**Note:** When transmitting decode data as raw ASCII data, ACK/NAK handshaking does not apply regardless of the state of the ACK/NAK handshaking parameter.

**ACK/NAK Enabled and Packeted Data**

The scanner sends a DECODE_DATA message after a successful decode. The scanner waits for a programmable timeout for a CMD_ACK response. If it does not receive the response, the scanner tries to send two more times before issuing a host transmission error. If the scanner receives a CMD_NAK from the host, it may attempt a retry depending on the cause field of the CMD_NAK message.

**ACK/NAK Enabled and Unpacketed ASCII Data**

Even if ACK/NAK handshaking is enabled, no handshaking occurs because handshaking applies only to packeted data. In this example the packeted_decode parameter is disabled.
ACK/NAK Disabled and Packeted DECODE_DATA

In this example ACK/NAK does not occur even though packeted_decode is enabled because the ACK/NAK handshaking parameter is disabled.

ACK/NAK Disabled and Unpacketed ASCII Data

The decoder sends captured data to the host.

Communication Summary

RTS/CTS Lines

All communication must use RTS/CTS handshaking as described in the Simple Serial Interface Programmer’s Guide, p/n 72E-40451-xx. If bypassing hardware handshaking, the host must send the WAKEUP command before all other communication or the first byte of a message can be lost during the scanner wakeup sequence. Zebra recommends not bypassing RTS/CTS hardware handshaking.

ACK/NAK Option

ACK/NAK handshaking is enabled by default and Zebra recommends leaving it enabled. Disabling this can cause communication problems, as handshaking is the only acknowledgment that a message was received correctly. ACK/NAK is not used with unpacketed decode data regardless of whether it is enabled.

Number of Data Bits

All communication with the scanner must use 8-bit data.
Serial Response Timeout

The Host Serial Response Timeout parameter determines how long to wait for a handshaking response before trying again or aborting further attempts. Set the same value for both the host and scanner.

**NOTE:** You can temporarily change the Host Serial Response Timeout when the host takes longer to process an ACK or longer data string. Zebra does not recommend frequent permanent changes due to limited write cycles of non-volatile memory.

Retries

The host resends data twice after the initial send if the scanner does not respond with an ACK or NAK (if ACK/NAK handshaking is enabled), or response data (e.g., PARAM_SEND, REPLY_REVISION). If the scanner replies with a NAK RESEND, the host resends the data. All resent messages must have the resend bit set in the Status byte.

The scanner resends data two times after the initial send if the host fails to reply with an ACK or NAK (if ACK/NAK handshaking is enabled).

Baud Rate, Stop Bits, Parity, Response Timeout, ACK/NAK Handshaking

If you use PARAM_SEND to change these serial parameters, the ACK response to the PARAM_SEND uses the previous values for these parameters. The new values then take effect for the next transaction.

Errors

The scanner issues a communication error when:

- The CTS line is asserted when the scanner tries to transmit, and is still asserted on each of two successive retries
- The scanner does not receive an ACK or NAK after initial transmit and two resends.

SSI Communication Notes

- When not using hardware handshaking, space messages sufficiently apart. The host must not communicate with the scanner if the scanner is transmitting.
- When using hardware handshaking, frame each message properly with handshaking signals. Do not try to send two commands within the same handshaking frame.
- There is a permanent/temporary bit in the PARAM_SEND message. Removing power from the scanner discards temporary changes. Permanent changes are written to non-volatile memory. Frequent changes shorten the life of the non-volatile memory.
Using Time Delay to Low Power Mode with SSI

Time Delay to Low Power Mode on page 71 provides options to select a general time delay. To program a more specific delay value, use an SSI command according to Table 19.

Table 19  Values for Selecting Time Delay to Low Power

<table>
<thead>
<tr>
<th>Value</th>
<th>Timeout</th>
<th>Value</th>
<th>Timeout</th>
<th>Value</th>
<th>Timeout</th>
<th>Value</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>15 Min</td>
<td>0x10</td>
<td>1 Sec</td>
<td>0x20</td>
<td>1 Min</td>
<td>0x30</td>
<td>1 Hour</td>
</tr>
<tr>
<td>0x01</td>
<td>30 Min</td>
<td>0x11</td>
<td>1 Sec</td>
<td>0x21</td>
<td>1 Min</td>
<td>0x31</td>
<td>1 Hour</td>
</tr>
<tr>
<td>0x02</td>
<td>60 Min</td>
<td>0x12</td>
<td>2 Sec</td>
<td>0x22</td>
<td>2 Min</td>
<td>0x32</td>
<td>2 Hours</td>
</tr>
<tr>
<td>0x03</td>
<td>90 Min</td>
<td>0x13</td>
<td>3 Sec</td>
<td>0x23</td>
<td>3 Min</td>
<td>0x33</td>
<td>3 Hours</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>0x14</td>
<td>4 Sec</td>
<td>0x24</td>
<td>4 Min</td>
<td>0x34</td>
<td>4 Hours</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>0x15</td>
<td>5 Sec</td>
<td>0x25</td>
<td>5 Min</td>
<td>0x35</td>
<td>5 Hours</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>0x16</td>
<td>6 Sec</td>
<td>0x26</td>
<td>6 Min</td>
<td>0x36</td>
<td>6 Hours</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>0x17</td>
<td>7 Sec</td>
<td>0x27</td>
<td>7 Min</td>
<td>0x37</td>
<td>7 Hours</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>0x18</td>
<td>8 Sec</td>
<td>0x28</td>
<td>8 Min</td>
<td>0x38</td>
<td>8 Hours</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>0x19</td>
<td>9 Sec</td>
<td>0x29</td>
<td>9 Min</td>
<td>0x39</td>
<td>9 Hours</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>0x1A</td>
<td>10 Sec</td>
<td>0x2A</td>
<td>10 Min</td>
<td>0x3A</td>
<td>10 Hours</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>0x1B</td>
<td>15 Sec</td>
<td>0x2B</td>
<td>15 Min</td>
<td>0x3B</td>
<td>15 Hours</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>0x1C</td>
<td>20 Sec</td>
<td>0x2C</td>
<td>20 Min</td>
<td>0x3C</td>
<td>20 Hours</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>0x1D</td>
<td>30 Sec</td>
<td>0x2D</td>
<td>30 Min</td>
<td>0x3D</td>
<td>30 Hours</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>0x1E</td>
<td>45 Sec</td>
<td>0x2E</td>
<td>45 Min</td>
<td>0x3E</td>
<td>45 Hours</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>0x1F</td>
<td>60 Sec</td>
<td>0x2F</td>
<td>60 Min</td>
<td>0x3F</td>
<td>60 Hours</td>
</tr>
</tbody>
</table>

**CAUTION:** With hardware handshaking disabled, the scanner wakes from low power mode upon receiving a character. However, the scanner does not process this character or any others it receives during the 10 ms period following wakeup. Wait at least 10 ms after wakeup to send valid characters.
Encapsulation of RSM Commands/Responses over SSI

The SSI protocol allows the host to send a command that is variable in length up to 255 bytes. Although there is a provision in the protocol to multi-packet commands from the host, the scanner does not support this. The host must fragment packets using the provisions in the RSM protocol.

Command Structure

<table>
<thead>
<tr>
<th>Byte</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Length (not including the checksum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SSI_MGMT_COMMAND (0x80)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Message Source (4 - Host)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Reserved (0)</td>
<td>Reserved (0)</td>
<td>Reserved (0)</td>
<td>Cont'd packet</td>
<td>Retransmit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Payload data (see the following example)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length -1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>2's complement checksum (MSB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length +1</td>
<td>2's complement checksum (LSB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The expected positive response is SSI_MGMT_COMMAND which can be a multi-packet response. Devices that do not support this command respond with the standard SSI_NAK.

Response Structure

<table>
<thead>
<tr>
<th>Byte</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Length (not including the checksum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SSI_MGMT_COMMAND (0x80)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Message Source (0 - Decoder)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Reserved (0)</td>
<td>Reserved (0)</td>
<td>Reserved (0)</td>
<td>Cont'd packet</td>
<td>Retransmit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Payload data (see the following example)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length -1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>2's complement checksum (MSB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length +1</td>
<td>2's complement checksum (LSB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example Transaction

The following example illustrates how to retrieve diagnostic information (Diagnostic Testing and Reporting (Attribute #10061) decimal) from the scanner using encapsulation of RSM commands over SSI. Before sending an RSM command, the host must send the RSM Get Packet Size command to query the packet size supported by the device.

Command from Host to Query Packet Size Supported by Device

0A 80 04 00 00 06 20 00 FF FF FD 4E

Where:

- 0A 80 04 00 is encapsulation of RSM commands over SSI command header
- 00 06 20 00 FF FF is RSM Get Packet Size command
- FD 4E is SSI command checksum

Response from Device with Packet Size Information

0C 80 00 00 00 08 20 00 00 F0 00 F0 FD 6C

Where:

- 0C 80 00 00 is encapsulation of RSM command over SSI command header
- 00 08 20 00 00 F0 00 F0 is RSM Get Packet Size response
- FD 6C is SSI response checksum

Command from Host to Retrieve Diagnostic Information

0C 80 04 00 00 08 02 00 27 4D 42 00 FE B0

Where:

- 0C 80 04 00 is encapsulation of RSM commands over SSI command header
- 00 08 02 00 27 4D 42 00 is attribute Get command requesting attribute 10061 decimal
- FE B0 is SSI command checksum

Response from Device with Diagnostic Information

21 80 00 00 00 1D 02 00 27 4D 41 01 42 00 0E 00 00 00 00 01 03 02 03 03 03 04 03 05 03 06 03 FF FF FC 15

Where:

- 21 80 00 00 00 1D 02 00 27 4D 41 01 42 00 0E 00 00 is encapsulation of RSM responses over SSI command header
- 00 01 03 02 03 03 04 03 05 03 06 03 is attribute Get response which includes diagnostic report value
- FF FF is attribute Get response, packet termination
- FC 15 is SSI response checksum
Setting Parameters

This section describes how to set up the scanner with an SSI host. When using SSI, program the scanner via barcode menu or SSI hosts commands.

The scanner ships with the settings shown in Table 20 on page 264 (also see Parameter Defaults for all defaults). If the default values suit requirements, programming is not necessary.

To set feature values, scan a single barcode or a short barcode sequence. The settings are stored in non-volatile memory and are preserved even when the scanner powers down.

NOTE: Most computer monitors allow scanning barcodes directly on the screen. When scanning from the screen, be sure to set the document magnification to a level where you can see the barcode clearly, and bars and/or spaces do not merge.

To return all features to default values, scan Set Factory Defaults on page 62. Throughout the programming barcode menus, asterisks (*) indicate default values.

Scanning Sequence Examples

In most cases scanning one barcode sets the parameter value. For example, to set the baud rate to 19,200, scan the Baud Rate 19,200 barcode under Baud Rate on page 265. The scanner issues a fast warble beep and the LED turns green, signifying a successful parameter entry.

Other parameters require scanning several barcodes. See the parameter descriptions for this procedure.

Errors While Scanning

Unless otherwise specified, to correct an error during a scanning sequence, just re-scan the correct parameter.
Simple Serial Interface Parameter Defaults

Table 18 lists defaults for SSI host parameters. Change these values in one of two ways:

- Scan the appropriate barcodes in this chapter. The new value replaces the standard default value in memory. To recall default parameter values, see Default Parameters on page 62.
- Download data through the device’s serial port using SSI. Hexadecimal parameter numbers appear in this chapter below the parameter title, and option values appear in parenthesis beneath the accompanying barcodes. Refer to the Simple Serial Interface (SSI) Programmer’s Guide for detailed instructions for changing parameters using this method.

**NOTE:** SSI interprets Prefix, Suffix1, and Suffix2 values listed in ASCII Character Set on page 450 differently than other interfaces. SSI does not recognize key categories, only the 3-digit decimal value. The default value of 7013 is interpreted as CR only.

**NOTE:** See Parameter Defaults for all user preference, host, symbology, and miscellaneous default parameters.

Table 20  SSI Interface Default Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number</th>
<th>SSI Number</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SSI Host Parameters</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select SSI Host</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>265</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>156</td>
<td>9Ch</td>
<td>9600</td>
<td>265</td>
</tr>
<tr>
<td>Parity</td>
<td>158</td>
<td>9Eh</td>
<td>None</td>
<td>267</td>
</tr>
<tr>
<td>Check Parity</td>
<td>151</td>
<td>97h</td>
<td>Disable</td>
<td>268</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>157</td>
<td>9Dh</td>
<td>1</td>
<td>268</td>
</tr>
<tr>
<td>Software Handshaking</td>
<td>159</td>
<td>9Fh</td>
<td>ACK/NAK</td>
<td>269</td>
</tr>
<tr>
<td>Host RTS Line State</td>
<td>154</td>
<td>9Ah</td>
<td>Low</td>
<td>270</td>
</tr>
<tr>
<td>Decode Data Packet Format</td>
<td>238</td>
<td>EEh</td>
<td>Send Raw Decode Data</td>
<td>271</td>
</tr>
<tr>
<td>Host Serial Response Timeout</td>
<td>155</td>
<td>9Bh</td>
<td>Low - 2 Seconds</td>
<td>272</td>
</tr>
<tr>
<td>Host Character Timeout</td>
<td>239</td>
<td>EFh</td>
<td>Low - 200 msec</td>
<td>273</td>
</tr>
<tr>
<td>Multipacket Option</td>
<td>334</td>
<td>F0h 4Eh</td>
<td>Multipacket Option 1</td>
<td>274</td>
</tr>
<tr>
<td>Interpacket Delay</td>
<td>335</td>
<td>F0h 4Fh</td>
<td>Minimum - 0 msec</td>
<td>275</td>
</tr>
<tr>
<td><strong>Event Reporting</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decode Event</td>
<td>256</td>
<td>F0h 00h</td>
<td>Disable</td>
<td>276</td>
</tr>
<tr>
<td>Boot Up Event</td>
<td>258</td>
<td>F0h 02h</td>
<td>Disable</td>
<td>277</td>
</tr>
<tr>
<td>Parameter Event</td>
<td>259</td>
<td>F0h 03h</td>
<td>Disable</td>
<td>278</td>
</tr>
</tbody>
</table>
SSI Host Parameters

Select SSI Host

To select SSI as the host interface, scan the following barcode.

Baud Rate

Parameter # 156

SSI # 9Ch

Baud rate is the number of bits of data transmitted per second. Scan one of the following barcodes to set the scanner's baud rate to match the baud rate setting of the host device. Otherwise, data may not reach the host device or may reach it in distorted form.

* Baud Rate 9600
  (6)

Baud Rate 19,200
  (7)

Baud Rate 38,400
  (8)

Baud Rate 57,600
  (10)
Baud Rate (continued)

Baud Rate 115,200
(11)

Baud Rate 230,400
(13)

Baud Rate 460,800
(14)

Baud Rate 921,600
(15)
Parity
Parameter # 158
SSI # 9Eh

A parity check bit is the most significant bit of each ASCII coded character. Scan one of the following barcodes to select the parity type according to host device requirements:

- **Odd** - This sets the parity bit value to 0 or 1, based on data, to ensure that the coded character contains an odd number of 1 bits.
- **Even** - This sets the parity bit value to 0 or 1, based on data, to ensure that the coded character contains an even number of 1 bits.
- **None** - No parity bit is required.
Check Parity
Parameter # 151
SSI # 97h
Scan one of the following barcodes to select whether to check the parity of received characters. See Parity to select the type of parity.

* Do Not Check Parity
(0)

Check Parity
(1)

Stop Bits
Parameter # 157
SSI # 9Dh
The stop bit(s) at the end of each transmitted character marks the end of transmission of one character and prepares the receiving device for the next character in the serial data stream. Scan one of the following barcodes to set the number of stop bits (one or two) based on the number the receiving host can accommodate.

* 1 Stop Bit
(1)

2 Stop Bits
(2)
Software Handshaking
Parameter # 159
SSI # 9Fh

This parameter offers control of data transmission in addition to the control hardware handshaking offers. Hardware handshaking is always enabled; you cannot disable it.

Options:

- **Disable ACK/NAK Handshaking** - The scanner neither generates nor expects ACK/NAK handshaking packets.

- **Enable ACK/NAK Handshaking** - After transmitting data, the scanner expects either an ACK or NAK response from the host. The scanner also ACKs or NAKs messages from the host.

The scanner waits up to the programmable Host Serial Response Timeout to receive an ACK or NAK. If the scanner does not get a response in this time, it resends its data up to two times before discarding the data and declaring a transmission error.
Host RTS Line State
Parameter # 154
SSI # 9Ah

Scan one of the following barcodes to set the expected idle state of the Serial Host RTS line.

The SSI interface is used with host applications which also implement the SSI protocol. However, you can use the scanner in a "scan-and-transmit" mode to communicate with any standard serial communication software on a host PC (see Decode Data Packet Format on page 271). If transmission errors occur in this mode, the host PC may be asserting hardware handshaking lines which interfere with the SSI protocol. Scan the High barcode to address this problem.

* Low (0)

High (1)
Decode Data Packet Format

Parameter # 238

SSI # EEh

Scan one of the following barcodes to select whether to transmit decoded data in raw format (unpacketted), or with the packet format defined by the serial protocol.

Selecting the raw format disables ACK/NAK handshaking for decode data.

* Send Raw Decode Data
  (0)

Send Packeted Decode Data
  (1)
Host Serial Response Timeout
Parameter # 155
SSI # 9Bh

Scan one of the following barcodes to specify how long the scanner waits for an ACK or NAK before resending. Also, if the scanner wants to send, and the host has already been granted permission to send, the scanner waits for the designated timeout before declaring an error.

NOTE: Other values are available via SSI commands.

* Low - 2 Seconds
  (20)

Medium - 5 Seconds
  (50)

High - 7.5 Seconds
  (75)

Maximum - 9.9 Seconds
  (99)
Host Character Timeout
Parameter # 239
SSI # EFh

Scan one of the following barcodes to specify the maximum time the scanner waits between characters transmitted by the host before discarding the received data and declaring an error.

* Low - 200 msec
  (20)

Medium - 500 msec
  (50)

High - 750 msec
  (75)

Maximum - 990 msec
  (99)

NOTE: Other values are available via SSI commands.
Multipacket Option
Parameter # 334
SSI # F0h 4Eh

Scan one of the following barcodes to control ACK/NAK handshaking for multi-packet transmissions:

- **Multi-Packet Option 1** - The host sends an ACK/NAK for each data packet during a multi-packet transmission.
- **Multi-Packet Option 2** - The scanner sends data packets continuously, with no ACK/NAK handshaking to pace the transmission. The host, if overrun, can use hardware handshaking to temporarily delay scanner transmissions. At the end of transmission, the scanner waits for a CMD_ACK or CMD_NAK.
- **Multi-Packet Option 3** - This is the same as option 2 with the addition of a programmable interpacket delay. See Interpacket Delay on page 275 to set this delay.
Interpacket Delay
Parameter # 335
SSI # F0h 4Fh

Scan one of the following barcodes to specify the interpacket delay if you selected Multipacket Option 3.

**NOTE:** Other values are available via SSI commands.

- *Minimum - 0 msec (0)*
- Low - 25 msec (25)
- Medium - 50 msec (50)
- High - 75 msec (75)
- Maximum - 99 msec (99)
**Event Reporting**

The host can request the scanner to provide certain information (events) relative to scanner behavior. Scan the following barcodes to enable or disable the events listed in Table 21 and on the following pages.

**Table 21  Event Codes**

<table>
<thead>
<tr>
<th>Event Class</th>
<th>Event</th>
<th>Code Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decode Event</td>
<td>Non-parameter decode</td>
<td>0x01</td>
</tr>
<tr>
<td>Boot Up Event</td>
<td>System power-up</td>
<td>0x03</td>
</tr>
<tr>
<td>Parameter Event</td>
<td>Parameter entry error</td>
<td>0x07</td>
</tr>
<tr>
<td></td>
<td>Parameter stored</td>
<td>0x08</td>
</tr>
<tr>
<td></td>
<td>Defaults set (and parameter event is enabled by default)</td>
<td>0x0A</td>
</tr>
<tr>
<td></td>
<td>Number expected</td>
<td>0x0F</td>
</tr>
</tbody>
</table>

**Decode Event**

**Parameter # 256**

**SSI # F0h 00h**

Scan one of the following barcodes to enable or disable Decode Event.

- **Enable Decode Event** - The scanner generates a message to the host upon a successful barcode decode.
- **Disable Decode Event** - No notification is sent.

---

Enable Decode Event  
(1)

* Disable Decode Event  
(0)
Boot Up Event
Parameter # 258
SSI # F0h 02h

Scan one of the following barcodes to enable or disable Boot Up Event:

- **Enable Boot Up Event** - The scanner generates a message to the host whenever power is applied.
- **Disable Boot Up Event** - No notification is sent.

![Barcode 1](enable_boot_up_event_barcode)

Enable Boot Up Event
(1)

![Barcode 2](disable_boot_up_event_barcode)

* Disable Boot Up Event
(0)
Parameter Event

Parameter # 259

SSI # F0h 03h

Scan one of the following barcodes to enable or disable Parameter Event:

- **Enable Parameter Event** - The scanner generates a message to the host when one of the events specified in Table 21 on page 276 occurs.
- **Disable Parameter Event** - No notification is sent.

Enable Parameter Event

(1)

* Disable Parameter Event

(0)
RS-232 Interface

Introduction

This chapter describes how to set up the scanner with an RS-232 host. The scanner uses the RS-232 interface to connect to point-of-sale devices, host computers, or other devices with an available RS-232 port (e.g., com port).

The scanner ships with the settings shown in Table 22 on page 281 (also see Parameter Defaults for all defaults). If the default values suit requirements, programming is not necessary.

If your host does not appear in Table 23, refer to the documentation for the host device to set communication parameters to match the host.

NOTE: The scanner uses TTL RS-232 signal levels, which interface with most system architectures. For system architectures requiring RS-232C signal levels, Zebra offers different cables providing TTL-to-RS-232C conversion. Contact support for more information.

Setting Parameters

To set feature values, scan a single barcode or a short barcode sequence. The settings are stored in non-volatile memory and are preserved even when the scanner powers down.

NOTE: Most computer monitors allow scanning barcodes directly on the screen. When scanning from the screen, be sure to set the document magnification to a level where you can see the barcode clearly, and bars and/or spaces do not merge.

To return all features to default values, scan Set Factory Defaults on page 62. Throughout the programming barcode menus, asterisks (*) indicate default values.
Scanning Sequence Examples

In most cases scanning one barcode sets the parameter value. For example, to set the baud rate to 19,200, scan the Baud Rate 19,200 barcode under Baud Rate on page 286. The scanner issues a fast warble beep and the LED turns green, signifying a successful parameter entry.

Other parameters require scanning several barcodes. See the parameter descriptions for this procedure.

Errors While Scanning

Unless otherwise specified, to correct an error during a scanning sequence, just re-scan the correct parameter.

Connecting an RS-232 Interface

Connect the scanner directly to the host computer.

Figure 20  RS-232 Connection

1. Attach the modular connector of the RS-232 interface cable to the cable interface port on the scanner. See Inserting the Interface Cable on page 31.

   NOTE: Interface cables vary depending on configuration. The connectors can be different than those illustrated in Figure 1, but the steps to connect the scanner are the same.

2. Connect the other end of the RS-232 interface cable to the serial port on the host.

3. If required, connect the power supply to the serial connector end of the RS-232 interface cable. Plug the power supply into an appropriate outlet.

4. The scanner automatically detects the host interface type and uses the default setting. If the default (*) does not meet your requirements, select another RS-232 host type by scanning the appropriate barcode from RS-232 Host Types on page 284.

5. To modify any other parameter options, scan the appropriate barcodes in this chapter.

If problems occur with the system, see Troubleshooting on page 51.
### RS-232 Parameter Defaults

*Table* 22 lists defaults for RS-232 host parameters. Change these values in one of two ways:

- Scan the appropriate barcodes in this chapter. The new value replaces the standard default value in memory. To recall default parameter values, see Default Parameters on page 62.
- Configure the scanner using the 123Scan configuration program. See 123Scan and Software Tools.

**NOTE:** See Parameter Defaults for all user preference, host, symbology, and miscellaneous default parameters.

#### Table 22  RS-232 Interface Parameter Defaults

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RS-232 Host Parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS-232 Host Types</td>
<td>Standard</td>
<td>284</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>9600</td>
<td>286</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
<td>287</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>1 Stop Bit</td>
<td>287</td>
</tr>
<tr>
<td>Data Bits</td>
<td>8-bit</td>
<td>288</td>
</tr>
<tr>
<td>Check Receive Errors</td>
<td>Enable</td>
<td>288</td>
</tr>
<tr>
<td>Hardware Handshaking</td>
<td>None</td>
<td>289</td>
</tr>
<tr>
<td>Software Handshaking</td>
<td>None</td>
<td>291</td>
</tr>
<tr>
<td>Host Serial Response Timeout</td>
<td>2 Seconds</td>
<td>293</td>
</tr>
<tr>
<td>RTS Line State</td>
<td>Low RTS</td>
<td>294</td>
</tr>
<tr>
<td>Beep on &lt;BEL&gt;</td>
<td>Disable</td>
<td>294</td>
</tr>
<tr>
<td>Intercharacter Delay</td>
<td>0 msec</td>
<td>295</td>
</tr>
<tr>
<td>Nixdorf Beep/LED Options</td>
<td>Normal Operation</td>
<td>296</td>
</tr>
<tr>
<td>Barcodes with Unknown Characters</td>
<td>Send Barcode With Unknown Characters</td>
<td>296</td>
</tr>
</tbody>
</table>
RS-232 Host Parameters


### Table 23  Terminal Specific RS-232

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ICL</th>
<th>Fujitsu</th>
<th>Wincor-Nixdorf Mode A</th>
<th>Wincor-Nixdorf Mode B/OPOS/JPOS</th>
<th>Olivetti</th>
<th>Omron</th>
<th>CUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Code ID</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Data Transmission Format</td>
<td>Data/ Suffix</td>
<td>Data/ Suffix</td>
<td>Data/ Suffix</td>
<td>Data/ Suffix</td>
<td>Prefix/Data/ Suffix</td>
<td>Data/ Suffix</td>
<td>Prefix/Data/ Suffix</td>
</tr>
<tr>
<td>Suffix</td>
<td>CR (1013)</td>
<td>CR (1013)</td>
<td>CR (1013)</td>
<td>CR (1013)</td>
<td>ETX (1002)</td>
<td>CR (1013)</td>
<td>CR (1013) ETX (1003)</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>9600</td>
<td>9600</td>
<td>9600</td>
<td>9600</td>
<td>9600</td>
<td>9600</td>
<td>9600</td>
</tr>
<tr>
<td>Parity</td>
<td>Even</td>
<td>None</td>
<td>Odd</td>
<td>Odd</td>
<td>Even</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Hardware Handshaking</td>
<td>RTS/CTS Option 3</td>
<td>None</td>
<td>RTS/CTS Option 3</td>
<td>RTS/CTS Option 3</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Software Handshaking</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>ACK/NAK</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Serial Response Timeout</td>
<td>9.9 Sec.</td>
<td>2 Sec.</td>
<td>None</td>
<td>None</td>
<td>9.9 Sec.</td>
<td>9.9 Sec.</td>
<td>9.9 Sec.</td>
</tr>
<tr>
<td>Stop Bit Select</td>
<td>One</td>
<td>One</td>
<td>One</td>
<td>One</td>
<td>One</td>
<td>One</td>
<td>One</td>
</tr>
<tr>
<td>ASCII Format</td>
<td>8-Bit</td>
<td>8-Bit</td>
<td>8-Bit</td>
<td>8-Bit</td>
<td>7-Bit</td>
<td>8-Bit</td>
<td>8-Bit</td>
</tr>
<tr>
<td>Beep On &lt;BEL&gt;</td>
<td>Disable</td>
<td>Disable</td>
<td>Disable</td>
<td>Disable</td>
<td>Disable</td>
<td>Disable</td>
<td>Disable</td>
</tr>
</tbody>
</table>

In the Wincor-Nixdorf Mode A/B, if CTS is low, scanning is disabled. When CTS is high, scanning is enabled. If you scan Wincor-Nixdorf RS-232 Mode A/B without connecting the scanner to the proper host, it may appear unable to scan. If this happens, scan a different RS-232 host type within 5 seconds of cycling power to the scanner.

The CUTE host disables all parameter scanning, including Set Defaults. If you inadvertently select CUTE, scan 

Enable Parameter Barcode Scanning (1) on page 63, then change the host selection.
### Table 23  Terminal Specific RS-232 (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ICL</th>
<th>Fujitsu</th>
<th>Wincor-Nixdorf Mode A</th>
<th>Wincor-Nixdorf Mode B/OPOS/JPOS</th>
<th>Olivetti</th>
<th>Omron</th>
<th>CUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTS Line State</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low = No data to send</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Prefix</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>STX (1003)</td>
<td>None</td>
<td>STX (1002)</td>
</tr>
</tbody>
</table>

In the Wincor-Nixdorf Mode A/B, if CTS is low, scanning is disabled. When CTS is high, scanning is enabled. If you scan Wincor-Nixdorf RS-232 Mode A/B without connecting the scanner to the proper host, it may appear unable to scan. If this happens, scan a different RS-232 host type within 5 seconds of cycling power to the scanner.

The CUTE host disables all parameter scanning, including Set Defaults. If you inadvertently select CUTE, scan 

### Table 24  Terminal Specific Code ID Characters

<table>
<thead>
<tr>
<th>Code Type</th>
<th>ICL</th>
<th>Fujitsu</th>
<th>Wincor-Nixdorf Mode A</th>
<th>Wincor-Nixdorf Mode B/OPOS/JPOS</th>
<th>Olivetti</th>
<th>Omron</th>
<th>CUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPC-A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>UPC-E</td>
<td>E</td>
<td>E</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>E</td>
<td>None</td>
</tr>
<tr>
<td>EAN-8/JAN-8</td>
<td>FF</td>
<td>FF</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>FF</td>
<td>None</td>
</tr>
<tr>
<td>EAN-13/JAN-13</td>
<td>F</td>
<td>F</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>Code 39</td>
<td>C &lt;len&gt;</td>
<td>None</td>
<td>M</td>
<td>M</td>
<td>M &lt;len&gt;</td>
<td>C &lt;len&gt;</td>
<td>3</td>
</tr>
<tr>
<td>Code 39 Full ASCII</td>
<td>None</td>
<td>None</td>
<td>M</td>
<td>M</td>
<td>None</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>Codabar</td>
<td>N &lt;len&gt;</td>
<td>None</td>
<td>N</td>
<td>N</td>
<td>N &lt;len&gt;</td>
<td>N &lt;len&gt;</td>
<td>None</td>
</tr>
<tr>
<td>Code 128</td>
<td>L &lt;len&gt;</td>
<td>None</td>
<td>K</td>
<td>K</td>
<td>K &lt;len&gt;</td>
<td>L &lt;len&gt;</td>
<td>5</td>
</tr>
<tr>
<td>I 2 of 5</td>
<td>I &lt;len&gt;</td>
<td>None</td>
<td>I</td>
<td>I</td>
<td>I &lt;len&gt;</td>
<td>I &lt;len&gt;</td>
<td>1</td>
</tr>
<tr>
<td>Code 93</td>
<td>None</td>
<td>None</td>
<td>L</td>
<td>L</td>
<td>L &lt;len&gt;</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>D 2 of 5</td>
<td>H &lt;len&gt;</td>
<td>None</td>
<td>H</td>
<td>H</td>
<td>H &lt;len&gt;</td>
<td>H &lt;len&gt;</td>
<td>2</td>
</tr>
<tr>
<td>GS1-128</td>
<td>L &lt;len&gt;</td>
<td>None</td>
<td>P</td>
<td>P</td>
<td>P &lt;len&gt;</td>
<td>L &lt;len&gt;</td>
<td>5</td>
</tr>
<tr>
<td>MSI</td>
<td>None</td>
<td>None</td>
<td>O</td>
<td>O</td>
<td>O &lt;len&gt;</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bookland EAN</td>
<td>F</td>
<td>F</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>F</td>
<td>None</td>
</tr>
<tr>
<td>Trioptic</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Code 11</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
**Table 24**  Terminal Specific Code ID Characters (Continued)

<table>
<thead>
<tr>
<th>Code Type</th>
<th>ICL</th>
<th>Fujitsu</th>
<th>Wincor-Nixdorf Mode A</th>
<th>Wincor-Nixdorf Mode B/OPOS/JPOS</th>
<th>Olivetti</th>
<th>Omron</th>
<th>CUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IATA</td>
<td>H&lt;\text{len}&gt;</td>
<td>None</td>
<td>H</td>
<td>H</td>
<td>H&lt;\text{len}&gt;</td>
<td>H&lt;\text{len}&gt;</td>
<td>2</td>
</tr>
<tr>
<td>Code 32</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>GS1 DataBar Variants</td>
<td>None</td>
<td>None</td>
<td>E</td>
<td>E</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>PDF417</td>
<td>None</td>
<td>None</td>
<td>Q</td>
<td>Q</td>
<td>None</td>
<td>None</td>
<td>6</td>
</tr>
<tr>
<td>Data Matrix</td>
<td>None</td>
<td>None</td>
<td>R</td>
<td>R</td>
<td>None</td>
<td>None</td>
<td>4</td>
</tr>
<tr>
<td>GS1 Data Matrix</td>
<td>None</td>
<td>None</td>
<td>W</td>
<td>W</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>QR Codes</td>
<td>None</td>
<td>None</td>
<td>U</td>
<td>U</td>
<td>None</td>
<td>None</td>
<td>7</td>
</tr>
<tr>
<td>GS1 QR</td>
<td>None</td>
<td>None</td>
<td>X</td>
<td>X</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Aztec/Aztec Rune</td>
<td>None</td>
<td>None</td>
<td>V</td>
<td>V</td>
<td>None</td>
<td>None</td>
<td>8</td>
</tr>
<tr>
<td>Maxicode</td>
<td>None</td>
<td>None</td>
<td>T</td>
<td>T</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MicroPDF</td>
<td>None</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>None</td>
<td>None</td>
<td>6</td>
</tr>
</tbody>
</table>

**RS-232 Host Types**

To select an RS-232 host interface, scan one of the following barcodes.

*NOTE:* For a list of supported scanner functionality by communication protocol, see Communication Protocol Functionality.

---

* Standard RS-232

**ICL RS-232**

**Wincor-Nixdorf RS-232 Mode A**
RS-232 Host Types (continued)

1Scanning Standard RS-232 activates the RS-232 driver, but does not change port settings (e.g., parity, data bits, handshaking). Selecting another RS-232 host type barcode changes these settings.

2The CUTE host disables all parameter scanning, including Set Defaults. If you inadvertently select CUTE, scan *Enable Parameter Barcode Scanning (1) on page 63, and then change the host selection.
Baud Rate

Baud rate is the number of bits of data transmitted per second. Scan one of the following barcodes to set the scanner's baud rate to match the baud rate setting of the host device. Otherwise, data may not reach the host device or may reach it in distorted form.

Baud Rate 4800

Baud Rate 19,200

Baud Rate 38,400

Baud Rate 57,600

Baud Rate 115,200

*Baud Rate 9600
Parity

A parity check bit is the most significant bit of each ASCII coded character. Scan one of the following barcodes to select the parity type according to host device requirements:

- **Odd** - This sets the parity bit value to 0 or 1, based on data, to ensure that the coded character contains an odd number of 1 bits.
- **Even** - This sets the parity bit value to 0 or 1, based on data, to ensure that the coded character contains an even number of 1 bits.
- **None** - No parity bit is required.

Stop Bits

The stop bit(s) at the end of each transmitted character marks the end of transmission of one character and prepares the receiving device for the next character in the serial data stream. Scan one of the following barcodes to set the number of stop bits (one or two) based on the number the receiving host can accommodate.

- *** 1 Stop Bit**
- **2 Stop Bits**
Data Bits

This parameter allows the scanner to interface with devices requiring a 7-bit or 8-bit ASCII protocol.

- 7-bit
- * 8-bit

Check Receive Errors

Scan one of the following barcodes to set whether to check the parity, framing, and overrun of received characters. The parity value of received characters is verified against the value set for Parity on page 287.

- * Check For Received Errors
- Do Not Check For Received Errors
Hardware Handshaking

The data interface consists of an RS-232 port designed to operate either with or without the hardware handshaking lines Request to Send (RTS) and Clear to Send (CTS).

If hardware handshaking and software handshaking are both enabled, hardware handshaking takes precedence.

NOTE: The DTR signal is jumpered to the active state.

Options:

- **None** - This disables hardware handshaking and transmits scan data as it becomes available.
- **Standard RTS/CTS** - This sets standard RTS/CTS hardware handshaking and transmits scanned data according to the following sequence:
  a. The scanner reads the CTS line for activity:
     - If the CTS line is de-asserted, the scanner asserts the RTS line and waits up to Host Serial Response Timeout on page 293 for the host to assert CTS, and then transmits data when asserted. If, after the timeout, the CTS line is not asserted, the scanner sounds a transmit error and discards the data.
     - If CTS is asserted, the scanner waits up to Host Serial Response Timeout for the host to de-assert CTS. If after this timeout the CTS line is still asserted, the scanner sounds a transmit error and discards the scanned data.
  b. The scanner de-asserts RTS after sending the last character of data.
  c. The host negates CTS. The scanner checks for a de-asserted CTS upon the next data transmission.

During data transmission, if CTS is deasserted for more than 50 ms between characters, the scanner sounds a transmit error and discards the data. The data must be re-scanned.

- **RTS/CTS Option 1** - The scanner asserts RTS before transmitting and ignores the state of CTS. The scanner de-asserts RTS when transmission completes.
- **RTS/CTS Option 2** - RTS is always high or low (user-programmed logic level). However, the scanner waits for the host to assert CTS before transmitting data. If CTS is not asserted within the Host Serial Response Timeout, the scanner sounds a transmit error and discards the data. During data transmission, if CTS is deasserted for more than 50 ms between characters, the scanner sounds a transmit error and discards the data.
- **RTS/CTS Option 3** - This transmits scanned data according to the following sequence:
  d. The scanner asserts RTS before data transmission, regardless of the state of CTS.
  e. The scanner waits up to the Host Serial Response Timeout for the host to assert CTS, and then transmits data when asserted. If, after the timeout, the CTS line is not asserted, the scanner sounds a transmit error and discards the data.
  f. The scanner de-asserts RTS after sending the last character of data.
  g. The host negates CTS. The scanner checks for a de-asserted CTS upon the next data transmission.

During data transmission, if CTS is deasserted for more than 50 ms between characters, the scanner sounds a transmit error and discards the data. The data must be re-scanned.
Hardware Handshaking (continued)

* None

Standard RTS/CTS

RTS/CTS Option 1

RTS/CTS Option 2

RTS/CTS Option 3
Software Handshaking

This parameter offers control of data transmission in addition to, or instead of, that offered by hardware handshaking. If software handshaking and hardware handshaking are both enabled, hardware handshaking takes precedence.

Options:

- **None** - This transmits data immediately. The scanner expects no response from the host.
- **ACK/NAK** - After transmitting data, the scanner waits for an ACK or NAK response from the host. If it receives a NAK, the scanner transmits the data again and waits for an ACK or NAK. After three unsuccessful attempts to send data after receiving NAKs, the scanner sounds a transmit error and discards the data.

  The scanner waits up to the programmable **Host Serial Response Timeout** to receive an ACK or NAK. If the scanner does not get a response in this time, it sounds a transmit error and discards the data. There are no reattempts.

- **ENQ** - The scanner waits for an ENQ character from the host before transmitting data. If it does not receive an ENQ within the **Host Serial Response Timeout**, the scanner sounds a transmit error and discards the data. The host must transmit an ENQ character at least every **Host Serial Response Timeout** to prevent transmission errors.

- **ACK/NAK with ENQ** - This combines the two previous options. An additional ENQ is not required to re-transmit data due to a NAK from the host.

- **XON/XOFF** - An XOFF character stops data transmission until the scanner receives an XON character. There are two situations for XON/XOFF:

  - The scanner receives an XOFF before it has data to send. When the scanner has data, it waits up to the **Host Serial Response Timeout** for an XON character before transmitting. If it does not receive the XON within this time, the scanner sounds a transmit error and discards the data.

  - The scanner receives an XOFF during data transmission and stops transmission after sending the current byte. When the scanner receives an XON character, it sends the rest of the data. The scanner waits indefinitely for the XON.
Software Handshaking (continued)

* None

ACK/NAK

ENQ

ACK/NAK with ENQ

XON/XOFF
Host Serial Response Timeout

Scan one of the following barcodes to specify how long the scanner waits for an ACK, NAK, or CTS before determining that a transmission error occurred. This only applies when in one of the ACK/NAK software handshaking modes, or RTS/CTS hardware handshaking mode.

- * Minimum: 2 Seconds
- Low: 2.5 Seconds
- Medium: 5 Seconds
- High: 7.5 Seconds
- Maximum: 9.9 Seconds
RTS Line State

Scan one of the following barcodes to set the idle state of the serial host RTS line to Low RTS or High RTS.

* Host: Low RTS

Host: High RTS

Beep on <BEL>

Scan one of the following barcodes to set whether the scanner issues a beep when it detects a <BEL> character on the RS-232 serial line. <BEL> indicates an illegal entry or other important event.

Beep On <BEL> Character
(Enable)

* Do Not Beep On <BEL> Character
(Disable)
Intercharacter Delay

Scan one of the following barcodes to specify the intercharacter delay inserted between character transmissions.

* Minimum: 0 msec

Low: 25 msec

Medium: 50 msec

High: 75 msec

Maximum: 99 msec
Nixdorf Beep/LED Options

If you selected Nixdorf Mode B, scan one of the following barcodes to indicate when the scanner beeps and turns on its LED after a decode.

* Normal Operation
  (Beep/LED Immediately After Decode)

Beep/LED After Transmission

Beep/LED After CTS Pulse

Barcodes with Unknown Characters

Unknown characters are characters the host does not recognize. Scan Send Barcodes With Unknown Characters to send all barcode data except for unknown characters. The scanner issues no error beeps.

Scan Do Not Send Barcodes With Unknown Characters to send barcode data up to the first unknown character. The scanner issues an error beep.

* Send Barcodes With Unknown Characters

Do Not Send Barcodes With Unknown Characters
ASCII Character Sets

See ASCII Character Set, Table 33 on page 450, for prefix/suffix values
Introduction

This chapter describes how to set up the scanner with an IBM 468X/469X host.

The scanner ships with the settings shown in Table 25 on page 300 (also see Parameter Defaults for all defaults). If the default values suit requirements, programming is not necessary.

Setting Parameters

To set feature values, scan a single barcode or a short barcode sequence. The settings are stored in non-volatile memory and are preserved even when the scanner powers down.

**NOTE:** Most computer monitors allow scanning barcodes directly on the screen. When scanning from the screen, be sure to set the document magnification to a level where you can see the barcode clearly, and bars and/or spaces do not merge.

To return all features to default values, scan Set Factory Defaults on page 62. Throughout the programming barcode menus, asterisks (*) indicate default values.

---

Scanning Sequence Examples

In most cases scanning one barcode sets the parameter value. For example, to select the Port 9B address, scan the Hand-held Scanner Emulation (Port 9B) barcode under Port Address on page 301. The scanner issues a fast warble beep and the LED turns green, signifying a successful parameter entry.

Other parameters require scanning several barcodes. See the parameter descriptions for this procedure.

Errors While Scanning

Unless otherwise specified, to correct an error during a scanning sequence, just re-scan the correct parameter.
Connecting an IBM 468X/469X Host

Connect the scanner directly to the host computer.

**Figure 21** IBM Connection

1. Attach the modular connector of the IBM 46XX interface cable to the cable interface port on the scanner. See [Inserting the Interface Cable on page 31](#).

   **NOTE:** Interface cables vary depending on configuration. The connectors can be different than those illustrated in Figure 21, but the steps to connect the scanner are the same.

2. Connect the other end of the IBM 46XX interface cable to the appropriate port on the host (ly Port 9).

3. The scanner automatically detects the host interface type, but there is no default setting. Scan the appropriate barcode from [Port Address on page 301](#) to select the port address.

4. To modify any other parameter options, scan the appropriate barcodes in this chapter.

   **NOTE:** The only required configuration is the port address. The IBM system ly controls other scanner parameters.

If problems occur with the system, see [Troubleshooting on page 51](#).
IBM Parameter Defaults

Table 25 lists defaults for IBM host parameters. Change these values in one of two ways:

- Scan the appropriate barcodes in this chapter. The new value replaces the standard default value in memory. To recall default parameter values, see Default Parameters on page 62.
- Configure the scanner using the 123Scan configuration program. See 123Scan and Software Tools.

NOTE: See Parameter Defaults for all user preference, host, symbology, and miscellaneous default parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>IBM 468X/469X Host Parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Address</td>
<td>None</td>
<td>301</td>
</tr>
<tr>
<td>Convert Unknown to Code 39</td>
<td>Disable</td>
<td>302</td>
</tr>
<tr>
<td>RS-485 Beep Directive</td>
<td>Ignore</td>
<td>302</td>
</tr>
<tr>
<td>RS-485 Barcode Configuration Directive</td>
<td>Ignore</td>
<td>303</td>
</tr>
<tr>
<td>IBM-485 Specification Version</td>
<td>Original Specification</td>
<td>303</td>
</tr>
</tbody>
</table>
IBM Host Parameters

Port Address

Scan one of the following barcodes to select the IBM 468X/469X port.

- **None**
- Hand-held Scanner Emulation (Port 9B)
- Non-IBM Scanner Emulation (Port 5B)
- Table-top Scanner Emulation (Port 17)

**NOTE:** Scanning a Port Address barcode enables the RS-485 interface on the scanner.

**NOTE:** For a list of supported scanner functionality by communication protocol, see Communication Protocol Functionality.
**Convert Unknown to Code 39**

Scan one of the following barcodes to enable or disable converting unknown barcode type data to Code 39.

Enable Convert Unknown to Code 39

* Disable Convert Unknown to Code 39

**RS-485 Beep Directive**

The IBM RS-485 host can send a beep configuration request to the scanner. Scan **Ignore Beep Directive** to prevent the scanner from processing the host request. All directives are still acknowledged to the host as if they were processed.

Honor Beep Directive

* Ignore Beep Directive
RS-485 Barcode Configuration Directive

The IBM RS-485 host can enable and disable code types. Scan Ignore Barcode Configuration Directive to prevent the scanner from processing the host request. All directives are still acknowledged to the IBM RS-485 host as if they were processed.

* Honor Barcode Configuration Directive

IBM-485 Specification Version
Parameter # 1729 (SSI # F8h 06h C1h)

The IBM interface specification version selected defines how code types are reported over the IBM interface.

When you scan Original Specification, only Symbologies that were historically supported on each individual port are reported as known. When you scan Version 2.0, all Symbologies covered in the newer IBM specification are reported as known with their respective code types.

* Original Specification

Version 2.0
Keyboard Wedge Interface

Introduction

This chapter describes how to set up a keyboard wedge interface with the scanner. The scanner connects between the keyboard and host computer and translates barcode data into keystrokes, which the host accepts as if they originated from the keyboard. This mode adds barcode reading functionality to a system designed for manual keyboard input. Keyboard keystrokes are simply passed through.

The scanner ships with the settings shown in Table 26 on page 306 (also see Parameter Defaults for all defaults). If the default values suit requirements, programming is not necessary.

Setting Parameters

To set feature values, scan a single barcode or a short barcode sequence. The settings are stored in non-volatile memory and are preserved even when the scanner powers down.

NOTE: Most computer monitors allow scanning barcodes directly on the screen. When scanning from the screen, be sure to set the document magnification to a level where you can see the barcode clearly, and bars and/or spaces do not merge.

To return all features to default values, scan a barcode in Default Parameters on page 62. Throughout the programming barcode menus, asterisks (*) indicate default values.

Scanning Sequence Examples

In most cases, scanning one barcode sets the parameter value. For example, to select a medium keystroke delay, scan the Medium Delay (20 msec) barcode under Keystroke Delay on page 308. The scanner issues a fast warble beep and the LED turns green, signifying a successful parameter entry.

Other parameters require scanning several barcodes. See the parameter descriptions for this procedure.

Errors While Scanning

Unless otherwise specified, to correct an error during a scanning sequence, just re-scan the correct parameter.
Connecting a Keyboard Wedge Interface

1. Turn off the host and unplug the keyboard connector.
2. Attach the modular connector of the Y-cable to the cable interface port on the scanner. See Inserting the Interface Cable on page 31.
3. Connect the round male DIN host connector of the Y-cable to the keyboard port on the host device.
4. Connect the round female DIN keyboard connector of the Y-cable to the keyboard connector.
5. If required, attach the optional power supply to the connector in the middle of the Y-cable.
6. Ensure that all connections are secure.
7. Turn on the host system.
8. The scanner automatically detects the host interface type and uses the default setting. If the default (*) does not meet your requirements, scan IBM PC/AT & IBM PC Compatibles on page 307.
9. To modify other parameter options, scan the appropriate barcodes in this guide.

If problems occur with the system, see Troubleshooting on page 51.
Keyboard Wedge Parameter Defaults

Table 26 lists defaults for keyboard wedge host parameters. Change these values in one of two ways:

- Scan the appropriate barcodes in this chapter. The new value replaces the standard default value in memory. To recall default parameter values, see Default Parameters on page 62.
- Configure the scanner using the 123Scan configuration program. See 123Scan and Software Tools.

NOTE: See Parameter Defaults for all user preference, host, symbology, and miscellaneous default parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Keyboard Wedge Host Parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keyboard Wedge Host Type</td>
<td>IBM AT Notebook</td>
<td>307</td>
</tr>
<tr>
<td>Barcodes with Unknown Characters</td>
<td>Send Barcodes with Unknown Characters</td>
<td>307</td>
</tr>
<tr>
<td>Keystroke Delay</td>
<td>No Delay</td>
<td>308</td>
</tr>
<tr>
<td>Intra-keystroke Delay</td>
<td>Disable</td>
<td>308</td>
</tr>
<tr>
<td>Alternate Numeric Keypad Emulation</td>
<td>Enable</td>
<td>309</td>
</tr>
<tr>
<td>Quick Keypad Emulation</td>
<td>Enable</td>
<td>309</td>
</tr>
<tr>
<td>Simulated Caps Lock</td>
<td>Disable</td>
<td>310</td>
</tr>
<tr>
<td>Caps Lock Override</td>
<td>Disable</td>
<td>311</td>
</tr>
<tr>
<td>Convert Case</td>
<td>Do Not Convert</td>
<td>311</td>
</tr>
<tr>
<td>Function Key Mapping</td>
<td>Disable</td>
<td>312</td>
</tr>
<tr>
<td>FN1 Substitution</td>
<td>Disable</td>
<td>312</td>
</tr>
<tr>
<td>Send Make and Break</td>
<td>Send Make and Break Scan Codes</td>
<td>313</td>
</tr>
</tbody>
</table>
Keyboard Wedge Interface

Keyboard Wedge Host Parameters

Keyboard Wedge Host Types

Scan one of the following barcodes to select the keyboard wedge host.

NOTE: For a list of supported scanner functionality by communication protocol, see Communication Protocol Functionality.

IBM PC/AT & IBM PC Compatibles

Barcodes with Unknown Characters

Unknown characters are characters the host does not recognize. Scan Send Barcodes With Unknown Characters to send all barcode data except for unknown characters. The scanner issues no error beeps.

Scan Do Not Send Barcodes With Unknown Characters to send barcode data up to the first unknown character. The scanner issues an error beep.

Send Barcodes With Unknown Characters

Do Not Send Barcodes with Unknown Characters
Keystroke Delay

This is the delay in milliseconds between emulated keystrokes. Scan one of the following barcodes to increase the delay when hosts require a slower data transmission.

* No Delay

Medium Delay (20 msec)

Long Delay (40 msec)

Intra-keystroke Delay

Scan Enable Intra-keystroke Delay to insert an additional delay between each emulated key press and release. This also sets Keystroke Delay to a minimum of 5 msec.

Enable Intra-keystroke Delay

* Disable Intra-keystroke Delay
Alternate Numeric Keypad Emulation

This allows emulation of most other country keyboard types not listed in Country Codes in a Microsoft® operating system environment.

**NOTE:** If your keyboard type is not listed in the country code list (see Country Codes), disable Quick Keypad Emulation on page 309 and ensure Alternate Numeric Keypad Emulation on page 309 is enabled.

Quick Keypad Emulation

This enables faster keypad emulation where character value sequences are only sent for characters not found on the keyboard.

**NOTE:** This option applies only when Alternate Numeric Keypad Emulation is enabled.
Simulated Caps Lock

Scan **Enable Caps Lock** to invert upper and lower case characters on the barcode as if the Caps Lock state is enabled on the keyboard. This inversion occurs regardless of the keyboard’s Caps Lock state. Note that this only applies to alpha characters.

**NOTES:**
- Simulated Caps Lock applies to ASCII characters only.
- Do not enable this parameter if either of the following parameters are enabled:
  - Convert to Upper Case on page 311
  - Convert to Lower Case on page 311
## Caps Lock Override

Scan **Enable Caps Lock Override** for AT or AT Notebook hosts to preserve the case of the data regardless of the state of the Caps Lock key. Therefore, an ‘A’ in the barcode transmits as an ‘A’ regardless of the setting of the keyboard’s Caps Lock key.

**NOTE:** If both Simulated Caps Lock and Caps Lock Override are enabled, Caps Lock Override takes precedence.

### Enable Caps Lock Override

* Disable Caps Lock Override

## Convert Case

Scan one of the following barcodes to convert all barcode data to the selected case.

**NOTE:** Convert Case applies to ASCII characters only.

### Convert to Upper Case

### Convert to Lower Case

* Do Not Convert
Function Key Mapping

ASCII values under 32 are normally sent as control key sequences (see Table 33 on page 450). Scan Enable Function Key Mapping to send the keys in bold in place of the standard key mapping. Table entries that do not have a bold entry remain the same whether or not you enable this parameter.

Enable Function Key Mapping

* Disable Function Key Mapping

FN1 Substitution

Scan Enable FN1 Substitution to replace FN1 characters in an EAN128 barcode with a user-selected keystroke (see FN1 Substitution Values on page 92).

Enable FN1 Substitution

* Disable FN1 Substitution
Send Make and Break

Scan **Send Make and Break Scan Codes** to prevent sending the scan codes for releasing a key.

![Barcode](image)

* **Send Make and Break Scan Codes**

---

**Keyboard Map**

The following keyboard map is a reference for prefix/suffix keystroke parameters. To program the prefix/suffix values, see Prefix/Suffix Values on page 89.

**Figure 23** IBM PS2 Type Keyboard

---

313
ASCII Character Sets

See ASCII Character Sets for the following information:

• ASCII Character Set, Table 33 on page 450
• ALT Key Character Set, Table 34 on page 455
• GUI Key Character Set, Table 35 on page 456
• PF Key Character Set, Table 36 on page 457
• F Key Character Set, Table 37 on page 458
• Numeric Key Character Set, Table 38 on page 458
• Extended Key Character Set, Table 39 on page 459
OCR Programming

Introduction

This chapter describes how to set up the scanner for OCR programming. The scanner can read 6 to 60 point OCR typeface. It supports font types OCR-A, OCR-B, MICR E13B, and US Currency Serial Number.

OCR is not as secure as a barcode. To decrease OCR misdecodes and speed OCR reading, set an accurate OCR template and character subset, and use a check digit.

All OCR fonts are disabled by default. Enabling OCR could slow barcode decoding. You can enable OCR-A and OCR-B at the same time, but not other combined font types.

Setting Parameters

To set feature values, scan a single barcode or a short barcode sequence. The settings are stored in non-volatile memory and are preserved even when the imager powers down.

NOTE: Most computer monitors allow scanning barcodes directly on the screen. When scanning from the screen, be sure to set the document magnification to a level where you can see the barcode clearly, and bars and/or spaces do not merge.

To return all features to default values, scan the Set Factory Defaults on page 62. Throughout the programming barcode menus, asterisks (*) indicate default values.
Scanning Sequence Examples

In most cases scanning one barcode sets the parameter value. For example, to enable OCR-B, scan the Enable OCR-B barcode under OCR-B on page 319. The scanner issues a fast warble beep and the LED turns green, signifying a successful parameter entry.

Other parameters require scanning several barcodes. See the parameter descriptions for this procedure.

Errors While Scanning

Unless otherwise specified, to correct an error during a scanning sequence, just re-scan the correct parameter.

OCR Parameter Defaults

Table 27 lists the defaults for OCR parameters. Change these values in one of two ways:

- Scan the appropriate barcodes in this chapter. The new value replaces the standard default value in memory. To recall default parameter values, see Default Parameters on page 62.
- Configure the scanner using the 123Scan configuration program. See 123Scan and Software Tools.

NOTE: See Parameter Defaults for all user preference, host, symbology, and miscellaneous default parameters.

Table 27 OCR Programming Default Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number</th>
<th>SSI Number</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCR Programming Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCR-A</td>
<td>680</td>
<td>F1h A8h</td>
<td>Disable</td>
<td>317</td>
</tr>
<tr>
<td>OCR-A Variant</td>
<td>684</td>
<td>F1h ACh</td>
<td>OCR-A Full ASCII</td>
<td>318</td>
</tr>
<tr>
<td>OCR-B</td>
<td>681</td>
<td>F1h A9h</td>
<td>Disable</td>
<td>319</td>
</tr>
<tr>
<td>OCR-B Variant</td>
<td>685</td>
<td>F1h ADh</td>
<td>OCR-B Full ASCII</td>
<td>320</td>
</tr>
<tr>
<td>MICR E13B</td>
<td>682</td>
<td>F1h AAh</td>
<td>Disable</td>
<td>324</td>
</tr>
<tr>
<td>US Currency Serial Number</td>
<td>683</td>
<td>F1h ABh</td>
<td>Disable</td>
<td>325</td>
</tr>
<tr>
<td>OCR Orientation</td>
<td>687</td>
<td>F1h AFh</td>
<td>0°</td>
<td>325</td>
</tr>
<tr>
<td>OCR Lines</td>
<td>691</td>
<td>F1h B3h</td>
<td>1</td>
<td>327</td>
</tr>
<tr>
<td>OCR Minimum Characters</td>
<td>689</td>
<td>F1h B1h</td>
<td>3</td>
<td>327</td>
</tr>
<tr>
<td>OCR Maximum Characters</td>
<td>690</td>
<td>F1h B2h</td>
<td>100</td>
<td>328</td>
</tr>
<tr>
<td>OCR Subset</td>
<td>686</td>
<td>F1h AEh</td>
<td>Selected font variant</td>
<td>328</td>
</tr>
<tr>
<td>OCR Quiet Zone</td>
<td>695</td>
<td>F1h B7h</td>
<td>50</td>
<td>329</td>
</tr>
</tbody>
</table>
OCR Programming Parameters

OCR-A

Parameter # 680

SSI # F1h A8h

NOTE: OCR is not as secure as a barcode. To decrease OCR misdecodes and speed OCR reading, set an accurate OCR template and character subset, and use a check digit. See OCR Subset on page 328 and OCR Template on page 329.

Scan one of the following barcodes to enable or disable OCR-A.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number</th>
<th>SSI Number</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCR Template</td>
<td>547</td>
<td>F1h 23h</td>
<td>999999999</td>
<td>329</td>
</tr>
<tr>
<td>OCR Check Digit Modulus</td>
<td>688</td>
<td>F1h B0h</td>
<td>1</td>
<td>339</td>
</tr>
<tr>
<td>OCR Check Digit Multiplier</td>
<td>700</td>
<td>F1h BCh</td>
<td>121212121212</td>
<td>339</td>
</tr>
<tr>
<td>OCR Check Digit Validation</td>
<td>694</td>
<td>F1h B6h</td>
<td>None</td>
<td>340</td>
</tr>
<tr>
<td>Inverse OCR</td>
<td>856</td>
<td>F2h 58h</td>
<td>Regular</td>
<td>346</td>
</tr>
<tr>
<td>OCR Redundancy</td>
<td>1770</td>
<td>F8h 06h EAh</td>
<td>Level 1</td>
<td>347</td>
</tr>
</tbody>
</table>

Table 27  OCR Programming Default Table (Continued)
OCR-A Variant
Parameter # 684
SSI # F1 ACh

**NOTE:** Enable OCR-A before setting this parameter. If disabling OCR-A, set the variant to its default (OCR-A Full ASCII).

The font variant sets a processing algorithm and default character subset for the given font. To choose a variant, scan one of the following barcodes. Select the most appropriate font variant to optimize performance and accuracy.

OCR-A supports the following variants:

- OCR-A Full ASCII
  `!#$()*+,-./0123456789<>ABCDEFGHIJKLMNOPQRSTUVWXYZ\`
- OCR-A Reserved 1
  `$*-.0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ`
- OCR-A Reserved 2
  `$*-.0123456789<>ABCDEFGHIJKLMNOPQRSTUVWXYZ`
- OCR-A Banking
  `-0123456789<> \n \n \n \n`

Special banking characters output as the following representative characters:

- `\` outputs as `f`
- `\` outputs as `c`
- `\` outputs as `h`

*OCR-A Full ASCII

\n\n
OCR-A Reserved 1

\n\n\n\n\n\n\n\n
OCR Programming

OCR-A Variant (continued)

OCR-A Reserved 2
(2)

OCR-A Banking
(3)

OCR-B
Parameter # 681
SSI # F1h A9h

NOTE: OCR is not as secure as a barcode. To decrease OCR misdecodes and speed OCR reading, set an accurate OCR template and character subset, and use a check digit. See OCR Subset on page 328 and OCR Template on page 329.

Scan one of the following barcodes to enable or disable OCR-B.

Enable OCR-B
(1)

* Disable OCR-B
(0)
OCR-B Variant

Parameter # 685

SSI # F1h ADh

NOTE: Enable OCR-B before setting this parameter. If disabling OCR-B, set the variant to its default (OCR-B Full ASCII).

OCR-B has the following variants. Select the most appropriate font variant to optimize performance and accuracy.

- OCR-B Full ASCII
  !#$%()*+,-./0123456789<>ABCDEFGHIJKLMNOPQRSTUVWXYZ^|Ñ
- OCR-B Banking
  #+-.0123456789<>JNP|
- OCR-B Limited
  +,-/0123456789<>ACENPSTVX
- OCR-B ISBN 10-Digit Book Numbers
  -0123456789>BCEINPSXZ
- OCR-B ISBN 10 or 13-Digit Book Numbers
  -0123456789>BCEINPSXZ
- OCR-B Travel Document Version 1 (TD1) 3-Line ID Cards
  -0123456789<ABCDEFHIJKLMNOPQRSTUVWXYZ
- OCR-B Travel Document Version 2 (TD2) 2-Line ID Cards
  -0123456789<ABCDEFHIJKLMNOPQRSTUVWXYZ
- OCR-B Travel Document 2 or 3-Line ID Cards Auto-Detect
  !#$%()+,-/0123456789<>ABCDEFGHIJKLMNOPQRSTUVWXYZ^|Ñ
- OCR-B Passport
  -0123456789<ABCDEFHIJKLMNOPQRSTUVWXYZÑ
- OCR-B Visa Type A
  -0123456789<ABCDEFHIJKLMNOPQRSTUVWXYZ
- OCR-B Visa Type B
  -0123456789<ABCDEFHIJKLMNOPQRSTUVWXYZÑ
- OCR-B ICAO Travel Documents
  This allows reading either TD1, TD2, Passport, Visa Type A, or Visa Type B without switching between these options. It automatically recognizes the travel document read.

To choose a variant, scan one of the barcodes below. Selecting the following OCR-B variants automatically sets the appropriate OCR Lines on page 327. These five variants invoke extensive special algorithms and checking for that particular document type:

<table>
<thead>
<tr>
<th>Variant</th>
<th>OCR Lines Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passport</td>
<td>2</td>
</tr>
<tr>
<td>TD1 ID Cards</td>
<td>3</td>
</tr>
<tr>
<td>TD2 ID Cards</td>
<td>2</td>
</tr>
<tr>
<td>Visa Type A</td>
<td>2</td>
</tr>
<tr>
<td>Visa Type B</td>
<td>2</td>
</tr>
</tbody>
</table>

**NOTE:** When setting one of the variants above with both OCR-A and OCR-B enabled, the scanner reads the specified travel document but does not read OCR-A. When the OCR-B variant is set back to the default (OCR-B Full ASCII), the scanner reads OCR-A.
OCR-B Variant (continued)

OCR-B ISBN 10 or 13-Digit Book Numbers
(7)

OCR-B Travel Document Version 1 (TD1)
3 Line ID Cards
(3)

OCR-B Travel Document Version 2 (TD2)
2-Line ID Cards
(8)

Travel Document 2 or 3-Line ID Cards Auto-Detect
(20)

OCR-B Passport
(4)
OCR-B Variant (continued)

OCR-B Visa Type A
(9)

OCR-B Visa Type B
(10)

OCR-B ICAO Travel Documents
(11)
MICR E13B
Parameter # 682
SSI # F1h AAh

NOTE: OCR is not as secure as a barcode. To decrease OCR misdecodes and speed OCR reading, set an accurate OCR template and character subset, and use a check digit. See OCR Subset on page 328 and OCR Template on page 329.

Scan one of the following barcodes to enable or disable MICR E13B.

MICR E13B uses the following characters:

0 1 2 3 4 5 6 7 8 9 \t \o \d

TOAD characters (Transit, On Us, Amount, and Dash) output as the following representative characters:

\t outputs as t
\o outputs as a
\d outputs as o
\m outputs as d

Enable MICR E13B
(1)

* Disable MICR E13B
(0)
US Currency Serial Number
Parameter # 683
SSI # F1h ABh

Scan one of the following barcodes to enable or disable US Currency Serial Number.

NOTE: OCR is not as secure as a barcode. To decrease OCR misdecodes and speed OCR reading, set an accurate OCR template and character subset, and use a check digit. See OCR Subset on page 328 and OCR Template on page 329.

OCR Orientation
Parameter # 687
SSI # F1h AFh

Select one of five options to specify the orientation of the OCR to read:

- 0° to the imaging engine (default)
- 270° clockwise (or 90° counterclockwise) to the imaging engine
- 180° (upside down) to the imaging engine
- 90° clockwise to the imaging engine
- Omnidirectional

Setting an incorrect orientation can cause misdecodes.
OCR Orientation (continued)

* OCR Orientation 0°
  (0)

OCR Orientation 270° Clockwise
  (1)

OCR Orientation 180° Clockwise
  (2)

OCR Orientation 90° Clockwise
  (3)

OCR Orientation Omnidirectional
  (4)
OCR Lines
Parameter # 691
SSI # F1h B3h

To select the number of OCR lines to decode, scan one of the following barcodes. Selecting Visas, TD1, or TD2 ID cards automatically sets the appropriate OCR Lines. Also see OCR-B Variant on page 320.

OCR Minimum Characters
Parameter # 689
SSI # F1h B1h

To select the minimum number of OCR characters (not including spaces) per line to decode, scan the following barcode, then scan a three-digit number between 003 and 100 using the barcodes in Numeric Barcodes representing the number of OCR characters to decode. Strings of OCR characters less than the minimum are ignored. The default is 003.
OCR Maximum Characters

Parameter # 690

SSI # F1h B2h

To select the maximum number of OCR characters (including spaces) per line to decode, scan the following barcode, then scan a three-digit number between 003 and 100 using the barcodes in Numeric Barcodes representing the number of OCR characters to decode. Strings of OCR characters greater than the maximum are ignored. The default is 100.

OCR Subset

Parameter # 686

SSI # F1h AEh

Create an OCR subset to define a custom group of characters in place of a preset font variant. For example, if scanning only numbers and the letters A, B, and C, create a subset of just these characters to speed decoding. This applies a designated OCR Subset across all enabled OCR fonts.

To set or modify the OCR font subset:
1. Enable the appropriate OCR font(s).
2. Scan the OCR Subset barcode.
3. Scan numbers and letters to form the OCR Subset from Alphanumeric Barcodes.
4. Scan End of Message on page 329.

To cancel an OCR subset, for OCR-A or OCR-B, scan OCR-A variant Full ASCII, or OCR-B variant Full ASCII.

For MICR E13B or US Currency Serial Number, create a subset which includes all allowed characters in that character set, or scan an option from the Default Parameters on page 62 and re-program the scanner.
OCR Quiet Zone
Parameter # 695
SSI # F1h B7h
This option sets the OCR quiet zone. The scanner stops scanning a field when it detects a sufficiently wide blank space. The width of this space is defined by the End of Field option. Used with parsers that tolerate slanted characters, the End of Field count is approximately a count of 8 for a character width. For example, if set to 15, then two character widths are an end of line indicator for the parser. Larger end of field numbers require bigger quiet zones at each end of text line.

To set a quiet zone, scan the following barcode, then scan a two-digit number using the numeric keypad in Numeric Barcodes. The range of the quiet zone is 20 - 99 and the default is 50, indicating a six character width quiet zone.

OCR Template
Parameter # 547
SSI # F1h 23h
This option creates a template for precisely matching scanned OCR characters to a desired input format. Carefully constructing an OCR template eliminates scanning errors.

To set or modify the OCR decode template, scan the OCR Template barcode, and then scan barcodes on the following pages that correspond to numbers and letters to form the template expression. Then scan End of Message. The default is 99999999 which accepts OCR strings containing any character.
### Required Digit (9)

Only a numeric character is accepted in this position.

<table>
<thead>
<tr>
<th>Template</th>
<th>Valid data</th>
<th>Valid data</th>
<th>Invalid data</th>
</tr>
</thead>
<tbody>
<tr>
<td>99999</td>
<td>12987</td>
<td>30517</td>
<td>123AB</td>
</tr>
</tbody>
</table>

### Required Alpha (A)

Only an alpha character is accepted in this position.

<table>
<thead>
<tr>
<th>Template</th>
<th>Valid data</th>
<th>Valid data</th>
<th>Invalid data</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAA</td>
<td>ABCDE</td>
<td>UVWXY</td>
<td>12FGH</td>
</tr>
</tbody>
</table>

### Require and Suppress (0)

Any character in this position, including space or reject, is suppressed from the output.

<table>
<thead>
<tr>
<th>Template</th>
<th>Incoming data</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>990AA</td>
<td>12QAB</td>
<td>12AB</td>
</tr>
</tbody>
</table>

### Optional Alphanumeric (1)

An alphanumeric character is accepted in this position if present. Optional characters are not allowed as the first character(s) in a field of like characters.

<table>
<thead>
<tr>
<th>Template</th>
<th>Valid data</th>
<th>Valid data</th>
<th>Invalid data</th>
</tr>
</thead>
<tbody>
<tr>
<td>99991</td>
<td>1234A</td>
<td>12345</td>
<td>1234&lt;</td>
</tr>
</tbody>
</table>
Optional Alpha (2)

An alpha character is accepted in this position if present. Optional characters are not allowed as the first character(s) in a field of like characters.

<table>
<thead>
<tr>
<th>Template</th>
<th>Valid data</th>
<th>Valid data</th>
<th>Invalid data</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAA2</td>
<td>ABCDE</td>
<td>WXYZ</td>
<td>ABCD6</td>
</tr>
</tbody>
</table>

Alpha or Digit (3)

An alphanumeric character is required in this position to validate the incoming data.

<table>
<thead>
<tr>
<th>Template</th>
<th>Valid data</th>
<th>Valid data</th>
<th>Invalid data</th>
</tr>
</thead>
<tbody>
<tr>
<td>33333</td>
<td>12ABC</td>
<td>WXY34</td>
<td>12AB&lt;</td>
</tr>
</tbody>
</table>

Any Including Space & Reject (4)

Any character is accepted in this position, including space and reject. An underscore (_) represents rejects in the output. This is a good selection for troubleshooting.

<table>
<thead>
<tr>
<th>Template</th>
<th>Valid data</th>
<th>Valid data</th>
</tr>
</thead>
<tbody>
<tr>
<td>99499</td>
<td>12$34</td>
<td>34 98</td>
</tr>
</tbody>
</table>
Any except Space & Reject (5)

Any character is accepted in this position, except a space or reject.

<table>
<thead>
<tr>
<th>Template</th>
<th>Valid data</th>
<th>Valid data</th>
<th>Invalid data</th>
</tr>
</thead>
<tbody>
<tr>
<td>55999</td>
<td>A.123</td>
<td>*2456</td>
<td>A BCD</td>
</tr>
</tbody>
</table>

Optional Digit (7)

A numeric character is accepted if present. Optional characters are not allowed as the first character(s) in a field of like characters.

<table>
<thead>
<tr>
<th>Template</th>
<th>Valid data</th>
<th>Valid data</th>
<th>Invalid data</th>
</tr>
</thead>
<tbody>
<tr>
<td>99977</td>
<td>12345</td>
<td>789</td>
<td>789AB</td>
</tr>
</tbody>
</table>

Digit or Fill (8)

Any numeric or fill character is accepted in this position.

<table>
<thead>
<tr>
<th>Template</th>
<th>Valid data</th>
<th>Valid data</th>
<th>Valid data</th>
</tr>
</thead>
<tbody>
<tr>
<td>88899</td>
<td>12345</td>
<td>&gt;&gt;789</td>
<td>&lt;&lt;789</td>
</tr>
</tbody>
</table>
### Alpha or Fill (F)

Any alpha or fill character is accepted in this position.

<table>
<thead>
<tr>
<th>Template</th>
<th>Valid data</th>
<th>Valid data</th>
<th>Valid data</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAFF</td>
<td>ABCXY</td>
<td>LMN&gt;&gt;</td>
<td>ABC&lt;5</td>
</tr>
</tbody>
</table>

### Optional Space ( )

A space is accepted if present. Optional characters are not allowed as the first character(s) in a field of like characters.

<table>
<thead>
<tr>
<th>Template</th>
<th>Valid data</th>
<th>Valid data</th>
<th>Invalid data</th>
</tr>
</thead>
<tbody>
<tr>
<td>99 99</td>
<td>12 34</td>
<td>1234</td>
<td>67891</td>
</tr>
</tbody>
</table>

### Optional Small Special (.)

A special character is accepted if present. Optional characters are not allowed as the first character(s) in a field of like characters. Small special characters are -, and .

<table>
<thead>
<tr>
<th>Template</th>
<th>Valid data</th>
<th>Valid data</th>
<th>Invalid data</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA.99</td>
<td>MN.35</td>
<td>XY98</td>
<td>XYZ12</td>
</tr>
</tbody>
</table>

### Other Template Operators

These template operators assist in capturing, delimiting, and formatting scanned OCR data.

#### Literal String (“ and +)

Use either of these delimiting characters surrounding characters from the alphanumeric keyboard in Alphanumeric Barcodes to define a literal string within a template that must be present in scanned OCR data. There are two
characters used to delimit required literal strings; if one of the delimiter characters is present in the desired literal string, use the other delimiter.

<table>
<thead>
<tr>
<th>Template</th>
<th>Valid data</th>
<th>Invalid data</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;35+BC&quot;</td>
<td>35+BC</td>
<td>AB+22</td>
</tr>
</tbody>
</table>

**New Line (E)**

To create a template of multiple lines, add E between the template of each single line.

<table>
<thead>
<tr>
<th>Template</th>
<th>Valid data</th>
<th>Valid data</th>
<th>Invalid data</th>
</tr>
</thead>
<tbody>
<tr>
<td>999EAAAA</td>
<td>321</td>
<td>987</td>
<td>XY2W</td>
</tr>
<tr>
<td>BCAD</td>
<td>2XYW</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

**String Extract (C)**

This operator combined with others defines a string of characters to extract from the scanned data. The string extract is structured as follows:

\[
CbPe
\]

Where:

- C is the string extract operator
- b is the string begin delimiter
- P is the category (one or more numeric or alpha characters) describing the string representation
- e is the string end delimiter
Values for $b$ and $e$ can be any scannable character. They are included in the output stream.

<table>
<thead>
<tr>
<th>Template</th>
<th>Incoming data</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>C&gt;A&gt;</td>
<td>XQ3&gt;ABCDE&gt;</td>
<td>&gt;ABCDE&gt;</td>
</tr>
<tr>
<td></td>
<td>-&gt;ATHRUZ&gt;123</td>
<td>&gt;ATHRUZ&gt;</td>
</tr>
<tr>
<td></td>
<td>1ABCZXYZ</td>
<td>No Output</td>
</tr>
</tbody>
</table>

**Ignore to End of Field (D)**

This operator causes all characters after a template to be ignored. Use this as the last character in a template expression. Examples for the template 999D:

<table>
<thead>
<tr>
<th>Template</th>
<th>Incoming data</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>999D</td>
<td>123-PED</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>357298</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>193</td>
<td>193</td>
</tr>
</tbody>
</table>

**Skip Until (P1)**

This operator skips over characters until a specific character type or a literal string is detected. It can be used in two ways:

- \( P1ct \)

Where:

- \( P1 \) is the Skip Until operator
- \( c \) is the type of character that triggers the start of output
- \( t \) is one or more template characters

- \( P1"s"t \)

Where:

- \( P1 \) is the Skip Until operator
- \( "s" \) is one or more literal string characters (see Literal String (" and +) on page 333) that trigger the start of output
- \( t \) is one or more template characters
The trigger character or literal string is included in output from a Skip Until operator, and the first character in the template should accommodate this trigger.

<table>
<thead>
<tr>
<th>Template</th>
<th>Incoming data</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1&quot;PN&quot;AA9999</td>
<td>123PN9876</td>
<td>PN9876</td>
</tr>
<tr>
<td></td>
<td>PN1234</td>
<td>PN1234</td>
</tr>
<tr>
<td></td>
<td>X-PN3592</td>
<td>PN3592</td>
</tr>
</tbody>
</table>

**Skip Until Not (P0)**

This operator skips over characters until a specific character type or a literal string is not matched in the output stream. It can be used in two ways:

- \( P0\text{c}t \)
  - \( P0 \) is the Skip Until Not operator
  - \( c \) is the type of character that triggers the start of output
  - \( t \) is one or more template characters

- \( P0\text{"s"}t \)
  - \( P0 \) is the Skip Until Not operator
  - \"s\" is one or more literal string characters (see Literal String (" and +) on page 333) that trigger the start of output
  - \( t \) is one or more template characters
The trigger character or literal string is not included in output from a Skip Until Not operator.

<table>
<thead>
<tr>
<th>Template</th>
<th>Incoming data</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0A9999</td>
<td>BPN3456</td>
<td>3456</td>
</tr>
<tr>
<td></td>
<td>PN1234</td>
<td>1234</td>
</tr>
<tr>
<td></td>
<td>5341</td>
<td>No output</td>
</tr>
<tr>
<td>P0&quot;PN&quot;9999</td>
<td>PN3456</td>
<td>3456</td>
</tr>
<tr>
<td></td>
<td>5341</td>
<td>No output</td>
</tr>
<tr>
<td></td>
<td>PNP7654</td>
<td>7654</td>
</tr>
</tbody>
</table>

**Repeat Previous (R)**

This operator allows a template character to repeat one or more times, allowing the capture of variable-length scanned data. The following examples capture two required alpha characters followed by one or more required digits:

<table>
<thead>
<tr>
<th>Template</th>
<th>Incoming data</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA9R</td>
<td>AB3</td>
<td>AB3</td>
</tr>
<tr>
<td></td>
<td>PN12345</td>
<td>PN12345</td>
</tr>
<tr>
<td></td>
<td>32RM52700</td>
<td>No output</td>
</tr>
</tbody>
</table>
Scroll Until Match (S)

This operator steps through scanned data one character at a time until the data matches the template.

<table>
<thead>
<tr>
<th>Template</th>
<th>Incoming data</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>S99999</td>
<td>AB3</td>
<td>No Output</td>
</tr>
<tr>
<td>PN12345</td>
<td>12345</td>
<td>52700</td>
</tr>
</tbody>
</table>

Multiple Templates

This feature sets up multiple templates for OCR decoding. To do this, follow the procedure described in OCR Template on page 329 (scan the OCR Template barcode, and then barcodes corresponding to numbers and letters to form the template expression, and then End of Message) for each template in the multiple template string, using a capital letter X as a separator between templates.

For example, set the OCR Template as 99999XAAAAA to decode OCR strings of either 12345 or ABCDE.

Template Examples

Following are sample templates with descriptions of valid data for each definition.

Field Definition Description

"M"99977  M followed by three digits and two optional digits.
"X"997777"X"  X followed by two digits, four optional digits, and an X.
995975599  Two digits followed by any character, a digit, two optional digits, any two characters, and two digits.
A55"-"999"-"99  A letter followed by two characters, a dash, three digits, a dash, and two digits.
33A"-"99  Two alphanumeric characters followed by a letter, a period, and two digits.
999992991  Five digits followed by an optional alpha, two digits, and an optional alphanumeric.
"PN98"  Literal field - PN98
OCR Check Digit Modulus
Parameter # 688
SSI # F1h B0h

The check digit is the last digit (in the right-most position) in an OCR string and improves the accuracy of the collected data. This option sets OCR module check digit calculation. The calculation is performed on incoming data to determine this check digit, based on the numeric weight of the alpha and numeric characters. See OCR Check Digit Multiplier on page 339. If the incoming data does not match the check digit, the data is considered corrupt.

The selected check digit option does not take effect until you set OCR Check Digit Validation on page 340.

To choose the Check Digit Modulus, such as 10 for Modulus 10, scan the following barcode, and then scan a three-digit number from 001 to 099 representing the check digit using the numeric keypad in Numeric Barcodes. The default is 1.

OCR Check Digit Multiplier
Parameter # 700
SSI # F1h BCh

This option sets OCR check digit multipliers for character positions. For check digit validation, each character in scanned data has an assigned weight to use in calculating the check digit. The scanner OCR ships with the following weight equivalents:

<table>
<thead>
<tr>
<th>Character</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
</tr>
<tr>
<td>G</td>
<td>16</td>
</tr>
<tr>
<td>H</td>
<td>17</td>
</tr>
<tr>
<td>I</td>
<td>18</td>
</tr>
<tr>
<td>J</td>
<td>19</td>
</tr>
<tr>
<td>K</td>
<td>20</td>
</tr>
<tr>
<td>L</td>
<td>21</td>
</tr>
<tr>
<td>M</td>
<td>22</td>
</tr>
<tr>
<td>N</td>
<td>23</td>
</tr>
<tr>
<td>O</td>
<td>24</td>
</tr>
<tr>
<td>P</td>
<td>25</td>
</tr>
<tr>
<td>Q</td>
<td>26</td>
</tr>
<tr>
<td>R</td>
<td>27</td>
</tr>
<tr>
<td>S</td>
<td>28</td>
</tr>
<tr>
<td>T</td>
<td>29</td>
</tr>
<tr>
<td>U</td>
<td>30</td>
</tr>
<tr>
<td>V</td>
<td>31</td>
</tr>
<tr>
<td>W</td>
<td>32</td>
</tr>
<tr>
<td>X</td>
<td>33</td>
</tr>
<tr>
<td>Y</td>
<td>34</td>
</tr>
<tr>
<td>Z</td>
<td>35</td>
</tr>
<tr>
<td>Space</td>
<td>0</td>
</tr>
</tbody>
</table>

All other characters are equivalent to one (1).

You can define the multiplier string if it is different from the default.

121212121212 (default)
123456789A (for ISBN, Product Add Right to Left. See OCR Check Digit Validation on page 340)
For example:

ISBN	0 2 0 1 1 8 3 9 9 4
Multiplier	10 9 8 7 6 5 4 3 2 1
Product	0 18 0 7 6 40 12 27 18 4
Product add	0 + 18 + 0 + 7 + 6 + 40 + 12 + 27 + 18 + 4 = 132

ISBN uses Modulus 11 for the check digit. In this case, 132 is divisible by 11, so it passes the check digit.

To set the check digit multiplier, scan the following barcode, and then scan numbers and letters to form the multiplier string from Alphanumeric Barcodes. Then scan End of Message on page 329.

OCR Check Digit Multiplier

OCR Check Digit Validation

Parameter # 694

SSI # F1h B6h

Use the following options to protect against scanning errors by applying a check digit validation scheme.

None

No check digit validation, indicating no check digit is applied. This is the default.
Product Add Left to Right

Each character in the scanned data is assigned a numeric value (see OCR Check Digit Multiplier on page 339). Each digit representing a character in the scanned data is multiplied by its corresponding digit in the multiplier, and the sum of these products is computed. The check digit passes if this sum modulo Check Digit Modulus is zero.

Example:

Scanned data numeric value is 132456 (check digit is 6)

Check digit multiplier string is 123456

<table>
<thead>
<tr>
<th>Digit</th>
<th>1</th>
<th>3</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplier</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Product</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>16</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>Product add</td>
<td>1+</td>
<td>6+</td>
<td>6+</td>
<td>16+</td>
<td>25+</td>
<td>36= 90</td>
</tr>
</tbody>
</table>

The Check Digit Modulus is 10. It passes because 90 is divisible by 10 (the remainder is zero).

Product Add Right to Left

Each character in the scanned data is assigned a numeric value (see OCR Check Digit Multiplier on page 339). The check digit multiplier is reversed in order. Each value representing a character in the scanned data is multiplied by its corresponding digit in the reversed multiplier, resulting in a product for each character in the scanned data. The sum of these products is computed. The check digit passes if this sum modulo Check Digit Modulus is zero.

Example:

Scanned data numeric value is 132459 (check digit is 9)

Check digit multiplier string is 123456

<table>
<thead>
<tr>
<th>Digit</th>
<th>1</th>
<th>3</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplier</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Product</td>
<td>6</td>
<td>15</td>
<td>8</td>
<td>12</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Product add</td>
<td>6+</td>
<td>15+</td>
<td>8+</td>
<td>12+</td>
<td>10+</td>
<td>9= 60</td>
</tr>
</tbody>
</table>
The Check Digit Modulus is 10. It passes because 60 is divisible by 10 (the remainder is 0).

Digit Add Left to Right

Each character in the scanned data is assigned a numeric value (see OCR Check Digit Multiplier on page 339). Each value representing a character in the scanned data is multiplied by its corresponding digit in the multiplier, resulting in a product for each character in the scanned data. The sum of each individual digit in all of the products is then calculated. The check digit passes if this sum modulo Check Digit Modulus is zero.

Example:

Scanned data numeric value is 132456 (check digit is 6)
Check digit multiplier string is 123456

Digit 1 3 2 4 5 6
Multiplier 1 2 3 4 5 6
Product 1 6 6 16 25 36
Digit add 1+ 6+ 6+ 1+6+ 2+5+ 3+6= 36

The Check Digit Modulus is 12. It passes because 36 is divisible by 12 (the remainder is 0).
Digit Add Right to Left

Each character in the scanned data is assigned a numeric value (see OCR Check Digit Multiplier on page 339). The check digit multiplier is reversed in order. Each value representing a character in the scanned data is multiplied by its corresponding digit in the reversed multiplier, resulting in a product for each character in the scanned data. The sum of each individual digit in all of the products is then calculated. The check digit passes if this sum modulo Check Digit Modulus is zero.

Example:

Scanned data numeric value is 132456 (check digit is 6)

Check digit multiplier string is 123456

<table>
<thead>
<tr>
<th>Digit</th>
<th>1</th>
<th>3</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplier</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Product</td>
<td>6</td>
<td>15</td>
<td>8</td>
<td>12</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Digit add</td>
<td>6+</td>
<td>1+5+</td>
<td>8+</td>
<td>1+2+</td>
<td>1+0+</td>
<td>6= 30</td>
</tr>
</tbody>
</table>

The Check Digit Modulus is 10. It passes because 30 is divisible by 10 (the remainder is 0).

Product Add Right to Left Simple Remainder

Each character in the scanned data is assigned a numeric value (see OCR Check Digit Multiplier on page 339). The check digit multiplier is reversed in order. Each value representing a character in the scanned data is multiplied by its corresponding digit in the reversed multiplier, resulting in a product for each character in the scanned data. The sum of these products except for the check digit’s product is computed. The check digit passes if this sum modulo Check Digit Modulus is equal to the check digit’s product.

Example:

Scanned data numeric value is 122456 (check digit is 6)

Check digit multiplier string is 123456

<table>
<thead>
<tr>
<th>Digit</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplier</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Product</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>12</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Product add</td>
<td>6+</td>
<td>10+</td>
<td>8+</td>
<td>12+</td>
<td>10= 46</td>
<td>6</td>
</tr>
</tbody>
</table>
The Check Digit Modulus is 10. It passes because 46 divided by 10 leaves a remainder of 6.

Digit Add Right To Left Simple Remainder

(5)

Digit Add Right To Left Simple Remainder

Each character in the scanned data is assigned a numeric value (see OCR Check Digit Multiplier on page 339). The check digit multiplier is reversed in order. Each value representing a character in the scanned data is multiplied by its corresponding digit in the reversed multiplier, resulting in a product for each character in the scanned data. The sum of each individual digit in all of the products except for the check digit's product is then calculated. The check digit passes if this sum modulo Check Digit Modulus is equal to the check digit's product.

Example:

Scanned data numeric value is 122459 (check digit is 6)

Check digit multiplier string is 123456

<table>
<thead>
<tr>
<th>Digit</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplier</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Product</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>12</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Digit add</td>
<td>6+</td>
<td>1+0+</td>
<td>8+</td>
<td>1+2+</td>
<td>1+0=</td>
<td>19</td>
</tr>
</tbody>
</table>

The Check Digit Modulus is 10. It passes because 19 divided by 10 leaves a remainder of 9.
Health Industry - HIBCC43

This is the health industry module 43 check digit standard. The check digit is the modulus 43 sum of all the character values in a given message, and is printed as the last character in a given message.

Example:

Supplier Labeling Data Structure: + A 1 2 3 B J C 5 D 6 E 7 1

Sum of values: 41 + 10 + 1 + 2 + 3 + 11 + 19 + 12 + 5 + 13 + 6 + 14 + 7 + 1 = 145

Divide 145 by 43. The quotient is 3 with a remainder of 16. The check digit is the character corresponding to the value of the remainder (see Table 28), which in this example is 16, or G. The complete Supplier Labeling Data Structure, including the check digit, therefore is:

A 1 2 3 B J C 5 D 6 E 7 1 G

Table 28  Table of Numeric Value Assignments for Computing HIBC LIC Data Format Check Digit

<table>
<thead>
<tr>
<th>0 = 0</th>
<th>9 = 9</th>
<th>I = 18</th>
<th>R = 27</th>
<th>- = 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 1</td>
<td>A = 10</td>
<td>J = 19</td>
<td>S = 28</td>
<td>. = 37</td>
</tr>
<tr>
<td>2 = 2</td>
<td>B = 11</td>
<td>K = 20</td>
<td>T = 29</td>
<td>Space = 38</td>
</tr>
<tr>
<td>3 = 3</td>
<td>C = 12</td>
<td>L = 21</td>
<td>U = 30</td>
<td>$ = 39</td>
</tr>
<tr>
<td>4 = 4</td>
<td>D = 13</td>
<td>M = 22</td>
<td>V = 31</td>
<td>/ = 40</td>
</tr>
<tr>
<td>5 = 5</td>
<td>E = 14</td>
<td>N = 23</td>
<td>W = 32</td>
<td>+ = 41</td>
</tr>
<tr>
<td>6 = 6</td>
<td>F = 15</td>
<td>O = 24</td>
<td>X = 33</td>
<td>% = 42</td>
</tr>
<tr>
<td>7 = 7</td>
<td>G = 16</td>
<td>P = 25</td>
<td>Y = 34</td>
<td></td>
</tr>
<tr>
<td>8 = 8</td>
<td>H = 17</td>
<td>Q = 26</td>
<td>Z = 35</td>
<td></td>
</tr>
</tbody>
</table>
Inverse OCR
Parameter # 856
SSI # F2h 58h

Inverse OCR is white or light words on a black or dark background. Select an option for decoding inverse OCR:

- **Regular Only** - Decode regular OCR (black on white) strings only.
- **Inverse Only** - Decode inverse OCR (white on black) strings only.
- **Autodiscriminate** - Decode both regular and inverse OCR strings.

* Regular Only
(0)

Inverse Only
(1)

Autodiscriminate
(2)
OCR Redundancy

Parameter # 1770

SSI # F8h 06h EAh

This option adjusts the number of times to decode an OCR text string before transmission. There are three levels of OCR decode redundancy. There is an inverse relationship between the redundancy level and OCR decoding aggressiveness. Increasing the level of the redundancy can reduce OCR scanning aggressiveness, so select only the level of redundancy necessary.

- **OCR Redundancy Level 1**: This default setting allows the scanner to operate in its most aggressive state while providing sufficient accuracy in decoding most in-spec OCR text strings.
- **OCR Redundancy Level 2**: This setting eliminates most misdecodes while maintaining reasonable aggressiveness.
- **OCR Redundancy Level 3**: Select this option with greater redundancy requirements if OCR Redundancy Level 2 fails to eliminate misdecodes.

* OCR Redundancy Level 1 (1)  
OCR Redundancy Level 2 (2)  
OCR Redundancy Level 3 (3)
Intelligent Document Capture (Hand-held Mode Only)

Introduction

Intelligent Document Capture (IDC) is Zebra advanced image processing firmware for select imager based scanners. This chapter describes the IDC functionality, provides parameter barcodes to control IDC features, and includes a quick start procedure.

The IDC Process

Intelligent Document Capture:

1. Verifies a barcode is appropriate to use as an IDC anchor or link. See Barcode Acceptance Test on page 349.
2. Determines the rectangular region to capture as an image. See Capture Region Determination on page 349.
4. Transmits the data. See Data Transmission on page 350.
Barcode Acceptance Test

Upon decoding a barcode, the scanner checks that the barcode fits the description of a barcode that anchors or links to an IDC form. To be accepted as an IDC barcode:

- The symbology must be enabled for decode, and also enabled via IDC Symbology on page 354. The IDC firmware allows enabling between zero and eight symbologies simultaneously: Code 128, Code 39, Interleaved 2 of 5, Discrete 2 of 5, Codabar, PDF417, Data Matrix, and EAN-128.
- The decoded data must satisfy the values set in the IDC Minimum Text Length and IDC Maximum Text Length parameters. To disable either of these checks, set the value to zero.

If the barcode does not satisfy both requirements, it is sent as a normal (non-IDC) decode.

An IDC barcode is required when IDC Operating Mode on page 353 is set to Anchored or Linked.

Free-Form operating mode does not require a barcode, but transmits decoded data if one is found and satisfies the requirements. If no barcode is decoded, the document capture process starts but may require specifying a non-zero value for the IDC Delay Time on page 363. The scanner must wait for at least this amount of time after trigger pull before capturing a document, unless a barcode is decoded before the time expires.

If Momentary Trigger Mode Timeout on page 76 is enabled, the barcode must be directly under the aiming pattern and within the scanner’s decode range, and the region to capture must be completely within the scanner’s field-of-view.

Capture Region Determination

After accepting an IDC barcode, the firmware establishes the region to capture as an image. The method used depends on the setting of the IDC Operating Mode as follows.

The IDC firmware emits a single low beep after successfully capturing a region. The scanner is then no longer capturing images and can be moved without disturbing the IDC output. Be sure to hold the trigger button until the decode beep, otherwise the IDC process may be aborted.

IDC Operating Mode = Anchored

A coordinate system is built based on the barcode in its rectified (de-skewed) form. The origin is the center of the barcode, and the x-axis is set toward the right, from the barcode’s point of view. The unit module width of the barcode is the unit for x. Similarly, the y-axis is set toward the up direction. The unit for the y-axis is specified via the parameter IDC Aspect on page 357. This is the aspect ratio of a thin bar or space - the barcode's height is divided by this value to get this unit. Set IDC Aspect to zero to automatically calculate the aspect ratio. The barcode can be of different sizes for the same form, as long as the center of the barcode is the same when the barcode's length changes.

From this coordinate system, the IDC area is determined using four parameters: offsets in x and y (IDC X Coordinate, IDC Y Coordinate) to the region's top-left corner, and width and height (IDC Width, IDC Height).

If the capture area is relatively large as compared to the barcode area, the calculation to obtain the capture area is prone to significant errors. A recommended solution is to enclose the form with a single black-lined rectangular border (a box), which is not in contact with any other line on the outside of the form (although it can be connected to lines on the inside of the form). When the IDC Find Box Outline is set, the firmware searches for the box, and does not decode if any edges are broken (such as by a protruding thumb).

The IDC Zoom Limit parameter controls the quality of the captured form. The IDC firmware rejects capturing a form unless the width is at least the IDC Zoom Limit percentage of the IDC Width parameter. For example, if IDC Zoom Limit is set to 100 and IDC Width is set to 150, the form must be at least 300 pixels wide before it is captured (each unit module is scaled to two pixels).
The **IDC Maximum Rotation** parameter controls the maximum rotation any edge of the form can have in relation to the scanner's horizontal or vertical axis.

**IDC Operating Mode = Free-Form or Linked**

The document capture region is a rectangular piece of paper, or a portion of it enclosed by a rectangular border. In either case, all four sides of the capture region must be completely within the scanner's field-of-view, and there must be sufficient contrast at the border of the capture region. For example, if a piece of white paper contains the document to capture, it must be put in front of a dark background.

By default, the scanner captures the largest rectangular region within the field-of-view. To specify a particular border type, use the **IDC Border Type** parameter.

The region must contain at least 10% of the field-of-view in two dimensions.

If an IDC barcode is decoded, IDC uses its location to start the search for the capture region. Otherwise, it searches the capture region from the center of the field-of-view. IDC also uses the orientation of a decoded IDC barcode to orient the output image.

**Image Post Processing**

After determining the document capture region, the firmware de-skews and re-samples the region as follows. Enabling **IDC Captured Image Brighten** calls normalization, which makes the brightness of the image uniform, and enhances contrast as a large percent of background pixels is made completely white (a smaller percent of pixels is made completely black if the firmware determines there is no danger of enhancing the contrast of a very bland area). Enabling **IDC Captured Image Sharpen** enhances the sharpness of the image.

IDC re-samples the image about one output pixel per input pixel for **Free-Form** or **Linked** modes and two pixels-per-module in **Anchored** mode.

IDC compresses and transmits the image in one of the standard image formats selected by the **IDC File Format Selector**, **IDC Bits Per Pixel**, and **IDC JPEG Quality** parameters.

Note that it may take several seconds for post processing to complete, depending on the size of the captured region, the options enabled, and the scanner model.

**Data Transmission**

After processing the captured image, IDC assembles the image with the decoded barcode data (if applicable) into an ISO/IEC 15434 style packet and transmits it to the host. The scanner issues the standard decode beep and the trigger can be released. Be sure to set the **USB Device Type on page 237 to Symbol Native API (SNAPI) with Imaging Interface**.

**PC Application and Programming Support**

For a sample application running on the Microsoft Windows operating system, contact your Zebra representative. This application displays barcode data and/or captured images from Intelligent Document Capture enabled scanners and allows setting and reading IDC parameters. Complete source code and documentation are also provided for developing custom applications. The application includes documentation for the ISO/IEC 15434 format as used by the IDC firmware and C# code to process it.
Setting Parameters

This section describes the parameters controlling the IDC firmware and provides programming barcodes for setting them.

The scanner ships with the settings shown in Table 29 on page 352 (also see Parameter Defaults for all defaults). If the default values suit requirements, programming is not necessary.

To set feature values, scan a single barcode or a short barcode sequence. The settings are stored in non-volatile memory and are preserved even when the imager powers down.

**NOTE:** Most computer monitors allow scanning barcodes directly on the screen. When scanning from the screen, be sure to set the document magnification to a level where you can see the barcode clearly, and bars and/or spaces do not merge.

To return all features to default values, scan the Set Factory Defaults on page 62. Throughout the programming barcode menus, asterisks (*) indicate default values.

### Scanning Sequence Examples

In most cases scanning one barcode sets the parameter value. For example, to set the document capture file format to BMP, scan the **BMP** barcode under IDC File Format Selector on page 357. The scanner issues a fast warble beep and the LED turns green, signifying a successful parameter entry.

Other parameters require scanning several barcodes. See the parameter descriptions for this procedure.

### Errors While Scanning

Unless otherwise specified, to correct an error during a scanning sequence, just re-scan the correct parameter.
Image Document Capture Parameter Defaults

Table 29 lists defaults for IDC parameters. Change these values in one of two ways:

- Scan the appropriate barcodes in this chapter. The new value replaces the standard default value in memory. To recall default parameter values, see Default Parameters on page 62.
- Configure the scanner using the 123Scan configuration program. See 123Scan and Software Tools.

**NOTE:** See Parameter Defaults for all user preference, host, symbology, and miscellaneous default parameters.

Alternatively, use the sample application to set parameters using the parameter name. The application provides prompts and error checking to assist in setting the parameters correctly and easily. You must use an application to set a parameter to a negative value, as the IDC X Coordinate can require.

**Table 29** Intelligent Document Capture (IDC) Parameter Defaults

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Name</th>
<th>Parameter Number</th>
<th>SSI Number</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDC Operating Mode</td>
<td>DocCap_MODE</td>
<td>594</td>
<td>F1h 52h</td>
<td>Off</td>
<td>353</td>
</tr>
<tr>
<td>IDC Symbology</td>
<td>DocCap_SYMBOLOLOGY</td>
<td>655</td>
<td>F1h 8Fh</td>
<td>001</td>
<td>354</td>
</tr>
<tr>
<td>IDC X Coordinate</td>
<td>DocCap_X</td>
<td>596</td>
<td>F4h F1h 54h</td>
<td>-151</td>
<td>355</td>
</tr>
<tr>
<td>IDC Y Coordinate</td>
<td>DocCap_Y</td>
<td>597</td>
<td>F4h F1h 55h</td>
<td>-050</td>
<td>355</td>
</tr>
<tr>
<td>IDC Width</td>
<td>DocCap_WIDTH</td>
<td>598</td>
<td>F1h 56h</td>
<td>0300</td>
<td>356</td>
</tr>
<tr>
<td>IDC Height</td>
<td>DocCap_HEIGHT</td>
<td>599</td>
<td>F1h 57h</td>
<td>0050</td>
<td>356</td>
</tr>
<tr>
<td>IDC Aspect</td>
<td>DocCap_ASPECT</td>
<td>595</td>
<td>F1h 53h</td>
<td>000</td>
<td>357</td>
</tr>
<tr>
<td>IDC File Format Selector</td>
<td>DocCap_FMT</td>
<td>601</td>
<td>F1h 59h</td>
<td>JPEG</td>
<td>357</td>
</tr>
<tr>
<td>IDC Bits Per Pixel</td>
<td>DocCap_BPP</td>
<td>602</td>
<td>F1h 5Ah</td>
<td>8 BPP</td>
<td>358</td>
</tr>
<tr>
<td>IDC JPEG Quality</td>
<td>DocCap_JPEG_Qual</td>
<td>603</td>
<td>F1h 5Bh</td>
<td>065</td>
<td>358</td>
</tr>
<tr>
<td>IDC Find Box Outline</td>
<td>Sig_FINDBOX</td>
<td>727</td>
<td>F1h D7h</td>
<td>Disable</td>
<td>359</td>
</tr>
<tr>
<td>IDC Minimum Text Length</td>
<td>DocCap_MIN_TEXT</td>
<td>656</td>
<td>F1h 90h</td>
<td>00</td>
<td>359</td>
</tr>
<tr>
<td>IDC Maximum Text Length</td>
<td>DocCap_MAX_TEXT</td>
<td>657</td>
<td>F1h 91h</td>
<td>00</td>
<td>360</td>
</tr>
<tr>
<td>IDC Captured Image Brighten</td>
<td>Sig_BRIGHTEN</td>
<td>654</td>
<td>F1h 8Eh</td>
<td>Enable</td>
<td>360</td>
</tr>
<tr>
<td>IDC Captured Image Sharpen</td>
<td>Sig_SHARPEN</td>
<td>658</td>
<td>F1h 92h</td>
<td>Enable</td>
<td>361</td>
</tr>
<tr>
<td>IDC Border Type</td>
<td>DocCap_BORDER</td>
<td>829</td>
<td>F2h 3Dh</td>
<td>None</td>
<td>362</td>
</tr>
<tr>
<td>IDC Delay Time</td>
<td>DocCap_DELAY</td>
<td>830</td>
<td>F2h 3Eh</td>
<td>000</td>
<td>363</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
Table 29   Intelligent Document Capture (IDC) Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Name</th>
<th>Parameter Number</th>
<th>SSI Number</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDC Zoom Limit</td>
<td>Sig_MIN_PERCENT</td>
<td>651</td>
<td>F1h 8Bh</td>
<td>000</td>
<td>363</td>
</tr>
<tr>
<td>IDC Maximum Rotation</td>
<td>Sig_MAX_ROT</td>
<td>652</td>
<td>F1h 8Ch</td>
<td>00</td>
<td>364</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.

**IDC Operating Mode**

**Parameter Name: DocCap_MODE**

**Parameter # 594**

**SSI # F1h 52h**

Select the operating mode of the Intelligent Document Capture firmware:

- **Off** - Disables the IDC feature.
- **Anchored** - Requires a barcode decode. The image capture region is based off this barcode.
- **Free-Form** - A printed border or page edge defines the image capture region. A barcode is optional.
- **Linked** - A printed border or page edge defines the image capture region. A barcode is required.
IDC Symbology

Parameter Name: DocCap_SYMBOLOGY

Parameter # 655

SSI # F1h 8Fh

Select the barcode type(s) to use when Document Capture mode is not set to Off. To enable more than one symbology at a time, simply add the values together. For example, to enable PDF417, Data Matrix, and Code 39 write a value of 98 (32 + 64 + 2).

Scan the following barcode, and then scan three barcodes from Numeric Barcodes in the range of 001 to 511 decimal. The default is 001.

Table 30   IDC Symbologies

<table>
<thead>
<tr>
<th>Symbology</th>
<th>Value (Decimal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 128</td>
<td>1</td>
</tr>
<tr>
<td>Code 39</td>
<td>2</td>
</tr>
<tr>
<td>I 2 of 5</td>
<td>4</td>
</tr>
<tr>
<td>D 2 of 5</td>
<td>8</td>
</tr>
<tr>
<td>Codabar</td>
<td>16</td>
</tr>
<tr>
<td>PD 417</td>
<td>32</td>
</tr>
<tr>
<td>Data Matrix</td>
<td>64</td>
</tr>
<tr>
<td>EAN 128</td>
<td>128</td>
</tr>
<tr>
<td>Aztec</td>
<td>256</td>
</tr>
</tbody>
</table>
Intelligent Document Capture (Hand-held Mode Only)

IDC X Coordinate

Parameter Name: DocCap_X

Parameter # 596

SSI # F4h F1h 54h

This parameter only applies when IDC Operating Mode is set to Anchored. Specify the horizontal offset to the top left corner of the region to capture relative to the center of the barcode. Negative values move toward the left.

Scan the following barcode, and then scan four barcodes from Numeric Barcodes in the range of +/- 1279. The default is -151. Note that you must use an application to set a negative value.

IDC Y Coordinate

Parameter Name: DocCap_Y

Parameter # 597

SSI # F4h F1h 55h

This parameter only applies when IDC Operating Mode is set to Anchored. Specify the vertical offset to the top left corner of the region to capture relative to the center of the barcode. Negative values move toward the top.

Scan the following barcode, and then scan four barcodes from Numeric Barcodes in the range of +/- 1023. The default is -050. Note that you must use an application to set a negative value.
**IDC Width**

**Parameter Name: DocCap_WIDTH**

**Parameter # 598**

**SSI # F1h 56h**

This parameter only applies when IDC Operating Mode is set to Anchored. Specify the width of the region to capture.

Scan the following barcode, and then scan four barcodes from Numeric Barcodes in the range of 0000 to 1279. The default is 0300.

**IDC Height**

**Parameter Name: DocCap_HEIGHT**

**Parameter # 599**

**SSI # F1h 57h**

This parameter only applies when IDC Operating Mode is set to Anchored. Specify the height of the region to capture.

Scan the following barcode, and then scan four barcodes from Numeric Barcodes in the range of 0000 to 1279. The default is 0050.
IDC Aspect

Parameter Name: DocCap_ASPECT

Parameter # 595

SSI # F1h 53h

This parameter only applies when IDC Operating Mode is set to Anchored. Specify the barcode’s aspect ratio of a thin bar or space. The barcode’s height is divided by this value to obtain the unit in the y-axis. Set this parameter to zero to calculate the aspect value automatically.

Scan the following barcode, and then scan three barcodes from Numeric Barcodes in the range of 000 to 255. The default is 000.

---

IDC File Format Selector

Parameter Name: DocCap_FMT

Parameter # 601

SSI # F1h 59h

Select a document capture file format appropriate for your system (BMP, TIFF, or JPEG). The scanner stores captured areas in the selected format.

---

* JPEG (1)

BMP (3)

TIFF (4)
Intelligent Document Capture (Hand-held Mode Only)

IDC Bits Per Pixel

Parameter Name: DocCap_BPP
Parameter # 602
SSI # F1h 5Ah

Select the number of significant bits per pixel (BPP) to use when capturing an image. Select 1 BPP for a black and white image, 4 BPP to assign 1 of 16 levels of grey to each pixel, or 8 BPP to assign 1 of 256 levels of grey to each pixel.

NOTE: The scanner ignores these settings for JPEG file formats, which only support 8 BPP.

- 1 BPP (0)
- 4 BPP (1)
- * 8 BPP (2)

IDC JPEG Quality

Parameter Name: DocCap_JPEG_Qual
Parameter # 603
SSI # F1h 5Bh

Set the amount of JPEG compression to perform on the captured image. Higher numbers produce a better quality image but larger files.

Scan the following barcode, and then scan three barcodes from Numeric Barcodes in the range of 005 to 100 decimal. The default is 065.
Intelligent Document Capture (Hand-held Mode Only)

IDC Find Box Outline
Parameter Name: Sig_FINDBOX
Parameter # 727
SSI # F1h D7h

This parameter only applies when IDC Operating Mode is set to Anchored. Scan Enable Find Box Outline to search for a rectangular border during document capture.

Enable Find Box Outline
(1)

* Disable Find Box Outline
(0)

IDC Minimum Text Length
Parameter Name: DocCap_MIN_TEXT
Parameter # 656
SSI # F1h 90h

Specify the minimum number of characters encoded in a barcode for the IDC firmware to use it as an anchored or linked barcode. Set this to zero (the default) to disable all checking and use all barcodes.

Scan the following barcode, and then scan two barcodes from Numeric Barcodes in the range of 00 to 55 decimal. The default is 00.

IDC Minimum Text Length
IDC Maximum Text Length
Parameter Name: DocCap_MAX_TEXT
Parameter # 657
SSI # F1h 91h

Specify the maximum number of characters encoded in a barcode for the IDC firmware to use it as an anchored or linked barcode. Set this to zero (the default) to disable all checking and use all barcodes.

Scan the following barcode, and then scan two barcodes from Numeric Barcodes in the range of 00 to 55 decimal. The default is 00.

![IDC Maximum Text Length Barcode]

IDC Captured Image Brighten
Parameter Name: Sig_BRIGHTEN
Parameter # 654
SSI # F1h 8Eh

Enable Captured Image Brighten to make image brightness uniform and enhance contrast such that a large percent of the background pixels is made completely white (a smaller percent of pixels is made completely black if the program determines there is no danger of enhancing the contrast of a very bland area).

NOTE: This parameter is also used for Signature Capture.

* Enable Captured Image Brighten (1)

![Enable Captured Image Brighten Barcode]

Disable Captured Image Brighten (0)

![Disable Captured Image Brighten Barcode]
IDC Captured Image Sharpen
Parameter Name: Sig_SHARPEN
Parameter # 658
SSI # F1h 92h

Enable this to enhance the sharpness of the image.

NOTE: This parameter is also used for Signature Capture.

* Enable Captured Image Sharpen
  (1)

Disable Captured Image Sharpen
  (0)
IDC Border Type

Parameter Name: DocCap_BORDER

Parameter # 829

SSI # F2h 3Dh

This parameter only applies when IDC Operating Mode is set to Free-Form or Linked. Select the style of border used to determine the outline of the capture region:

- **None** - Capture the largest rectangular region within the field-of-view.
- **Black** - The border must be black (such as a printed rectangular border).
- **White** - The border must be white (e.g., paper edge on a dark background).
- **Advanced Edge Detection (AED)** - Capture a region defined by edges of any color and potentially broken.
**Intelligent Document Capture (Hand-held Mode Only)**

**IDC Delay Time**

**Parameter Name: DocCap_DELAY**

**Parameter # 830**

**SSI # F2h 3Eh**

This parameter only applies when IDC Operating Mode is set to **Free-Form**. Set the delay for capturing a document after a trigger pull. Decoding a barcode aborts this delay.

Scan the following barcode, and then scan three barcodes from Numeric Barcodes in the range of 000 to 200 decimal in units of 10 msec. The default is 000.

---

**IDC Zoom Limit**

**Parameter Name: Sig_MIN_PERCENT**

**Parameter # 651**

**SSI # F1h 8Bh**

This parameter only applies when IDC Operating Mode is set to **Anchored**. Set the minimal "zoom" percentage value of a form for it to be considered for capture. This controls the quality of the captured form. The IDC firmware rejects capturing a form unless the width is at least the IDC Zoom Limit percentage of the IDC Width parameter. For example, if you set this parameter to 100 and IDC Width to 150, the form must be at least 300 pixels wide before it is captured (each unit module is scaled to two pixels).

Set this to zero (the default) to disable all checking.

Scan the following barcode, and then scan three barcodes from Numeric Barcodes in the range of 000 to 100 percent. The default is 000.
IDC Maximum Rotation

Parameter Name: Sig_MAX_ROT

Parameter # 652

SSI # F1h 8Ch

This parameter only applies when IDC Operating Mode is set to Anchored. Set the maximum rotation any edge of the form can have in relation to the scanner’s horizontal or vertical axis for it to be considered for capture. Set this to zero (the default) to disable all checking.

Scan the following barcode, and then scan two barcodes from Numeric Barcodes in the range of 00 to 45 decimal. The default is 00.

IDC Maximum Rotation
Quick Start

This section familiarizes you with some of the Intelligent Document Capture features. IDC Demonstrations on page 366 includes instructions to demonstrate the Anchored, Free-Form, and Linked modes using a sample form to provide an understanding of how to use IDC. These examples do not illustrate all capabilities of the advanced IDC firmware. Build upon these using different parameter settings and forms.

Sample IDC Setup

To set up IDC:

1. Connect a scanner equipped with IDC to the host computer's USB port.
2. To set the scanner to the default settings and proper USB host type, scan Set Defaults followed by the Symbol Native API (SNAPI) with Imaging Interface barcode. Allow time for the scanner to reset and the USB connection to remunerate after each scan before continuing.

3. Start the sample application and select the scanner in the SNAPI Scanners drop-down menu.
4. Set parameters as specified in IDC Demonstrations on page 366 using the sample application or by scanning parameter barcodes in this guide. The barcode in the sample form is Code 128, which is enabled by default for decoding and as a Document Capture symbology. You can change these settings for your IDC application.
5. Perform each demo. When scanning, aim the scanner at the barcode in the center of the rectangle. Pull the scanner back so the rectangle is fully contained in the aiming pattern. When you pull the trigger, the scanner emits a low tone to indicate that the IDC firmware identified and captured an image, then a decode beep to indicate that the data transmitted. There may be several seconds between the two beeps, depending on the size of the captured image and options selected (de-skew, brighten, etc). You can move the scanner after the first beep, but continue the hold the trigger or the scanner may end the session before sending the data.
IDC Demonstrations

Anchored Mode Demo

- Set IDC Operating Mode on page 353 to Anchored.
- Set parameters to these values:
  - Set IDC Height on page 356 to 100.
  - Set IDC Width on page 356 to 90.
  - Set IDC X Coordinate on page 355 to -175.
  - Set IDC Y Coordinate on page 355 to -50.
- Pull the trigger. The scanner decodes the barcode and captures an image of the text scroll.
- Rotate the form clockwise so the word Capture is along the bottom edge, and pull the trigger. The scanner decodes the barcode and captures the same image, including orientation. (This example also works with the form rotated counterclockwise or upside down).
- Modify the values for height, width, x, and y. Pull the trigger. The captured area changes in size and location.
- Cover the barcode with a small piece of paper (or your finger) and pull the trigger. The scanner does not decode the barcode or capture an image.

What This Demonstrates

Anchored mode captures an image of fixed size and location relative to a barcode on the page. Parameters control the height, width, and location. The IDC firmware requires that a barcode is present in order to capture an image. It decodes the barcode and uses it to adjust the image to the upright orientation.

Free-Form Mode Demo

- Set IDC Operating Mode on page 353 to Free-Form.
- Pull the trigger. The scanner decodes the barcode and captures an image of the entire rectangle, including the contents.
- Modify the values for height, width, x, and y. Pull the trigger. Note that the captured image is not affected.
- Rotate the form clockwise so the word Capture is along the bottom edge, and pull the trigger. The scanner decodes the barcode and captures the same image, including orientation. (This example also works with the form rotated counterclockwise or upside down).
- Cover the barcode with a small piece of paper and pull the trigger. The scanner does not decode the barcode and does not re-orient the captured image to the normal position, i.e., with the logo in the upper-left corner.

What This Demonstrates

Free-Form mode captures an image where a rectangular border on the page determines the size and position. It adjusts the image to the upright orientation if a barcode is found and decoded in the image.

Linked Mode Demo

Set IDC Operating Mode on page 353 to Linked.

Use the examples from the Free-Form Mode Demo, noting that the last item (covering the barcode) does not decode the barcode or capture an image.
What This Demonstrates

Linked mode captures an image where a rectangular border on the page determines the size and position. The IDC firmware requires that a barcode is present in order to capture an image. It decodes the barcode and uses it to adjust the image to the upright orientation.

Other Suggestions

Hold the scanner at an angle (up/down or side to side) to the page instead of perpendicular to it. The IDC firmware de-skews and adjusts the brightness (enabled by default) to produce a quality image when the scanner is held at less than ideal conditions.

Quick Start Form
Introduction

Digimarc Barcode is a machine-readable code that is invisible to people.

Digimarc Symbology Selection

Digimarc codes are reported as UPC-A, UPC-E, EAN-13 or GS1 DataBar Expanded.

NOTE: Conversion of the Digimarc reported code types to other barcode types is not supported.

AIM and Symbol code IDs are supported for the reported Digimarc code types.

Picklist

The Digimarc decoder searches configured block areas of the image for Digimarc codes. The Digimarc decoder works the same whether or not Picklist is enabled or disabled.

NOTE: Decode time could be greater given the extra processing done by system and decoder when in Picklist mode.
Digimarc Digital Watermarks
Parameter # 1687
SSI # F8h 06h 97h

To enable or disable the Digimarc Digital Watermarks code scan the appropriate barcode below.

**NOTE:** Enabling Digimarc Digital Watermarks/DW increases decode times slightly. Increasing the Timeout Between Decodes, Same Symbol on page 79 may be required to avoid double decodes.

* Enable Digimarc Digital Watermarks/DW
  (1)

Disable Digimarc Digital Watermarks/DW
  (0)
Introduction

This chapter briefly describes the Zebra features available for customizing scanner operation.

Advanced Data Formatting (ADF)

Advanced Data Formatting (ADF) allows customizing data before transmission to the host device. Use ADF to edit scanned data to suit the host application's requirements. With ADF you scan one barcode per trigger pull. ADF is programmed using 123Scan.

For a video on Creating an Advanced Data Formatting (ADF) Rule using 123Scan, go to: www.zebra.com/ScannerHowToVideos.

For additional information, refer to the Advanced Data Formatting Programmer Guide.

Multicode Data Formatting (Hand-held Mode Only)

Multicode Data Formatting (MDF) enables a 2D scanner to scan all barcodes on a label with a single trigger pull, and then modify and transmit the data to meet host application requirements. MDF supports programming up to nine unique labels into one scanner. MDF also supports scanning multiple barcodes on opposite sides of a box by holding the trigger.

Programming options include:

- Output all or specific barcodes
- Control the barcode output sequence
- Apply unique multicode data formatting (MDF) to each output barcode
- Discard scanned data if all required barcodes are not present

For more information, refer to the MDF and Preferred Symbol User Guide.

To watch a video on Creating an Multicode Data Formatting (MDF) Rule using 123Scan, go to: http://www.zebra.com/ScannerHowToVideos
MDF in Hands-Free Mode

MDF in a hands-free scanning mode may yield multiple unexpected and undesired outputs when a label (most likely on a complex label) passes through the scanner's field of view. This problem happens when the complex label's barcodes can be matched by more than one group (for example, Group 1 represents all barcodes present and Group 2 represent some barcodes present).

NOTE: A similar problem can also occur in the hand-held trigger mode. If multiple MDF rules/groups exist and all the label is not in the field of view when pressing the trigger, the output may vary depending on which MDF rules/groups match.

The problem is demonstrated in Figure 25 and as follows:

1. As the label is moving through the field of view, it is first partially read (some of the barcodes in the field of view in Frame 2).
2. Then, the second decode occurs as it is fully read (all the barcodes in the field of view in Frame 3).
3. This yields two different outputs (instead of the expected single output) from the presentation of a label. This problem is driven by a complex label inadvertently matching two different MDF rules/groups, thereby yielding two outputs.

NOTE: To minimize issues associated with MDF hands-free mode, see MDF Best Practices on page 372.
MDF Best Practices

Suggestions to minimize the undesired multiple outputs during the MDF scanning in hands-free mode are as follows:

- Scan barcodes in a vertical orientation (see Figure 26).

![Direction of Barcode Movement]

- When creating the MDF programming with multiple groups, the Group 1’s pattern match should be the most complicated (hardest to match), which equals to the most number of barcodes and criteria. Then Group 2, 3, and so on should be progressively matched more easily.

- When defining criteria, avoid enabling an output when the pattern is not matched. Set Output if NO pattern match set as Discard bar code (see Figure 27).

![Figure 26 Scanning Label in a Vertical Orientation]

- When creating the MDF programming with multiple groups, the Group 1’s pattern match should be the most complicated (hardest to match), which equals to the most number of barcodes and criteria. Then Group 2, 3, and so on should be progressively matched more easily.

- When defining criteria, avoid enabling an output when the pattern is not matched. Set Output if NO pattern match set as Discard bar code (see Figure 27).

![Figure 27 Figure Match Setting for Output]

- Select Discard barcode(s) NOT within the pattern match in the 123Scan MDF setting. For more details, select What is this? located next to this selection.
To prevent double decodes of the same symbol, increase the **Timeout Between Same Symbols** setting. See **Timeout Between Decodes, Same Symbol on page 79** for more details.

- Turn the scanner’s aimer on to assist operators in scanning the barcode in a more consistent manner.

Other reasons a label/barcode may not be decoded while in the field of view are as follows:

- The label out of focus (too close or too far away). See **Decode Ranges on page 47** for correct working range.
- Specular reflection (reflection off a shiny surface).
- The label is presented at extreme angle to scanner.

---

### Preferred Symbol

Preferred Symbol is a barcode prioritization technique that enables favored decoding of high priority barcode(s). The Preferred Symbol is the only barcode that is decoded and output within the preset Preferred Symbol Timeout. During this time, the scanner attempts to decode the prioritized barcode and reports only this barcode.

For more information, refer to the Multicode Data Formatting and Preferred Symbol User Guide, p/n MN-002895-xx.

To program Preferred Symbol via 123Scan, select **123Scan > Configuration Wizard > Symbologies screen**, and then select **Preferred Symbol** from the drop-down menu. Preferred Symbol programming is saved in the 123Scan configuration file.
Introduction

The scanner uses internally embedded algorithms to parse out barcode information from standard US driver's licenses and certain other American Association of Motor Vehicle Administrators (AAMVA) compliant ID cards. Scanning these barcodes produces formatted data for use in age verification, credit card application information, and more.

This chapter describes how to program the scanner to read and use the data contained in the 2D barcodes on US driver's licenses and AAMVA compliant ID cards.

<table>
<thead>
<tr>
<th>Table 31</th>
<th>DL Parsing Parameter Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Default</td>
</tr>
<tr>
<td><strong>DL Parsing Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>Driver's License Parsing</td>
<td>No Driver's License Parsing</td>
</tr>
<tr>
<td>Parsing Driver's License Data Fields</td>
<td>N/A</td>
</tr>
<tr>
<td>Driver's License Parse Field Barcodes</td>
<td>N/A</td>
</tr>
<tr>
<td>AAMVA Parse Field Barcodes</td>
<td>N/A</td>
</tr>
<tr>
<td>Parser Version ID Barcode</td>
<td>N/A</td>
</tr>
<tr>
<td>Set Default Parameter</td>
<td>N/A</td>
</tr>
<tr>
<td>Output Gender as M or F</td>
<td>N/A</td>
</tr>
<tr>
<td>Date Format</td>
<td>CCYYMMDD</td>
</tr>
<tr>
<td>No Separator</td>
<td>N/A</td>
</tr>
<tr>
<td>Send Keystroke</td>
<td>N/A</td>
</tr>
<tr>
<td>Control Characters</td>
<td>N/A</td>
</tr>
<tr>
<td>Keyboard Characters</td>
<td>N/A</td>
</tr>
<tr>
<td>Parsing Rule Example</td>
<td>N/A</td>
</tr>
<tr>
<td>Embedded Driver's License Parsing ADF Example</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Driver’s License Parsing

Parameter # 645

SSI # F1 85

To enable driver’s license parsing on the scanner, scan the Embedded Driver's License Parsing barcode. This does not require Zebra software (.DLL).

Scan the barcodes on the following pages in the order indicating the sequence of data fields that the scanner outputs. See Parsing Driver’s License Data Fields (Embedded Driver’s License Parsing) on page 376 for more information.
Parsing Driver’s License Data Fields (Embedded Driver's License Parsing)

To program a parsing rule:

1. Scan Begin New Driver’s License Parse Rule on page 377.
2. Scan any of the field barcodes on the following pages, or Send Keystroke (Control Characters and Keyboard Characters) on page 392.
3. After entering the entire rule, scan Save Driver’s License Parse Rule on page 377 to save the rule.

NOTE: The scanner stores only one driver's license parsing rule in memory at a time. Saving a new rule replaces the prior rule.

To abort the programming sequence at any time during programming, scan Quit Entering Driver’s License Rule on page 377. Any previously saved rule is retained.

To erase a saved rule, scan Erase Driver's License Parse Rules on page 377.

Embedded Driver's License Parsing Criteria - Code Type

After specifying the fields and their order for the parsed driver's license, you can also apply standard ADF rules to the parsed data using the Parsed Driver's License criterion barcode in the Advanced Data Formatting Programmer Guide.

NOTE: Only create standard ADF rules on parsed driver's license data when configured for Embedded Driver's License Parsing.

See Embedded Driver's License Parsing ADF Example on page 414 for a sample ADF rule using this code type criterion.
The supported parse fields begin below. Not all IDs present data in the same format. For example, some IDs can have separate fields for first name, last name, and middle initial, while others have a single field with the entire name. Also, some IDs expire on the subject's birth date while the expiration date field only indicates the year. To present data in a consistent format, use the following nine barcodes to return data calculated from the actual data contained in the ID barcode.

First Name

Middle Name/Initial
Driver’s License Parse Field Barcodes (continued)

- Last Name
- Name Suffix
- Name Prefix
- Expiration Date
- Birth Date
- Issue Date
- ID Number (Formatted)
AAMVA Parse Field Barcodes

- AAMVA Issuer ID
- Full Name
- Last Name
- First Name
- Middle Name / Initial
- Name Suffix
- Name Prefix
AAMVA Parse Field Barcodes (continued)

- Mailing Address Line 1
- Mailing Address Line 2
- Mailing Address City
- Mailing Address State
- Mailing Address Postal Code
- Home Address Line 1
- Home Address Line 2
AAMVA Parse Field Barcodes (continued)

Home Address City

Home Address State

Home Address Postal Code

License ID Number

License Class

License Restrictions

License Endorsements
AAMVA Parse Field Barcodes (continued)

Height (Feet and/or Inches)

Height (Centimeters)

Weight (Pounds)

Weight (Kilograms)

Eye Color

Hair Color

License Expiration Date
<table>
<thead>
<tr>
<th>Field</th>
<th>Barcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth Date</td>
<td><img src="#" alt="Barcode" /></td>
</tr>
<tr>
<td>Gender</td>
<td><img src="#" alt="Barcode" /></td>
</tr>
<tr>
<td>License Issue Date</td>
<td><img src="#" alt="Barcode" /></td>
</tr>
<tr>
<td>License Issue State</td>
<td><img src="#" alt="Barcode" /></td>
</tr>
<tr>
<td>Social Security Number</td>
<td><img src="#" alt="Barcode" /></td>
</tr>
<tr>
<td>Permit Class</td>
<td><img src="#" alt="Barcode" /></td>
</tr>
<tr>
<td>Permit Expiration Date</td>
<td><img src="#" alt="Barcode" /></td>
</tr>
</tbody>
</table>
AAMVA Parse Field Barcodes (continued)

- Permit ID Number
- Permit Issue Date
- Permit Restrictions
- Permit Endorsements
- AKA Social Security Name
- AKA Full Name
- AKA Last Name
- AKA First Name
AAMVA Parse Field Barcodes (continued)

- AKA Middle Name / Initial
- AKA Name Suffix
- AKA Name Prefix
- AKA Birth Date
- Issue Timestamp
- Number of Duplicates
- Medical Codes
AAMVA Parse Field Barcodes (continued)

- Organ Donor
- Nonresident
- Customer ID
- Weight Range
- Document Discriminator
- Country
- Federal Commission Codes
AAMVA Parse Field Barcodes (continued)

- Place of Birth
- Audit Information
- Inventory Control
- Race / Ethnicity
- Std Vehicle Class
- Std Endorsements
- Std Restrictions
AAMVA Parse Field Barcodes (continued)

Class Description

Endorsement Description

Restrictions Description

Height in Inches

Height in Centimeters

Parser Version ID Barcode

Include this field to emit embedded parser software version identification
User Preferences

Set Default Parameter

Scan this barcode to return all parameters to the default values listed in Table 32 on page 416.

* Set All Defaults

Output Gender as M or F

Scan this barcode to report the gender as M or F instead of a numeric value.
Date Format

Use these barcodes to select the date format to display. Date fields include the following:

- **CCYY** = 4-digit year (CC=2-digit century [00-99], YY=2-digit year in the century [00-99])
- **MM** = 2-digit month [01-12]
- **DD** = 2-digit day of the month [00-31]

The default is **CCYYMMDD**.

**NOTE:** To specify a date separator, i.e., a character separating each field of the date, scan the Send <character> barcode that corresponds to the alphanumeric character to use as the date separator immediately following the date format barcode. To select no date separator, scan the No Separator DL parsing rule immediately following the date format barcode.
Date Format (continued)

YYMMDD

YYDDMM

MMDDYY

MMYYDD

DDMMYY

DDYYMM

No Separator

Scan this barcode immediately following a date format barcode to use no separator character between the date fields.

No Separator
Send Keystroke (Control Characters and Keyboard Characters)

Control Characters

Scan a Send barcode for the keystroke to send.

- Send Control A
- Send Control B
- Send Control C
- Send Control D
- Send Control E
- Send Control F
- Send Control G
- Send Control H
Control Characters (continued)

Send Control I

Send Control J

Send Control K

Send Control L

Send Control M

Send Control N

Send Control O

Send Control P
Control Characters (continued)

Send Control Q

Send Control R

Send Control S

Send Control T

Send Control U

Send Control V

Send Control W
Control Characters (continued)

Send Control X

Send Control Y

Send Control Z

Send Control [

Send Control \n
Send Control ]
Control Characters (continued)

Scan a Send barcode for the keyboard characters to send.

Keyboard Characters

Send Control 6

Send Control -

Send Space

Send !

Send “

Send #
Keyboard Characters (continued)

Send $

Send %

Send &

Send '

Send (  

Send )

Send *
Keyboard Characters (continued)

Send +

Send ,

Send -

Send .

Send /

Send 0

Send 1
Keyboard Characters (continued)

Send 2

Send 3

Send 4

Send 5

Send 6

Send 7

Send 8
Keyboard Characters (continued)

Send 9

Send :

Send ;

Send <

Send =

Send >

Send ?
Keyboard Characters (continued)

Send @

Send A

Send B

Send C

Send D

Send E

Send F
Keyboard Characters (continued)

Send G

Send H

Send I

Send J

Send K

Send L

Send M
Keyboard Characters (continued)

Send N

Send O

Send P

Send Q

Send R

Send S

Send T
Keyboard Characters (continued)

Send U

Send V

Send W

Send X

Send Y

Send Z

Send [ 
## Keyboard Characters (continued)

<table>
<thead>
<tr>
<th>Character</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>\</td>
<td>Send \</td>
</tr>
<tr>
<td>]</td>
<td>Send ]</td>
</tr>
<tr>
<td>^</td>
<td>Send ^</td>
</tr>
<tr>
<td>_</td>
<td>Send _</td>
</tr>
<tr>
<td>`</td>
<td>Send `</td>
</tr>
<tr>
<td>a</td>
<td>Send a</td>
</tr>
<tr>
<td>b</td>
<td>Send b</td>
</tr>
</tbody>
</table>
Keyboard Characters (continued)

Send c

Send d

Send e

Send f

Send g

Send h

Send i
Keyboard Characters (continued)

Send j

Send k

Send l

Send m

Send n

Send o

Send p
Keyboard Characters (continued)

Send q

Send r

Send s

Send t

Send u

Send v

Send w
Keyboard Characters (continued)

Send x

Send y

Send z

Send {

Send |

Send }

Send ~
Parsing Rule Example

Scan the following barcodes in sequence to program the scanner to extract and transmit first, middle, and last names; mailing address line 1; mailing address line 2; mailing address city; mailing address state; mailing address postal code; and, date of birth. Then, scan a driver’s license barcode.

**NOTE:** This example applies to RS-232. To use this example with a USB interface, enable Function Key Mapping on page 246 to send the **Enter** key properly.

1

Embedded Driver’s License Parsing

2

Begin New Driver’s License Parse Rule

3

First Name
Parsing Rule Example (continued)

4

5

Middle Name / Initial

6

Send Space

7

Last Name

8

Send Enter Key

9

Mailing Address Line 1
Parsing Rule Example (continued)

10

Send Space

11

Mailing Address Line 2

12

Send Enter Key

13

Mailing Address City

14

Send Space

15

Mailing Address State
Parsing Rule Example (continued)

16

Send Space

17

Mailing Address Postal Code

18

Send Enter Key

19

Birth Date

20

Send Enter Key

21

Save Driver’s License Parse Rule
Embedded Driver's License Parsing ADF Example

This example creates a parsing rule for parsed data configured to result in the format:

Last Name, First Name

1

Begin New Driver's License Parse Rule

2

Last Name

3

Send ,

4

Send Space

5

First Name

6

Save Driver’s License Parse Rule
Then, in order to limit the full name to 15 characters, create the following ADF rule:

1. Begin New Rule
2. Criterion: Parsed Driver's License
3. Action: Send Next 15 Characters
4. Save Rule

For a license belonging to Michael Williams, the parsed data is Williams, Michael and Williams, Micha after applying the previous ADF rule.
## Parameter Defaults

### Table 32  Parameter Defaults

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number ¹</th>
<th>SSI Number ²</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Number</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>54</td>
</tr>
<tr>
<td>Report Software Version</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>54</td>
</tr>
<tr>
<td>Manufacturing Information</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>54</td>
</tr>
</tbody>
</table>

**Standard User Preferences**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number ¹</th>
<th>SSI Number ²</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Default Parameter</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>62</td>
</tr>
<tr>
<td>Parameter Barcode Scanning</td>
<td>236</td>
<td>ECh</td>
<td>Enable</td>
<td>63</td>
</tr>
<tr>
<td>Beep After Good Decode</td>
<td>56</td>
<td>38h</td>
<td>Enable</td>
<td>63</td>
</tr>
<tr>
<td>Beep Volume</td>
<td>140</td>
<td>8Ch</td>
<td>High</td>
<td>64</td>
</tr>
<tr>
<td>Beep Tone</td>
<td>145</td>
<td>91h</td>
<td>Medium</td>
<td>65</td>
</tr>
<tr>
<td>Beep Duration</td>
<td>628</td>
<td>F1h 74h</td>
<td>Short</td>
<td>66</td>
</tr>
<tr>
<td>Volume Adjustment Trigger Timeout</td>
<td>403</td>
<td>F0h 93h</td>
<td>5 Seconds</td>
<td>67</td>
</tr>
<tr>
<td>Suppress Power Up Beeps</td>
<td>721</td>
<td>F1h D1h</td>
<td>Do Not Suppress</td>
<td>68</td>
</tr>
<tr>
<td>Direct Decode Indicator</td>
<td>859</td>
<td>F2h 58h</td>
<td>Disable</td>
<td>69</td>
</tr>
<tr>
<td>Low Power Mode</td>
<td>128</td>
<td>80h</td>
<td>Disable</td>
<td>70</td>
</tr>
<tr>
<td>Time Delay to Low Power Mode</td>
<td>146</td>
<td>92h</td>
<td>1 Hour</td>
<td>71</td>
</tr>
<tr>
<td>Trigger Mode</td>
<td>138</td>
<td>8Ah</td>
<td>Presentation Mode</td>
<td>73</td>
</tr>
<tr>
<td>Hand-held Decode Aiming Pattern</td>
<td>306</td>
<td>F0h 32h</td>
<td>Enable</td>
<td>74</td>
</tr>
<tr>
<td>Presentation (Hands-free) Decode Aiming Pattern</td>
<td>590</td>
<td>F1h 4Eh</td>
<td>Disable Presentation (Hands-free) Decode Aiming Pattern</td>
<td>75</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
### Table 32 Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momentary Trigger Mode Timeout</td>
<td>2030</td>
<td>EDh</td>
<td>5 Seconds</td>
<td>76</td>
</tr>
<tr>
<td>Picklist Mode</td>
<td>402</td>
<td>F0h 92h</td>
<td>Enable Picklist Mode in Hand-held Mode</td>
<td>77</td>
</tr>
<tr>
<td>Continuous Barcode Read</td>
<td>649</td>
<td>F1h 89h</td>
<td>Disable</td>
<td>78</td>
</tr>
<tr>
<td>Unique Barcode Reporting</td>
<td>723</td>
<td>F1h D3h</td>
<td>Enable</td>
<td>78</td>
</tr>
<tr>
<td>Decode Session Timeout</td>
<td>136</td>
<td>88h</td>
<td>9.9 Seconds</td>
<td>79</td>
</tr>
<tr>
<td>Timeout Between Decodes, Same Symbol</td>
<td>137</td>
<td>89h</td>
<td>0.5 Seconds</td>
<td>79</td>
</tr>
<tr>
<td>Timeout Between Decodes, Different Symbols</td>
<td>144</td>
<td>90h</td>
<td>0.1 Seconds</td>
<td>80</td>
</tr>
<tr>
<td>Triggered Timeout, Same Symbol</td>
<td>724</td>
<td>F1h D4h</td>
<td>Disable</td>
<td>80</td>
</tr>
<tr>
<td>Mobile Phone/Display Mode</td>
<td>716</td>
<td>F1h CCh</td>
<td>Normal</td>
<td>81</td>
</tr>
<tr>
<td>PDF Prioritization</td>
<td>719</td>
<td>F1h CFh</td>
<td>Disable</td>
<td>82</td>
</tr>
<tr>
<td>PDF Prioritization Timeout</td>
<td>720</td>
<td>F1h D0h</td>
<td>200 ms</td>
<td>82</td>
</tr>
<tr>
<td>Decoding Illumination</td>
<td>298</td>
<td>F0h 2Ah</td>
<td>Enable</td>
<td>83</td>
</tr>
<tr>
<td>Illumination Brightness</td>
<td>669</td>
<td>F1h 9Dh</td>
<td>High</td>
<td>83</td>
</tr>
<tr>
<td>Motion Tolerance (Hand-held Trigger Mode Only)</td>
<td>858</td>
<td>F2h 5Ah</td>
<td>Less Motion Tolerance</td>
<td>85</td>
</tr>
<tr>
<td>Product ID (PID) Type</td>
<td>1281</td>
<td>F8h 05h 01h</td>
<td>Host Type Unique</td>
<td>85</td>
</tr>
<tr>
<td>Product ID (PID) Value</td>
<td>1725</td>
<td>F8h 06h BDh</td>
<td>0</td>
<td>86</td>
</tr>
<tr>
<td>ECLevel</td>
<td>1710</td>
<td>F8h 06h AEh</td>
<td>0</td>
<td>86</td>
</tr>
<tr>
<td><strong>Miscellaneous Options</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enter Key</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>87</td>
</tr>
<tr>
<td>Tab Key</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>87</td>
</tr>
<tr>
<td>Transmit Code ID Character</td>
<td>45</td>
<td>2Dh</td>
<td>None</td>
<td>88</td>
</tr>
<tr>
<td>Prefix Value</td>
<td>99, 105</td>
<td>63h, 69h</td>
<td>7013 &lt;CR&gt;&lt;LF&gt;</td>
<td>89</td>
</tr>
<tr>
<td>Suffix 1 Value</td>
<td>98, 104, 100, 106</td>
<td>62h, 68h, 64h, 6Ah</td>
<td>7013 &lt;CR&gt;&lt;LF&gt;</td>
<td>89</td>
</tr>
<tr>
<td>Suffix 2 Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scan Data Transmission Format</td>
<td>235</td>
<td>EBh</td>
<td>Data As Is</td>
<td>90</td>
</tr>
<tr>
<td>FN1 Substitution Values</td>
<td>103, 109</td>
<td>67h, 6Dh</td>
<td>7013 &lt;CR&gt;&lt;LF&gt;</td>
<td>92</td>
</tr>
<tr>
<td>Transmit &quot;No Read&quot; Message</td>
<td>94</td>
<td>5E</td>
<td>Disable</td>
<td>93</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
Table 32  Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsolicited Heartbeat Interval</td>
<td>1118</td>
<td>F8h 04h 5Eh</td>
<td>Disable</td>
<td>94</td>
</tr>
<tr>
<td>securPharm Decoding</td>
<td>1752</td>
<td>F8h 06h D8h</td>
<td>Disable</td>
<td>95</td>
</tr>
<tr>
<td>securPharm Output Formatting</td>
<td>1753</td>
<td>F8h 06h D9h</td>
<td>No Formatting</td>
<td>96</td>
</tr>
<tr>
<td>Image Capture Preferences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational Modes</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>102</td>
</tr>
<tr>
<td>Image Capture Illumination</td>
<td>361</td>
<td>F0h 69h</td>
<td>Enable</td>
<td>103</td>
</tr>
<tr>
<td>Image Capture Autoexposure</td>
<td>360</td>
<td>F0h 68h</td>
<td>Enable</td>
<td>103</td>
</tr>
<tr>
<td>Fixed Exposure</td>
<td>567</td>
<td>F4h F1h 37h</td>
<td>100</td>
<td>104</td>
</tr>
<tr>
<td>Analog Gain</td>
<td>1232</td>
<td>F4h D0h</td>
<td>Analog Gain x 2</td>
<td>105</td>
</tr>
<tr>
<td>Digital Gain</td>
<td>1233</td>
<td>F4h D1h</td>
<td>32</td>
<td>105</td>
</tr>
<tr>
<td>Gain / Exposure Priority for Snapshot Mode</td>
<td>562</td>
<td>F1h 32h</td>
<td>Autodetect</td>
<td>106</td>
</tr>
<tr>
<td>Snapshot Mode Timeout</td>
<td>323</td>
<td>F0h 43h</td>
<td>0 (30 seconds)</td>
<td>107</td>
</tr>
<tr>
<td>Snapshot Aiming Pattern</td>
<td>300</td>
<td>F0h 2Ch</td>
<td>Enable</td>
<td>108</td>
</tr>
<tr>
<td>Silence Operational Mode Changes</td>
<td>1293</td>
<td>F8h 05h 0Dh</td>
<td>Disable (do not silence)</td>
<td>108</td>
</tr>
<tr>
<td>Image Cropping</td>
<td>301</td>
<td>F0h 2Dh</td>
<td>Disable</td>
<td>109</td>
</tr>
<tr>
<td>Crop to Pixel Addresses</td>
<td>315 316 317 318</td>
<td>F4h F0h 3Bh</td>
<td>0 top 0 left 799 bottom 1279 right</td>
<td>109</td>
</tr>
<tr>
<td>Image Size (Number of Pixels)</td>
<td>302</td>
<td>F0h 2Eh</td>
<td>Full</td>
<td>111</td>
</tr>
<tr>
<td>Image Brightness (Target White)</td>
<td>390</td>
<td>F0h 86h</td>
<td>180</td>
<td>112</td>
</tr>
<tr>
<td>JPEG Image Options</td>
<td>299</td>
<td>F0h 2Bh</td>
<td>Quality</td>
<td>112</td>
</tr>
<tr>
<td>JPEG Quality Value</td>
<td>305</td>
<td>F0h 31h</td>
<td>65</td>
<td>113</td>
</tr>
<tr>
<td>JPEG Size Value</td>
<td>561</td>
<td>F1h 31h</td>
<td>160 kB</td>
<td>113</td>
</tr>
<tr>
<td>Image Enhancement</td>
<td>564</td>
<td>F1h 34h</td>
<td>Low (1)</td>
<td>114</td>
</tr>
<tr>
<td>Image File Format Selection</td>
<td>304</td>
<td>F0h 30h</td>
<td>JPEG</td>
<td>115</td>
</tr>
<tr>
<td>Image Rotation</td>
<td>665</td>
<td>F1h 99h</td>
<td>0</td>
<td>116</td>
</tr>
<tr>
<td>Bits per Pixel (BPP)</td>
<td>303</td>
<td>F0h 2Fh</td>
<td>8 BPP</td>
<td>117</td>
</tr>
<tr>
<td>Signature Capture</td>
<td>93</td>
<td>5Dh</td>
<td>Disable</td>
<td>118</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
### Table 32  Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature Capture Image File Format Selection</td>
<td>313</td>
<td>F0h 39h</td>
<td>JPEG</td>
<td>119</td>
</tr>
<tr>
<td>Signature Capture Bits per Pixel (BPP)</td>
<td>314</td>
<td>F0h 3Ah</td>
<td>8 BPP</td>
<td>120</td>
</tr>
<tr>
<td>Signature Capture Width</td>
<td>366</td>
<td>F4h F0h 6Eh</td>
<td>400</td>
<td>121</td>
</tr>
<tr>
<td>Signature Capture Height</td>
<td>367</td>
<td>F4h F0h 6Fh</td>
<td>100</td>
<td>121</td>
</tr>
<tr>
<td>Signature Capture JPEG Quality</td>
<td>421</td>
<td>F0h A5h</td>
<td>65</td>
<td>121</td>
</tr>
<tr>
<td>Enable/Disable All Code Types</td>
<td></td>
<td></td>
<td></td>
<td>131</td>
</tr>
<tr>
<td><strong>1D Symbologies</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>UPC/EAN/JAN</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPC-A</td>
<td>1</td>
<td>01h</td>
<td>Enable</td>
<td>131</td>
</tr>
<tr>
<td>UPC-E</td>
<td>2</td>
<td>02h</td>
<td>Enable</td>
<td>132</td>
</tr>
<tr>
<td>UPC-E1</td>
<td>12</td>
<td>0Ch</td>
<td>Disable</td>
<td>132</td>
</tr>
<tr>
<td>EAN-8/JAN 8</td>
<td>4</td>
<td>04h</td>
<td>Enable</td>
<td>133</td>
</tr>
<tr>
<td>EAN-13/JAN 13</td>
<td>3</td>
<td>03h</td>
<td>Enable</td>
<td>133</td>
</tr>
<tr>
<td>Bookland EAN</td>
<td>83</td>
<td>53h</td>
<td>Disable</td>
<td>134</td>
</tr>
<tr>
<td>Bookland ISBN Format</td>
<td>576</td>
<td>F1h 40h</td>
<td>ISBN-10</td>
<td>135</td>
</tr>
<tr>
<td>ISSN EAN</td>
<td>617</td>
<td>F1h 69h</td>
<td>Disable</td>
<td>136</td>
</tr>
<tr>
<td>Decode UPC/EAN/JAN Supplementals (2 and 5 digits)</td>
<td>16</td>
<td>10h</td>
<td>Ignore</td>
<td>137</td>
</tr>
<tr>
<td>User-Programmable Supplementals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplemental 1:</td>
<td>579</td>
<td>F1h 43h</td>
<td>000</td>
<td>140</td>
</tr>
<tr>
<td>Supplemental 2:</td>
<td>580</td>
<td>F1h 44h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPC/EAN/JAN Supplemental Redundancy</td>
<td>80</td>
<td>50h</td>
<td>10</td>
<td>140</td>
</tr>
<tr>
<td>Decode UPC/EAN/JAN Supplemental AIM ID</td>
<td>672</td>
<td>F1h A0h</td>
<td>Combined</td>
<td>141</td>
</tr>
<tr>
<td>Transmit UPC-A Check Digit</td>
<td>40</td>
<td>28h</td>
<td>Enable</td>
<td>142</td>
</tr>
<tr>
<td>Transmit UPC-E Check Digit</td>
<td>41</td>
<td>29h</td>
<td>Enable</td>
<td>142</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
### Table 32  Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number  1</th>
<th>Parameter Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit UPC-E1 Check Digit</td>
<td>42</td>
<td>2Ah</td>
<td>Enable</td>
<td>143</td>
</tr>
<tr>
<td>UPC-A Preamble</td>
<td>34</td>
<td>22h</td>
<td>System Character</td>
<td>144</td>
</tr>
<tr>
<td>UPC-E Preamble</td>
<td>35</td>
<td>23h</td>
<td>System Character</td>
<td>145</td>
</tr>
<tr>
<td>UPC-E1 Preamble</td>
<td>36</td>
<td>24h</td>
<td>System Character</td>
<td>146</td>
</tr>
<tr>
<td>Convert UPC-E to UPC-A</td>
<td>37</td>
<td>25h</td>
<td>Disable</td>
<td>147</td>
</tr>
<tr>
<td>Convert UPC-E1 to UPC-A</td>
<td>38</td>
<td>26h</td>
<td>Disable</td>
<td>147</td>
</tr>
<tr>
<td>EAN/JAN Zero Extend</td>
<td>39</td>
<td>27h</td>
<td>Disable</td>
<td>148</td>
</tr>
<tr>
<td>UCC Coupon Extended Code</td>
<td>85</td>
<td>55h</td>
<td>Disable</td>
<td>148</td>
</tr>
<tr>
<td>Coupon Report</td>
<td>730</td>
<td>F1h DAh</td>
<td>New Coupon Format</td>
<td>149</td>
</tr>
<tr>
<td>UPC Reduced Quiet Zone</td>
<td>1289</td>
<td>F8h 05h 09h</td>
<td>Disable</td>
<td>150</td>
</tr>
</tbody>
</table>

### Code 128

Code 128	8	08h	Enable	150
Set Length(s) for Code 128	209, 210	D1h, D2h	Any Length	151
GS1-128 (formerly UCC/EAN-128)	14	0Eh	Enable	152
ISBT 128	84	54h	Enable	153
ISBT Concatenation	577	F1h 41h	Disable	153
Check ISBT Table	578	F1h 42h	Enable	154
ISBT Concatenation Redundancy	223	DFh	10	155
Code 128 <FNC4>	1254	F8h 04h E6h	Honor	155
Code 128 Security Level	751	F1h EFh	Security Level 1	156
Code 128 Reduced Quiet Zone	1208	F8h 04h B8h	Disable	157

### Code 39

Code 39	0	00h	Enable	157
Trioptic Code 39	13	0Dh	Disable	158
Convert Code 39 to Code 32 (Italian Pharmacy Code)	86	56h	Disable	158
Code 32 Prefix	231	E7h	Disable	159
Set Length(s) for Code 39	18, 19	12h, 13h	1 to 55	159

1. Parameter number decimal values are used for programming via RSM commands.  
2. SSI number hex values are used for programming via SSI commands.
### Table 32 Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number ²</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 39 Check Digit Verification</td>
<td>48</td>
<td>30h</td>
<td>Disable</td>
<td>161</td>
</tr>
<tr>
<td>Transmit Code 39 Check Digit</td>
<td>43</td>
<td>2Bh</td>
<td>Disable</td>
<td>161</td>
</tr>
<tr>
<td>Code 39 Full ASCII Conversion</td>
<td>17</td>
<td>11h</td>
<td>Disable</td>
<td>162</td>
</tr>
<tr>
<td>Code 39 Security Level</td>
<td>750</td>
<td>F1h EEh</td>
<td>Security Level 1</td>
<td>163</td>
</tr>
<tr>
<td>Code 39 Reduced Quiet Zone</td>
<td>1209</td>
<td>F8h 04h B9h</td>
<td>Disable</td>
<td>164</td>
</tr>
</tbody>
</table>

**Code 93**

| Code 93                                         | 9                  | 09h          | Enable     | 164         |
| Set Length(s) for Code 93                       | 26, 27             | 1Ah, 1Bh     | 1 to 55    | 165         |

**Code 11**

Code 11	10	0Ah	Disable	167
Set Lengths for Code 11	28, 29	1Ch, 1Dh	4 to 55	167
Code 11 Check Digit Verification	52	34h	Disable	169
Transmit Code 11 Check Digit(s)	47	2Fh	Disable	170

**Interleaved 2 of 5 (ITF)**

Interleaved 2 of 5 (ITF)	6	06h	Enable	170
Set Lengths for I 2 of 5	22, 23	16h, 17h	6 to 55	171
I 2 of 5 Check Digit Verification	49	31h	Disable	172
Transmit I 2 of 5 Check Digit	44	2Ch	Disable	173
Convert I 2 of 5 to EAN 13	82	52h	Disable	173
Febraban	1750	F8h 06h D6h	Disable	174
I 2 of 5 Security Level	1121	F8h 04h 61h	Security Level 1	175
I 2 of 5 Reduced Quiet Zone	1210	F8h 04h BAh	Disable	176

**Discrete 2 of 5 (DTF)**

| Discrete 2 of 5                                 | 5                  | 05h          | Disable    | 176         |
| Set Length(s) for D 2 of 5                      | 20, 21             | 14h 15h      | 1 to 55    | 177         |

**Codabar (NW - 7)**

| Codabar                                         | 7                  | 07h          | Enable     | 179         |

---

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
### Table 32  Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Lengths for Codabar</td>
<td>24, 25</td>
<td>18h, 19h</td>
<td>4 to 55</td>
<td>179</td>
</tr>
<tr>
<td>CLSI Editing</td>
<td>54</td>
<td>36h</td>
<td>Disable</td>
<td>181</td>
</tr>
<tr>
<td>NOTIS Editing</td>
<td>55</td>
<td>37h</td>
<td>Disable</td>
<td>181</td>
</tr>
<tr>
<td>Codabar Security Level</td>
<td>1776</td>
<td>F8h 06h F0h</td>
<td>Security Level 1</td>
<td>182</td>
</tr>
<tr>
<td>Codabar Upper or Lower Case Start/Stop Characters Detection</td>
<td>855</td>
<td>F2h 57h</td>
<td>Upper Case</td>
<td>183</td>
</tr>
<tr>
<td>Codabar Mod 16 Check Digit Verification</td>
<td>1784</td>
<td>F8h 06h F8h</td>
<td>Disable</td>
<td>183</td>
</tr>
<tr>
<td>Transmit Codabar Check Digit</td>
<td>704</td>
<td>F1h C0h</td>
<td>Disable</td>
<td>184</td>
</tr>
<tr>
<td><strong>MSI</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSI</td>
<td>11</td>
<td>0Bh</td>
<td>Disable</td>
<td>184</td>
</tr>
<tr>
<td>Set Length(s) for MSI</td>
<td>30, 31</td>
<td>1Eh, 1Fh</td>
<td>4 to 55</td>
<td>185</td>
</tr>
<tr>
<td>MSI Check Digits</td>
<td>50</td>
<td>32h</td>
<td>One MSI Check Digit</td>
<td>187</td>
</tr>
<tr>
<td>Transmit MSI Check Digit</td>
<td>46</td>
<td>2Eh</td>
<td>Disable</td>
<td>187</td>
</tr>
<tr>
<td>MSI Check Digit Algorithm</td>
<td>51</td>
<td>33h</td>
<td>Mod 10/Mod 10</td>
<td>189</td>
</tr>
<tr>
<td>MSI Reduced Quiet Zone</td>
<td>1392</td>
<td>F8h 05h 70h</td>
<td>Disable</td>
<td>189</td>
</tr>
<tr>
<td><strong>Chinese 2 of 5</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese 2 of 5</td>
<td>408</td>
<td>F0h 98h</td>
<td>Disable</td>
<td>190</td>
</tr>
<tr>
<td><strong>Matrix 2 of 5</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix 2 of 5</td>
<td>618</td>
<td>F1h 6Ah</td>
<td>Disable</td>
<td>190</td>
</tr>
<tr>
<td>Matrix 2 of 5 Lengths</td>
<td>619, 620</td>
<td>F1h 6Bh F1h 6Ch</td>
<td>4 to 55</td>
<td>191</td>
</tr>
<tr>
<td>Matrix 2 of 5 Check Digit</td>
<td>622</td>
<td>F1h 6Eh</td>
<td>Disable</td>
<td>193</td>
</tr>
<tr>
<td>Transmit Matrix 2 of 5 Check Digit</td>
<td>623</td>
<td>F1h 6Fh</td>
<td>Disable</td>
<td>193</td>
</tr>
<tr>
<td><strong>Korean 3 of 5</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korean 3 of 5</td>
<td>581</td>
<td>F1h 45h</td>
<td>Disable</td>
<td>194</td>
</tr>
<tr>
<td><strong>Inverse 1D</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse 1D</td>
<td>586</td>
<td>F1h 4Ah</td>
<td>Regular</td>
<td>194</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
Table 32  Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number</th>
<th>SSI Number</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS1 DataBar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS1 DataBar Omnidirectional (formerly GS1 DataBar-14), GS1 DataBar Truncated, GS1 DataBar Stacked, GS1 DataBar Stacked Omnidirectional</td>
<td>338</td>
<td>F0h 52h</td>
<td>Enable</td>
<td>196</td>
</tr>
<tr>
<td>GS1 DataBar Limited</td>
<td>339</td>
<td>F0h 53h</td>
<td>Enable</td>
<td>197</td>
</tr>
<tr>
<td>GS1 DataBar Expanded, GS1 DataBar Expanded Stacked</td>
<td>340</td>
<td>F0h 54h</td>
<td>Enable</td>
<td>197</td>
</tr>
<tr>
<td>Convert GS1 DataBar to UPC/EAN/JAN</td>
<td>397</td>
<td>F0h 8Dh</td>
<td>Disable</td>
<td>198</td>
</tr>
<tr>
<td>GS1 DataBar Security Level</td>
<td>1706</td>
<td>F8h 06h AAh</td>
<td>Level 1</td>
<td>199</td>
</tr>
<tr>
<td>GS1 DataBar Limited Margin Check</td>
<td>728</td>
<td>F1h D8h</td>
<td>Level 3</td>
<td>200</td>
</tr>
</tbody>
</table>

**Symbology-Specific Security Features**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number</th>
<th>SSI Number</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundancy Level</td>
<td>78</td>
<td>4Eh</td>
<td>1</td>
<td>201</td>
</tr>
<tr>
<td>Security Level</td>
<td>77</td>
<td>4Dh</td>
<td>1</td>
<td>203</td>
</tr>
<tr>
<td>1D Quiet Zone Level</td>
<td>1288</td>
<td>F8h 05h 08h</td>
<td>1</td>
<td>204</td>
</tr>
<tr>
<td>Intercharacter Gap Size</td>
<td>381</td>
<td>F0h 7Dh</td>
<td>Normal</td>
<td>205</td>
</tr>
</tbody>
</table>

**Composite Codes**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number</th>
<th>SSI Number</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite CC-C</td>
<td>341</td>
<td>F0h 55h</td>
<td>Disable</td>
<td>205</td>
</tr>
<tr>
<td>Composite CC-A/B</td>
<td>342</td>
<td>F0h 56h</td>
<td>Disable</td>
<td>206</td>
</tr>
<tr>
<td>Composite TLC-39</td>
<td>371</td>
<td>F0h 73h</td>
<td>Disable</td>
<td>206</td>
</tr>
<tr>
<td>Composite Inverse</td>
<td>1113</td>
<td>F8h 04h 59h</td>
<td>Regular Only</td>
<td>206</td>
</tr>
<tr>
<td>UPC Composite Mode</td>
<td>344</td>
<td>F0h 58h</td>
<td>UPC Never Linked</td>
<td>208</td>
</tr>
<tr>
<td>Composite Beep Mode</td>
<td>398</td>
<td>F0h 8Eh</td>
<td>Beep As Each Code Type is Decoded</td>
<td>209</td>
</tr>
<tr>
<td>GS1-128 Emulation Mode for UCC/EAN Composite Codes</td>
<td>427</td>
<td>F0h ABh</td>
<td>Disable</td>
<td>209</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
<table>
<thead>
<tr>
<th>Parameter Default</th>
<th>Parameter Number ¹</th>
<th>SSI Number ²</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>2D Symbologies</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDF417</td>
<td>15</td>
<td>0Fh</td>
<td>Enable</td>
<td>210</td>
</tr>
<tr>
<td>MicroPDF417</td>
<td>227</td>
<td>E3h</td>
<td>Disable</td>
<td>210</td>
</tr>
<tr>
<td>Code 128 Emulation</td>
<td>123</td>
<td>7Bh</td>
<td>Disable</td>
<td>211</td>
</tr>
<tr>
<td>Data Matrix</td>
<td>292</td>
<td>F0h 24h</td>
<td>Enable</td>
<td>212</td>
</tr>
<tr>
<td>GS1 Data Matrix</td>
<td>1336</td>
<td>F8h 05h 38h</td>
<td>Disable</td>
<td>212</td>
</tr>
<tr>
<td>Data Matrix Inverse</td>
<td>588</td>
<td>F1h 4Ch</td>
<td>Inverse Autodetect</td>
<td>213</td>
</tr>
<tr>
<td>Decode Data Matrix Mirror Images</td>
<td>537</td>
<td>F1h 19h</td>
<td>Auto</td>
<td>214</td>
</tr>
<tr>
<td>Maxicode</td>
<td>294</td>
<td>F0h 26h</td>
<td>Disable</td>
<td>215</td>
</tr>
<tr>
<td>QR Code</td>
<td>293</td>
<td>F0h 25h</td>
<td>Enable</td>
<td>215</td>
</tr>
<tr>
<td>GS1 QR</td>
<td>1343</td>
<td>F8h 05h 3Fh</td>
<td>Enable</td>
<td>216</td>
</tr>
<tr>
<td>MicroQR</td>
<td>573</td>
<td>F1h 3Dh</td>
<td>Enable</td>
<td>216</td>
</tr>
<tr>
<td>Linked QR Mode</td>
<td>1847</td>
<td>737h</td>
<td>Linked QR Only</td>
<td>217</td>
</tr>
<tr>
<td>Aztec</td>
<td>574</td>
<td>F1h 3Eh</td>
<td>Enable</td>
<td>218</td>
</tr>
<tr>
<td>Aztec Inverse</td>
<td>589</td>
<td>F1h 4Dh</td>
<td>Inverse Autodetect</td>
<td>218</td>
</tr>
<tr>
<td>Han Xin</td>
<td>1167</td>
<td>F8h 04h 8Fh</td>
<td>Disable</td>
<td>219</td>
</tr>
<tr>
<td>Han Xin Inverse</td>
<td>1168</td>
<td>F8h 04h 90h</td>
<td>Regular</td>
<td>219</td>
</tr>
<tr>
<td>Grid Matrix</td>
<td>1718</td>
<td>F8h 06h B6h</td>
<td>Disable</td>
<td>220</td>
</tr>
<tr>
<td>Grid Matrix Inverse</td>
<td>1719</td>
<td>F8h 06h B7h</td>
<td>Regular Only</td>
<td>220</td>
</tr>
<tr>
<td>Grid Matrix Mirror</td>
<td>1736</td>
<td>F8h 06h C8h</td>
<td>Regular Only</td>
<td>221</td>
</tr>
<tr>
<td>DotCode</td>
<td>1906</td>
<td>F8 07 72h</td>
<td>Disable</td>
<td>222</td>
</tr>
<tr>
<td>DotCode Inverse</td>
<td>1907</td>
<td>F8 07 73h</td>
<td>Inverse Autodetect</td>
<td>223</td>
</tr>
<tr>
<td>DotCode Mirrored</td>
<td>1908</td>
<td>F8 07 74h</td>
<td>Autodetect</td>
<td>224</td>
</tr>
<tr>
<td>DotCode Prioritize</td>
<td>1937</td>
<td>F8 07 91h</td>
<td>Enable</td>
<td>225</td>
</tr>
<tr>
<td><strong>Macro PDF</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flush Macro PDF Buffer</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>226</td>
</tr>
<tr>
<td>Abort Macro PDF Entry</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>226</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
### Table 32 Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Postal Codes</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Postnet</td>
<td>89</td>
<td>59h</td>
<td>Disable</td>
<td>226</td>
</tr>
<tr>
<td>US Planet</td>
<td>90</td>
<td>5Ah</td>
<td>Disable</td>
<td>227</td>
</tr>
<tr>
<td>Transmit US Postal Check Digit</td>
<td>95</td>
<td>5Fh</td>
<td>Enable</td>
<td>227</td>
</tr>
<tr>
<td>UK Postal</td>
<td>91</td>
<td>5Bh</td>
<td>Disable</td>
<td>228</td>
</tr>
<tr>
<td>Transmit UK Postal Check Digit</td>
<td>96</td>
<td>60h</td>
<td>Enable</td>
<td>228</td>
</tr>
<tr>
<td>Japan Postal</td>
<td>290</td>
<td>F0h 22h</td>
<td>Disable</td>
<td>229</td>
</tr>
<tr>
<td>Australia Post</td>
<td>291</td>
<td>F0h 23h</td>
<td>Disable</td>
<td>229</td>
</tr>
<tr>
<td>Australia Post Format</td>
<td>718</td>
<td>F1h CEh</td>
<td>Autodiscriminate</td>
<td>230</td>
</tr>
<tr>
<td>Netherlands KIX Code</td>
<td>326</td>
<td>F0h 46h</td>
<td>Disable</td>
<td>231</td>
</tr>
<tr>
<td>USPS 4CB/One Code/Intelligent Mail</td>
<td>592</td>
<td>F1h 50h</td>
<td>Disable</td>
<td>231</td>
</tr>
<tr>
<td>UPU FICS Postal</td>
<td>611</td>
<td>F1h 63h</td>
<td>Disable</td>
<td>232</td>
</tr>
<tr>
<td>Mailmark</td>
<td>1337</td>
<td>F8h 05h 39h</td>
<td>Disable</td>
<td>232</td>
</tr>
<tr>
<td><strong>USB Host Parameters</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB Device Type</td>
<td>N/A</td>
<td>N/A</td>
<td>USB Keyboard HID</td>
<td>237</td>
</tr>
<tr>
<td>Symbol Native API (SNAPI) Status Handshaking</td>
<td>N/A</td>
<td>N/A</td>
<td>Enable</td>
<td>239</td>
</tr>
<tr>
<td>USB Keystroke Delay</td>
<td>N/A</td>
<td>N/A</td>
<td>No Delay</td>
<td>239</td>
</tr>
<tr>
<td>USB Caps Lock Override</td>
<td>N/A</td>
<td>N/A</td>
<td>Disable</td>
<td>240</td>
</tr>
<tr>
<td>Barcodes with Unknown Characters</td>
<td>N/A</td>
<td>N/A</td>
<td>Send Barcodes with Unknown Characters</td>
<td>240</td>
</tr>
<tr>
<td>USB Convert Unknown to Code 39</td>
<td>N/A</td>
<td>N/A</td>
<td>Disable</td>
<td>241</td>
</tr>
<tr>
<td>USB Fast HID</td>
<td>N/A</td>
<td>N/A</td>
<td>Enable</td>
<td>241</td>
</tr>
<tr>
<td>USB Polling Interval</td>
<td>N/A</td>
<td>N/A</td>
<td>3 msec</td>
<td>242</td>
</tr>
<tr>
<td>Keypad Emulation</td>
<td>N/A</td>
<td>N/A</td>
<td>Enable</td>
<td>244</td>
</tr>
<tr>
<td>Quick Keypad Emulation</td>
<td>N/A</td>
<td>N/A</td>
<td>Enable</td>
<td>244</td>
</tr>
<tr>
<td>Keypad Emulation with Leading Zero</td>
<td>N/A</td>
<td>N/A</td>
<td>Enable</td>
<td>245</td>
</tr>
<tr>
<td>USB FN1 Substitution</td>
<td>N/A</td>
<td>N/A</td>
<td>Disable</td>
<td>245</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
Table 32  Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function Key Mapping</td>
<td>N/A</td>
<td>N/A</td>
<td>Disable</td>
<td>246</td>
</tr>
<tr>
<td>Simulated Caps Lock</td>
<td>N/A</td>
<td>N/A</td>
<td>Disable</td>
<td>246</td>
</tr>
<tr>
<td>Convert Case</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>247</td>
</tr>
<tr>
<td>USB Static CDC</td>
<td>N/A</td>
<td>N/A</td>
<td>Enable</td>
<td>248</td>
</tr>
<tr>
<td>CDC Beep on &lt;BEL&gt;</td>
<td>N/A</td>
<td>N/A</td>
<td>Enable</td>
<td>248</td>
</tr>
<tr>
<td>TGCS (IBM) USB Beep Directive</td>
<td>N/A</td>
<td>N/A</td>
<td>Ignore</td>
<td>248</td>
</tr>
<tr>
<td>TGCS (IBM) USB Barcode Configuration Directive</td>
<td>N/A</td>
<td>N/A</td>
<td>Ignore</td>
<td>249</td>
</tr>
<tr>
<td>TGCS (IBM) USB Specification Version</td>
<td>N/A</td>
<td>N/A</td>
<td>Version 2.2</td>
<td>249</td>
</tr>
<tr>
<td>USB CDC Host Variant</td>
<td>1713</td>
<td>F8 06 B1</td>
<td>Standard CDC</td>
<td>250</td>
</tr>
</tbody>
</table>

### SSI Host Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select SSI Host</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>265</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>156</td>
<td>9Ch</td>
<td>9600</td>
<td>265</td>
</tr>
<tr>
<td>Parity</td>
<td>158</td>
<td>9Eh</td>
<td>None</td>
<td>267</td>
</tr>
<tr>
<td>Check Parity</td>
<td>151</td>
<td>97h</td>
<td>Disable</td>
<td>268</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>157</td>
<td>9Dh</td>
<td>1</td>
<td>268</td>
</tr>
<tr>
<td>Software Handshaking</td>
<td>159</td>
<td>9Fh</td>
<td>ACK/NAK</td>
<td>269</td>
</tr>
<tr>
<td>Host RTS Line State</td>
<td>154</td>
<td>9Ah</td>
<td>Low</td>
<td>270</td>
</tr>
<tr>
<td>Decode Data Packet Format</td>
<td>238</td>
<td>EEh</td>
<td>Send Raw Decode Data</td>
<td>271</td>
</tr>
<tr>
<td>Host Serial Response Timeout</td>
<td>155</td>
<td>9Bh</td>
<td>Low - 2 Seconds</td>
<td>272</td>
</tr>
<tr>
<td>Host Character Timeout</td>
<td>239</td>
<td>EFh</td>
<td>Low - 200 msec</td>
<td>273</td>
</tr>
<tr>
<td>Multipacket Option</td>
<td>334</td>
<td>F0h 4Eh</td>
<td>Multipacket Option 1</td>
<td>274</td>
</tr>
<tr>
<td>Interpacket Delay</td>
<td>335</td>
<td>F0h 4Fh</td>
<td>Minimum - 0 msec</td>
<td>275</td>
</tr>
</tbody>
</table>

### Event Reporting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decode Event</td>
<td>256</td>
<td>F0h 00h</td>
<td>Disable</td>
<td>276</td>
</tr>
<tr>
<td>Boot Up Event</td>
<td>258</td>
<td>F0h 02h</td>
<td>Disable</td>
<td>277</td>
</tr>
<tr>
<td>Parameter Event</td>
<td>259</td>
<td>F0h 03h</td>
<td>Disable</td>
<td>278</td>
</tr>
</tbody>
</table>

### RS-232 Host Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232 Host Types</td>
<td>N/A</td>
<td>N/A</td>
<td>Standard</td>
<td>284</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud Rate</td>
<td>N/A</td>
<td>N/A</td>
<td>9600</td>
<td>286</td>
</tr>
<tr>
<td>Parity</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>287</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>N/A</td>
<td>N/A</td>
<td>1 Stop Bit</td>
<td>287</td>
</tr>
<tr>
<td>Data Bits</td>
<td>N/A</td>
<td>N/A</td>
<td>8-bit</td>
<td>288</td>
</tr>
<tr>
<td>Check Receive Errors</td>
<td>N/A</td>
<td>N/A</td>
<td>Enable</td>
<td>288</td>
</tr>
<tr>
<td>Hardware Handshaking</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>289</td>
</tr>
<tr>
<td>Software Handshaking</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>291</td>
</tr>
<tr>
<td>Host Serial Response Timeout</td>
<td>N/A</td>
<td>N/A</td>
<td>2 Seconds</td>
<td>293</td>
</tr>
<tr>
<td>RTS Line State</td>
<td>N/A</td>
<td>N/A</td>
<td>Low RTS</td>
<td>294</td>
</tr>
<tr>
<td>Beep on &lt;BEL&gt;</td>
<td>N/A</td>
<td>N/A</td>
<td>Disable</td>
<td>294</td>
</tr>
<tr>
<td>Intercharacter Delay</td>
<td>N/A</td>
<td>N/A</td>
<td>0 msec</td>
<td>295</td>
</tr>
<tr>
<td>Nixdorf Beep/LED Options</td>
<td>N/A</td>
<td>N/A</td>
<td>Normal Operation</td>
<td>296</td>
</tr>
<tr>
<td>Barcodes with Unknown Characters</td>
<td>N/A</td>
<td>N/A</td>
<td>Send Barcode With Unknown Characters</td>
<td>296</td>
</tr>
</tbody>
</table>

**IBM 468X/469X Host Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Address</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>301</td>
</tr>
<tr>
<td>Convert Unknown to Code 39</td>
<td>N/A</td>
<td>N/A</td>
<td>Disable</td>
<td>302</td>
</tr>
<tr>
<td>RS-485 Beep Directive</td>
<td>N/A</td>
<td>N/A</td>
<td>Ignore</td>
<td>302</td>
</tr>
<tr>
<td>RS-485 Barcode Configuration Directive</td>
<td>N/A</td>
<td>N/A</td>
<td>Ignore</td>
<td>303</td>
</tr>
<tr>
<td>IBM-485 Specification Version</td>
<td>N/A</td>
<td>N/A</td>
<td>Original Specification</td>
<td>303</td>
</tr>
</tbody>
</table>

**Keyboard Wedge Host Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyboard Wedge Host Type</td>
<td>N/A</td>
<td>N/A</td>
<td>IBM AT Notebook</td>
<td>307</td>
</tr>
<tr>
<td>Barcodes with Unknown Characters</td>
<td>N/A</td>
<td>N/A</td>
<td>Send Barcodes with Unknown Characters</td>
<td>307</td>
</tr>
<tr>
<td>Keystroke Delay</td>
<td>N/A</td>
<td>N/A</td>
<td>No Delay</td>
<td>308</td>
</tr>
<tr>
<td>Intra-keystroke Delay</td>
<td>N/A</td>
<td>N/A</td>
<td>Disable</td>
<td>308</td>
</tr>
<tr>
<td>Alternate Numeric Keypad Emulation</td>
<td>N/A</td>
<td>N/A</td>
<td>Enable</td>
<td>309</td>
</tr>
<tr>
<td>Quick Keypad Emulation</td>
<td>N/A</td>
<td>N/A</td>
<td>Enable</td>
<td>309</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
### Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number ¹</th>
<th>SSI Number ²</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated Caps Lock</td>
<td>N/A</td>
<td>N/A</td>
<td>Disable</td>
<td>310</td>
</tr>
<tr>
<td>Caps Lock Override</td>
<td>N/A</td>
<td>N/A</td>
<td>Disable</td>
<td>311</td>
</tr>
<tr>
<td>Convert Case</td>
<td>N/A</td>
<td>N/A</td>
<td>Do Not Convert</td>
<td>311</td>
</tr>
<tr>
<td>Function Key Mapping</td>
<td>N/A</td>
<td>N/A</td>
<td>Disable</td>
<td>312</td>
</tr>
<tr>
<td>FN1 Substitution</td>
<td>N/A</td>
<td>N/A</td>
<td>Disable</td>
<td>312</td>
</tr>
<tr>
<td>Send Make and Break</td>
<td>N/A</td>
<td>N/A</td>
<td>Send Make and Break Scan Codes</td>
<td>313</td>
</tr>
<tr>
<td><strong>OCR Programming Parameters</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCR-A</td>
<td>680</td>
<td>F1h A8h</td>
<td>Disable</td>
<td>317</td>
</tr>
<tr>
<td>OCR-A Variant</td>
<td>684</td>
<td>F1h ACh</td>
<td>OCR-A Full ASCII</td>
<td>318</td>
</tr>
<tr>
<td>OCR-B</td>
<td>681</td>
<td>F1h A9h</td>
<td>Disable</td>
<td>319</td>
</tr>
<tr>
<td>OCR-B Variant</td>
<td>685</td>
<td>F1h ADh</td>
<td>OCR-B Full ASCII</td>
<td>320</td>
</tr>
<tr>
<td>MICR E13B</td>
<td>682</td>
<td>F1h AAh</td>
<td>Disable</td>
<td>324</td>
</tr>
<tr>
<td>US Currency Serial Number</td>
<td>683</td>
<td>F1h ABh</td>
<td>Disable</td>
<td>325</td>
</tr>
<tr>
<td>OCR Orientation</td>
<td>687</td>
<td>F1h AFh</td>
<td>0°</td>
<td>325</td>
</tr>
<tr>
<td>OCR Lines</td>
<td>691</td>
<td>F1h B3h</td>
<td>1</td>
<td>327</td>
</tr>
<tr>
<td>OCR Minimum Characters</td>
<td>689</td>
<td>F1h B1h</td>
<td>3</td>
<td>327</td>
</tr>
<tr>
<td>OCR Maximum Characters</td>
<td>690</td>
<td>F1h B2h</td>
<td>100</td>
<td>328</td>
</tr>
<tr>
<td>OCR Subset</td>
<td>686</td>
<td>F1h AEh</td>
<td>Selected font variant</td>
<td>328</td>
</tr>
<tr>
<td>OCR Quiet Zone</td>
<td>695</td>
<td>F1h B7h</td>
<td>50</td>
<td>329</td>
</tr>
<tr>
<td>OCR Template</td>
<td>547</td>
<td>F1h 23h</td>
<td>999999999</td>
<td>329</td>
</tr>
<tr>
<td>OCR Check Digit Modulus</td>
<td>688</td>
<td>F1h B0h</td>
<td>1</td>
<td>339</td>
</tr>
<tr>
<td>OCR Check Digit Multiplier</td>
<td>700</td>
<td>F1h BCh</td>
<td>121212121212</td>
<td>339</td>
</tr>
<tr>
<td>OCR Check Digit Validation</td>
<td>694</td>
<td>F1h B6h</td>
<td>None</td>
<td>340</td>
</tr>
<tr>
<td>Inverse OCR</td>
<td>856</td>
<td>F2h 58h</td>
<td>Regular</td>
<td>346</td>
</tr>
<tr>
<td>OCR Redundancy</td>
<td>1770</td>
<td>F8h 06h EAh</td>
<td>Level 1</td>
<td>347</td>
</tr>
<tr>
<td><strong>Intelligent Document Capture (IDC) Parameters</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDC Operating Mode</td>
<td>594</td>
<td>F1h 52h</td>
<td>Off</td>
<td>353</td>
</tr>
<tr>
<td>IDC Symbology</td>
<td>655</td>
<td>F1h 8Fh</td>
<td>001</td>
<td>354</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
### Table 32  Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number</th>
<th>SSI Number</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDC X Coordinate</td>
<td>596</td>
<td>F4h F1h 54h</td>
<td>-151</td>
<td>355</td>
</tr>
<tr>
<td>IDC Y Coordinate</td>
<td>597</td>
<td>F4h F1h 55h</td>
<td>-050</td>
<td>355</td>
</tr>
<tr>
<td>IDC Width</td>
<td>598</td>
<td>F1h 56h</td>
<td>0300</td>
<td>356</td>
</tr>
<tr>
<td>IDC Height</td>
<td>599</td>
<td>F1h 57h</td>
<td>0050</td>
<td>356</td>
</tr>
<tr>
<td>IDC Aspect</td>
<td>595</td>
<td>F1h 53h</td>
<td>000</td>
<td>357</td>
</tr>
<tr>
<td>IDC File Format Selector</td>
<td>601</td>
<td>F1h 59h</td>
<td>JPEG</td>
<td>357</td>
</tr>
<tr>
<td>IDC Bits Per Pixel</td>
<td>602</td>
<td>F1h 5Ah</td>
<td>8 BPP</td>
<td>358</td>
</tr>
<tr>
<td>IDC JPEG Quality</td>
<td>603</td>
<td>F1h 5Bh</td>
<td>065</td>
<td>358</td>
</tr>
<tr>
<td>IDC Find Box Outline</td>
<td>727</td>
<td>F1h D7h</td>
<td>Disable</td>
<td>359</td>
</tr>
<tr>
<td>IDC Minimum Text Length</td>
<td>656</td>
<td>F1h 90h</td>
<td>00</td>
<td>359</td>
</tr>
<tr>
<td>IDC Maximum Text Length</td>
<td>657</td>
<td>F1h 91h</td>
<td>00</td>
<td>360</td>
</tr>
<tr>
<td>IDC Captured Image Brighten</td>
<td>654</td>
<td>F1h 8Eh</td>
<td>Enable</td>
<td>360</td>
</tr>
<tr>
<td>IDC Captured Image Sharpen</td>
<td>658</td>
<td>F1h 92h</td>
<td>Enable</td>
<td>361</td>
</tr>
<tr>
<td>IDC Border Type</td>
<td>829</td>
<td>F2h 3Dh</td>
<td>None</td>
<td>362</td>
</tr>
<tr>
<td>IDC Delay Time</td>
<td>830</td>
<td>F2h 3Eh</td>
<td>000</td>
<td>363</td>
</tr>
<tr>
<td>IDC Zoom Limit</td>
<td>651</td>
<td>F1h 8Bh</td>
<td>000</td>
<td>363</td>
</tr>
<tr>
<td>IDC Maximum Rotation</td>
<td>652</td>
<td>F1h 8Ch</td>
<td>00</td>
<td>364</td>
</tr>
</tbody>
</table>

### Digimarc Digital Watermarks

| Digimarc Digital Watermarks/DW     | 1687             | F8h 06h 97h | Enable  | 369         |

### DL Parsing Parameters

Driver’s License Parsing	N/A	N/A	No Driver’s License Parsing	375
Parsing Driver’s License Data Fields	N/A	N/A	N/A	376
Driver’s License Parse Field Barcodes	N/A	N/A	N/A	377
AAMVA Parse Field Barcodes	N/A	N/A	N/A	379
Parser Version ID Barcode	N/A	N/A	N/A	388
Set Default Parameter	N/A	N/A	N/A	389
Output Gender as M or F	N/A	N/A	N/A	389
Date Format	N/A	N/A	CCYYMMDD	390

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
### Table 32 Parameter Defaults (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Number 1</th>
<th>SSI Number 2</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Separator</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>391</td>
</tr>
<tr>
<td>Send Keystroke Control Characters</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>392</td>
</tr>
<tr>
<td>Keyboard Characters</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Parsing Rule Example</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>410</td>
</tr>
<tr>
<td>Embedded Driver's License Parsing ADF Example</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>414</td>
</tr>
</tbody>
</table>

1. Parameter number decimal values are used for programming via RSM commands.
2. SSI number hex values are used for programming via SSI commands.
Cancel

To correct an error or change a selection, scan the barcode below.

_________

Numeric Barcodes

For parameters requiring specific numeric values, scan the appropriately numbered barcode(s).
Numeric Barcodes (continued)

1. 4
2. 5
3. 6
4. 7
5. 8
6. 9
Alphanumeric Barcodes

Cancel

To correct an error or change a selection, scan the following barcode.

Space

#
Alphanumeric Barcodes (continued)
Alphanumeric Barcodes (continued)

;
Alphanumeric Barcodes (continued)
Alphanumeric Barcodes (continued)

NOTE: Do not confuse the following barcodes with those on the numeric keypad.

0

1

2

3

4

5
Alphanumeric Barcodes (continued)

6

7

8

9

End of Message

Cancel
Alphanumeric Barcodes (continued)
NOTE: For the Keyboard Wedge Interface, Code 39 Full ASCII interprets the barcode special character ($ + % /) preceding a Code 39 character and assigns an ASCII character value to the pair. For example, if you enable Code 39 Full ASCII and scan +B, it transmits as b, %J as ?, and %V as @.
Scanning ABC%I outputs the keystroke equivalent of ABC >.

### Table 33 ASCII Character Set

<table>
<thead>
<tr>
<th>ASCII Value (Prefix/Suffix Value)</th>
<th>Full ASCII Code 39 Encode Char</th>
<th>Keystroke</th>
<th>ASCII Character (Applies to RS-232 Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>%U</td>
<td>CTRL 2</td>
<td>NUL</td>
</tr>
<tr>
<td>1001</td>
<td>$A</td>
<td>CTRL A</td>
<td>SOH</td>
</tr>
<tr>
<td>1002</td>
<td>$B</td>
<td>CTRL B</td>
<td>STX</td>
</tr>
<tr>
<td>1003</td>
<td>$C</td>
<td>CTRL C</td>
<td>ETX</td>
</tr>
<tr>
<td>1004</td>
<td>$D</td>
<td>CTRL D</td>
<td>EOT</td>
</tr>
<tr>
<td>1005</td>
<td>$E</td>
<td>CTRL E</td>
<td>ENQ</td>
</tr>
<tr>
<td>1006</td>
<td>$F</td>
<td>CTRL F</td>
<td>ACK</td>
</tr>
<tr>
<td>1007</td>
<td>$G</td>
<td>CTRL G</td>
<td>BELL</td>
</tr>
<tr>
<td>1008</td>
<td>$H</td>
<td>CTRL H/BACKSPACE¹</td>
<td>BCKSPC</td>
</tr>
<tr>
<td>1009</td>
<td>$I</td>
<td>CTRL I/HORIZONTAL TAB¹</td>
<td>HORIZ TAB</td>
</tr>
<tr>
<td>1010</td>
<td>$J</td>
<td>CTRL J</td>
<td>LF/NW LN</td>
</tr>
<tr>
<td>1011</td>
<td>$K</td>
<td>CTRL K</td>
<td>VT</td>
</tr>
<tr>
<td>1012</td>
<td>$L</td>
<td>CTRL L</td>
<td>FF</td>
</tr>
<tr>
<td>1013</td>
<td>$M</td>
<td>CTRL M/ENTER¹</td>
<td>CR/ENTER</td>
</tr>
<tr>
<td>1014</td>
<td>$N</td>
<td>CTRL N</td>
<td>SO</td>
</tr>
</tbody>
</table>

¹The keystroke in bold transmits only if you enabled Function Key Mapping on page 246 or Function Key Mapping on page 312. Otherwise, the unbold keystroke transmits.
Table 33  ASCII Character Set (Continued)

<table>
<thead>
<tr>
<th>ASCII Value (Prefix/Suffix Value)</th>
<th>Full ASCII Code 39 Encode Char</th>
<th>Keystroke</th>
<th>ASCII Character (Applies to RS-232 Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1015</td>
<td>$O</td>
<td>CTRL O</td>
<td>SI</td>
</tr>
<tr>
<td>1016</td>
<td>$P</td>
<td>CTRL P</td>
<td>DLE</td>
</tr>
<tr>
<td>1017</td>
<td>$Q</td>
<td>CTRL Q</td>
<td>DC1/XON</td>
</tr>
<tr>
<td>1018</td>
<td>$R</td>
<td>CTRL R</td>
<td>DC2</td>
</tr>
<tr>
<td>1019</td>
<td>$S</td>
<td>CTRL S</td>
<td>DC3/XOFF</td>
</tr>
<tr>
<td>1020</td>
<td>$T</td>
<td>CTRL T</td>
<td>DC4</td>
</tr>
<tr>
<td>1021</td>
<td>$U</td>
<td>CTRL U</td>
<td>NAK</td>
</tr>
<tr>
<td>1022</td>
<td>$V</td>
<td>CTRL V</td>
<td>SYN</td>
</tr>
<tr>
<td>1023</td>
<td>$W</td>
<td>CTRL W</td>
<td>ETB</td>
</tr>
<tr>
<td>1024</td>
<td>$X</td>
<td>CTRL X</td>
<td>CAN</td>
</tr>
<tr>
<td>1025</td>
<td>$Y</td>
<td>CTRL Y</td>
<td>EM</td>
</tr>
<tr>
<td>1026</td>
<td>$Z</td>
<td>CTRL Z</td>
<td>SUB</td>
</tr>
<tr>
<td>1027</td>
<td>%A</td>
<td>CTRL [</td>
<td>ESC</td>
</tr>
<tr>
<td>1028</td>
<td>%B</td>
<td>CTRL \</td>
<td>FS</td>
</tr>
<tr>
<td>1029</td>
<td>%C</td>
<td>CTRL ]</td>
<td>GS</td>
</tr>
<tr>
<td>1030</td>
<td>%D</td>
<td>CTRL 6</td>
<td>RS</td>
</tr>
<tr>
<td>1031</td>
<td>%E</td>
<td>CTRL -</td>
<td>US</td>
</tr>
<tr>
<td>1032</td>
<td>Space</td>
<td>Space</td>
<td>Space</td>
</tr>
<tr>
<td>1033</td>
<td>/A</td>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>1034</td>
<td>/B</td>
<td>&quot;</td>
<td>&quot;</td>
</tr>
<tr>
<td>1035</td>
<td>/C</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>1036</td>
<td>/D</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>1037</td>
<td>/E</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>1038</td>
<td>/F</td>
<td>&amp;</td>
<td>&amp;</td>
</tr>
<tr>
<td>1039</td>
<td>/G</td>
<td>‘</td>
<td>‘</td>
</tr>
<tr>
<td>1040</td>
<td>/H</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>1041</td>
<td>/I</td>
<td>)</td>
<td>)</td>
</tr>
<tr>
<td>1042</td>
<td>/J</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1043</td>
<td>/K</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

\*The keystroke in bold transmits only if you enabled Function Key Mapping on page 246 or Function Key Mapping on page 312. Otherwise, the unbold keystroke transmits.
### ASCII Character Set (Continued)

<table>
<thead>
<tr>
<th>ASCII Value (Prefix/Suffix Value)</th>
<th>Full ASCII Code 39 Encode Char</th>
<th>Keystroke</th>
<th>ASCII Character (Applies to RS-232 Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1044</td>
<td>/L</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>1045</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1046</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>1047</td>
<td>/o</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>1048</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1049</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1050</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1051</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1052</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1053</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1054</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1055</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1056</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1057</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1058</td>
<td>/Z</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>1059</td>
<td>%F</td>
<td>;</td>
<td>;</td>
</tr>
<tr>
<td>1060</td>
<td>%G</td>
<td>&lt;</td>
<td>&lt;</td>
</tr>
<tr>
<td>1061</td>
<td>%H</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>1062</td>
<td>%I</td>
<td>&gt;</td>
<td>&gt;</td>
</tr>
<tr>
<td>1063</td>
<td>%J</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>1064</td>
<td>%V</td>
<td>@</td>
<td>@</td>
</tr>
<tr>
<td>1065</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1066</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>1067</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>1068</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>1069</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>1070</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1071</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>1072</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

\(^1\)The keystroke in bold transmits only if you enabled Function Key Mapping on page 246 or Function Key Mapping on page 312. Otherwise, the unbold keystroke transmits.
### Table 33  ASCII Character Set (Continued)

<table>
<thead>
<tr>
<th>ASCII Value (Prefix/Suffix Value)</th>
<th>Full ASCII Code 39 Encode Char</th>
<th>Keystroke</th>
<th>ASCII Character (Applies to RS-232 Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1073</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>1074</td>
<td>J</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>1075</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>1076</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1077</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>1078</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>1079</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>1080</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>1081</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>1082</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>1083</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1084</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1085</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>1086</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>1087</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>1088</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1089</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1090</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>1091</td>
<td>%K</td>
<td>[</td>
<td>]</td>
</tr>
<tr>
<td>1092</td>
<td>%L</td>
<td>\</td>
<td>\</td>
</tr>
<tr>
<td>1093</td>
<td>%M</td>
<td>]</td>
<td>]</td>
</tr>
<tr>
<td>1094</td>
<td>%N</td>
<td>^</td>
<td>^</td>
</tr>
<tr>
<td>1095</td>
<td>%O</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>1096</td>
<td>%W</td>
<td>'</td>
<td>'</td>
</tr>
<tr>
<td>1097</td>
<td>+A</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>1098</td>
<td>+B</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>1099</td>
<td>+C</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>1100</td>
<td>+D</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>1101</td>
<td>+E</td>
<td>e</td>
<td>e</td>
</tr>
</tbody>
</table>

\(^1\)The keystroke in bold transmits only if you enabled Function Key Mapping on page 246 or Function Key Mapping on page 312. Otherwise, the unbold keystroke transmits.
Table 33  ASCII Character Set (Continued)

<table>
<thead>
<tr>
<th>ASCII Value (Prefix/Suffix Value)</th>
<th>Full ASCII Code 39 Encode Char</th>
<th>Keystroke</th>
<th>ASCII Character (Applies to RS-232 Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1102 +F</td>
<td>f</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>1103 +G</td>
<td>g</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>1104 +H</td>
<td>h</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>1105 +I</td>
<td>i</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>1106 +J</td>
<td>j</td>
<td>j</td>
<td></td>
</tr>
<tr>
<td>1107 +K</td>
<td>k</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>1108 +L</td>
<td>l</td>
<td>l</td>
<td></td>
</tr>
<tr>
<td>1109 +M</td>
<td>m</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>1110 +N</td>
<td>n</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>1111 +O</td>
<td>o</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>1112 +P</td>
<td>p</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>1113 +Q</td>
<td>q</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>1114 +R</td>
<td>r</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>1115 +S</td>
<td>s</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>1116 +T</td>
<td>t</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>1117 +U</td>
<td>u</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>1118 +V</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>1119 +W</td>
<td>w</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>1120 +X</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>1121 +Y</td>
<td>y</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>1122 +Z</td>
<td>z</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>1123 %P</td>
<td>{</td>
<td>{</td>
<td></td>
</tr>
<tr>
<td>1124 %Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1125 %R</td>
<td>}</td>
<td>}</td>
<td></td>
</tr>
<tr>
<td>1126 %S</td>
<td>~</td>
<td>~</td>
<td>Undefined</td>
</tr>
<tr>
<td>7013</td>
<td>ENTER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹The keystroke in bold transmits only if you enabled Function Key Mapping on page 246 or Function Key Mapping on page 312. Otherwise, the unbold keystroke transmits.
## Table 34  ALT Key Character Set

<table>
<thead>
<tr>
<th>ALT Keys</th>
<th>Keystroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>2064</td>
<td>ALT 2</td>
</tr>
<tr>
<td>2065</td>
<td>ALT A</td>
</tr>
<tr>
<td>2066</td>
<td>ALT B</td>
</tr>
<tr>
<td>2067</td>
<td>ALT C</td>
</tr>
<tr>
<td>2068</td>
<td>ALT D</td>
</tr>
<tr>
<td>2069</td>
<td>ALT E</td>
</tr>
<tr>
<td>2070</td>
<td>ALT F</td>
</tr>
<tr>
<td>2071</td>
<td>ALT G</td>
</tr>
<tr>
<td>2072</td>
<td>ALT H</td>
</tr>
<tr>
<td>2073</td>
<td>ALT I</td>
</tr>
<tr>
<td>2074</td>
<td>ALT J</td>
</tr>
<tr>
<td>2075</td>
<td>ALT K</td>
</tr>
<tr>
<td>2076</td>
<td>ALT L</td>
</tr>
<tr>
<td>2077</td>
<td>ALT M</td>
</tr>
<tr>
<td>2078</td>
<td>ALT N</td>
</tr>
<tr>
<td>2079</td>
<td>ALT O</td>
</tr>
<tr>
<td>2080</td>
<td>ALT P</td>
</tr>
<tr>
<td>2081</td>
<td>ALT Q</td>
</tr>
<tr>
<td>2082</td>
<td>ALT R</td>
</tr>
<tr>
<td>2083</td>
<td>ALT S</td>
</tr>
<tr>
<td>2084</td>
<td>ALT T</td>
</tr>
<tr>
<td>2085</td>
<td>ALT U</td>
</tr>
<tr>
<td>2086</td>
<td>ALT V</td>
</tr>
<tr>
<td>2087</td>
<td>ALT W</td>
</tr>
<tr>
<td>2088</td>
<td>ALT X</td>
</tr>
<tr>
<td>2089</td>
<td>ALT Y</td>
</tr>
<tr>
<td>2090</td>
<td>ALT Z</td>
</tr>
</tbody>
</table>
Table 35  GUI Key Character Set

<table>
<thead>
<tr>
<th>GUI Key</th>
<th>Keystroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>Right Control Key</td>
</tr>
<tr>
<td>3048</td>
<td>GUI 0</td>
</tr>
<tr>
<td>3049</td>
<td>GUI 1</td>
</tr>
<tr>
<td>3050</td>
<td>GUI 2</td>
</tr>
<tr>
<td>3051</td>
<td>GUI 3</td>
</tr>
<tr>
<td>3052</td>
<td>GUI 4</td>
</tr>
<tr>
<td>3053</td>
<td>GUI 5</td>
</tr>
<tr>
<td>3054</td>
<td>GUI 6</td>
</tr>
<tr>
<td>3055</td>
<td>GUI 7</td>
</tr>
<tr>
<td>3056</td>
<td>GUI 8</td>
</tr>
<tr>
<td>3057</td>
<td>GUI 9</td>
</tr>
<tr>
<td>3065</td>
<td>GUI A</td>
</tr>
<tr>
<td>3066</td>
<td>GUI B</td>
</tr>
<tr>
<td>3067</td>
<td>GUI C</td>
</tr>
<tr>
<td>3068</td>
<td>GUI D</td>
</tr>
<tr>
<td>3069</td>
<td>GUI E</td>
</tr>
<tr>
<td>3070</td>
<td>GUI F</td>
</tr>
<tr>
<td>3071</td>
<td>GUI G</td>
</tr>
<tr>
<td>3072</td>
<td>GUI H</td>
</tr>
<tr>
<td>3073</td>
<td>GUI I</td>
</tr>
<tr>
<td>3074</td>
<td>GUI J</td>
</tr>
<tr>
<td>3075</td>
<td>GUI K</td>
</tr>
<tr>
<td>3076</td>
<td>GUI L</td>
</tr>
<tr>
<td>3077</td>
<td>GUI M</td>
</tr>
<tr>
<td>3078</td>
<td>GUI N</td>
</tr>
<tr>
<td>3079</td>
<td>GUI O</td>
</tr>
<tr>
<td>3080</td>
<td>GUI P</td>
</tr>
<tr>
<td>3081</td>
<td>GUI Q</td>
</tr>
<tr>
<td>3082</td>
<td>GUI R</td>
</tr>
</tbody>
</table>

Note: GUI Shift Keys - The Apple ™ iMac keyboard has an apple key on either side of the space bar. Windows-based systems have a GUI key to the left of the left ALT key, and to the right of the right ALT key.
### Table 35  GUI Key Character Set (Continued)

<table>
<thead>
<tr>
<th>GUI Key</th>
<th>Keystroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>3083</td>
<td>GUI S</td>
</tr>
<tr>
<td>3084</td>
<td>GUI T</td>
</tr>
<tr>
<td>3085</td>
<td>GUI U</td>
</tr>
<tr>
<td>3086</td>
<td>GUI V</td>
</tr>
<tr>
<td>3087</td>
<td>GUI W</td>
</tr>
<tr>
<td>3088</td>
<td>GUI X</td>
</tr>
<tr>
<td>3089</td>
<td>GUI Y</td>
</tr>
<tr>
<td>3090</td>
<td>GUI Z</td>
</tr>
</tbody>
</table>

Note: GUI Shift Keys - The Apple ™ iMac keyboard has an apple key on either side of the space bar. Windows-based systems have a GUI key to the left of the left ALT key, and to the right of the right ALT key.

### Table 36  PF Key Character Set

<table>
<thead>
<tr>
<th>PF Keys</th>
<th>Keystroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>4001</td>
<td>PF 1</td>
</tr>
<tr>
<td>4002</td>
<td>PF 2</td>
</tr>
<tr>
<td>4003</td>
<td>PF 3</td>
</tr>
<tr>
<td>4004</td>
<td>PF 4</td>
</tr>
<tr>
<td>4005</td>
<td>PF 5</td>
</tr>
<tr>
<td>4006</td>
<td>PF 6</td>
</tr>
<tr>
<td>4007</td>
<td>PF 7</td>
</tr>
<tr>
<td>4008</td>
<td>PF 8</td>
</tr>
<tr>
<td>4009</td>
<td>PF 9</td>
</tr>
<tr>
<td>4010</td>
<td>PF 10</td>
</tr>
<tr>
<td>4011</td>
<td>PF 11</td>
</tr>
<tr>
<td>4012</td>
<td>PF 12</td>
</tr>
<tr>
<td>4013</td>
<td>PF 13</td>
</tr>
<tr>
<td>4014</td>
<td>PF 14</td>
</tr>
<tr>
<td>4015</td>
<td>PF 15</td>
</tr>
<tr>
<td>4016</td>
<td>PF 16</td>
</tr>
</tbody>
</table>
### Table 37  F Key Character Set

<table>
<thead>
<tr>
<th>F Keys</th>
<th>Keystroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>5001</td>
<td>F 1</td>
</tr>
<tr>
<td>5002</td>
<td>F 2</td>
</tr>
<tr>
<td>5003</td>
<td>F 3</td>
</tr>
<tr>
<td>5004</td>
<td>F 4</td>
</tr>
<tr>
<td>5005</td>
<td>F 5</td>
</tr>
<tr>
<td>5006</td>
<td>F 6</td>
</tr>
<tr>
<td>5007</td>
<td>F 7</td>
</tr>
<tr>
<td>5008</td>
<td>F 8</td>
</tr>
<tr>
<td>5009</td>
<td>F 9</td>
</tr>
<tr>
<td>5010</td>
<td>F 10</td>
</tr>
<tr>
<td>5011</td>
<td>F 11</td>
</tr>
<tr>
<td>5012</td>
<td>F 12</td>
</tr>
<tr>
<td>5013</td>
<td>F 13</td>
</tr>
<tr>
<td>5014</td>
<td>F 14</td>
</tr>
<tr>
<td>5015</td>
<td>F 15</td>
</tr>
<tr>
<td>5016</td>
<td>F 16</td>
</tr>
<tr>
<td>5017</td>
<td>F 17</td>
</tr>
<tr>
<td>5018</td>
<td>F 18</td>
</tr>
<tr>
<td>5019</td>
<td>F 19</td>
</tr>
<tr>
<td>5020</td>
<td>F 20</td>
</tr>
<tr>
<td>5021</td>
<td>F 21</td>
</tr>
<tr>
<td>5022</td>
<td>F 22</td>
</tr>
<tr>
<td>5023</td>
<td>F 23</td>
</tr>
<tr>
<td>5024</td>
<td>F 24</td>
</tr>
</tbody>
</table>

### Table 38  Numeric Key Character Set

<table>
<thead>
<tr>
<th>Numeric Keypad</th>
<th>Keystroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>6042</td>
<td>*</td>
</tr>
<tr>
<td>6043</td>
<td>+</td>
</tr>
<tr>
<td>6044</td>
<td>Undefined</td>
</tr>
<tr>
<td>6045</td>
<td>-</td>
</tr>
</tbody>
</table>
### Table 38  Numeric Key Character Set (Continued)

<table>
<thead>
<tr>
<th>Numeric Keypad</th>
<th>Keystroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>6046</td>
<td>.</td>
</tr>
<tr>
<td>6047</td>
<td>/</td>
</tr>
<tr>
<td>6048</td>
<td>0</td>
</tr>
<tr>
<td>6049</td>
<td>1</td>
</tr>
<tr>
<td>6050</td>
<td>2</td>
</tr>
<tr>
<td>6051</td>
<td>3</td>
</tr>
<tr>
<td>6052</td>
<td>4</td>
</tr>
<tr>
<td>6053</td>
<td>5</td>
</tr>
<tr>
<td>6054</td>
<td>6</td>
</tr>
<tr>
<td>6055</td>
<td>7</td>
</tr>
<tr>
<td>6056</td>
<td>8</td>
</tr>
<tr>
<td>6057</td>
<td>9</td>
</tr>
<tr>
<td>6058</td>
<td>Enter</td>
</tr>
<tr>
<td>6059</td>
<td>Num Lock</td>
</tr>
</tbody>
</table>

### Table 39  Extended Key Character Set

<table>
<thead>
<tr>
<th>Extended Keypad</th>
<th>Keystroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>7001</td>
<td>Break</td>
</tr>
<tr>
<td>7002</td>
<td>Delete</td>
</tr>
<tr>
<td>7003</td>
<td>Pg Up</td>
</tr>
<tr>
<td>7004</td>
<td>End</td>
</tr>
<tr>
<td>7005</td>
<td>Pg Dn</td>
</tr>
<tr>
<td>7006</td>
<td>Pause</td>
</tr>
<tr>
<td>7007</td>
<td>Scroll Lock</td>
</tr>
<tr>
<td>7008</td>
<td>Backspace</td>
</tr>
<tr>
<td>7009</td>
<td>Tab</td>
</tr>
<tr>
<td>7010</td>
<td>Print Screen</td>
</tr>
<tr>
<td>7011</td>
<td>Insert</td>
</tr>
<tr>
<td>7012</td>
<td>Home</td>
</tr>
<tr>
<td>7013</td>
<td>Enter</td>
</tr>
<tr>
<td>7014</td>
<td>Escape</td>
</tr>
</tbody>
</table>
Table 39  Extended Key Character Set (Continued)

<table>
<thead>
<tr>
<th>Extended Keypad</th>
<th>Keystroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>7015</td>
<td>Up Arrow</td>
</tr>
<tr>
<td>7016</td>
<td>Dn Arrow</td>
</tr>
<tr>
<td>7017</td>
<td>Left Arrow</td>
</tr>
<tr>
<td>7018</td>
<td>Right Arrow</td>
</tr>
</tbody>
</table>
## Symbol Code Identifiers

<table>
<thead>
<tr>
<th>Code Character</th>
<th>Code Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>UPC-A, UPC-E, UPC-E1, EAN-8, EAN-13</td>
</tr>
<tr>
<td>B</td>
<td>Code 39, Code 32</td>
</tr>
<tr>
<td>C</td>
<td>Codabar</td>
</tr>
<tr>
<td>D</td>
<td>Code 128, ISBT 128, ISBT 128 Concatenated</td>
</tr>
<tr>
<td>E</td>
<td>Code 93</td>
</tr>
<tr>
<td>F</td>
<td>Interleaved 2 of 5</td>
</tr>
<tr>
<td>G</td>
<td>Discrete 2 of 5, or Discrete 2 of 5 IATA</td>
</tr>
<tr>
<td>H</td>
<td>Code 11</td>
</tr>
<tr>
<td>J</td>
<td>MSI</td>
</tr>
<tr>
<td>K</td>
<td>GS1-128</td>
</tr>
<tr>
<td>L</td>
<td>Bookland EAN</td>
</tr>
<tr>
<td>M</td>
<td>Trioptic Code 39</td>
</tr>
<tr>
<td>N</td>
<td>Coupon Code</td>
</tr>
<tr>
<td>R</td>
<td>GS1 DataBar Family</td>
</tr>
<tr>
<td>S</td>
<td>Matrix 2 of 5</td>
</tr>
<tr>
<td>T</td>
<td>UCC Composite, TLC 39</td>
</tr>
<tr>
<td>U</td>
<td>Chinese 2 of 5</td>
</tr>
<tr>
<td>V</td>
<td>Korean 3 of 5</td>
</tr>
<tr>
<td>X</td>
<td>ISSN EAN, PDF417, Macro PDF417, Micro PDF417</td>
</tr>
<tr>
<td>z</td>
<td>Aztec, Aztec Rune</td>
</tr>
<tr>
<td>P00</td>
<td>Data Matrix</td>
</tr>
</tbody>
</table>
Each AIM Code Identifier contains the three-character string \texttt{[cm]} where:

\begin{itemize}
  \item \texttt{[} = Flag Character (ASCII 93)
  \item \texttt{c} = Code Character (see Table 41)
  \item \texttt{m} = Modifier Character (see Table 42)
\end{itemize}

### Table 40 Symbol Code Characters (Continued)

<table>
<thead>
<tr>
<th>Code Character</th>
<th>Code Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01</td>
<td>QR Code, MicroQR</td>
</tr>
<tr>
<td>P02</td>
<td>Maxicode</td>
</tr>
<tr>
<td>P03</td>
<td>US Postnet</td>
</tr>
<tr>
<td>P04</td>
<td>US Planet</td>
</tr>
<tr>
<td>P05</td>
<td>Japan Postal</td>
</tr>
<tr>
<td>P06</td>
<td>UK Postal</td>
</tr>
<tr>
<td>P08</td>
<td>Netherlands KIX Code</td>
</tr>
<tr>
<td>P09</td>
<td>Australia Post</td>
</tr>
<tr>
<td>P0A</td>
<td>USPS 4CB/One Code/Intelligent Mail</td>
</tr>
<tr>
<td>P0B</td>
<td>UPU FICS Postal</td>
</tr>
<tr>
<td>P0C</td>
<td>Mailmark</td>
</tr>
<tr>
<td>P0D</td>
<td>Grid Matrix, Grid Matrix Inverse, Grid Matrix Mirror</td>
</tr>
<tr>
<td>P0G</td>
<td>GS1 Data Matrix</td>
</tr>
<tr>
<td>P0H</td>
<td>Han Xin</td>
</tr>
<tr>
<td>P0Q</td>
<td>GS1 QR</td>
</tr>
<tr>
<td>P0X</td>
<td>Signature Capture</td>
</tr>
</tbody>
</table>

---

**AIM Code Identifiers**

Each AIM Code Identifier contains the three-character string \texttt{[cm]} where:

\begin{itemize}
  \item \texttt{[} = Flag Character (ASCII 93)
  \item \texttt{c} = Code Character (see Table 41)
  \item \texttt{m} = Modifier Character (see Table 42)
\end{itemize}

### Table 41 Aim Code Characters

<table>
<thead>
<tr>
<th>Code Character</th>
<th>Code Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Code 39, Code 39 Full ASCII, Code 32</td>
</tr>
<tr>
<td>C</td>
<td>Code 128, ISBT 128, ISBT 128 Concatenated, GS1-128, Coupon (Code 128 portion)</td>
</tr>
<tr>
<td>d</td>
<td>Data Matrix, GS1 Data Matrix</td>
</tr>
<tr>
<td>E</td>
<td>UPC/EAN, Coupon (UPC portion)</td>
</tr>
<tr>
<td>e</td>
<td>GS1 DataBar Family</td>
</tr>
<tr>
<td>F</td>
<td>Codabar</td>
</tr>
</tbody>
</table>
The modifier character is the sum of the applicable option values based on Table 42.

Table 42 Modifier Characters

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Option Value</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 39</td>
<td>0</td>
<td>No check character or Full ASCII processing.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Reader has checked one check character.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Reader has checked and stripped check character.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Reader has performed Full ASCII character conversion.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Reader has performed Full ASCII character conversion and checked one check character.</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Reader has performed Full ASCII character conversion and checked and stripped check character.</td>
</tr>
</tbody>
</table>

Example: A Full ASCII barcode with check character W, \textbf{A+I+MI+DW}, is transmitted as \textbf{JA7AIMID} where 7 = (3+4).

| Trioptic Code 39 | 0            | No option specified at this time. Always transmit 0.                |

Example: A Trioptic barcode 412356 is transmitted as \textbf{JX0412356}

Table 41 Aim Code Characters (Continued)

<table>
<thead>
<tr>
<th>Code Character</th>
<th>Code Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Code 93</td>
</tr>
<tr>
<td>H</td>
<td>Code 11</td>
</tr>
<tr>
<td>h</td>
<td>Han Xin</td>
</tr>
<tr>
<td>I</td>
<td>Interleaved 2 of 5</td>
</tr>
<tr>
<td>L</td>
<td>PDF417, Macro PDF417, Micro PDF417</td>
</tr>
<tr>
<td>L2</td>
<td>TLC 39</td>
</tr>
<tr>
<td>M</td>
<td>MSI</td>
</tr>
<tr>
<td>Q</td>
<td>QR Code, MicroQR, GS1 QR</td>
</tr>
<tr>
<td>S</td>
<td>Discrete 2 of 5, IATA 2 of 5</td>
</tr>
<tr>
<td>U</td>
<td>Maxicode</td>
</tr>
<tr>
<td>z</td>
<td>Aztec, Aztec Rune</td>
</tr>
<tr>
<td>X</td>
<td>Bookland EAN, ISSN EAN, Trioptic Code 39, Chinese 2 of 5, Matrix 2 of 5, Korean 3 of 5, US Postnet, US Planet, UK Postal, Japan Postal, Australia Post, Netherlands KIX Code, USPS 4CB/One Code/ Intelligent Mail, UPU FICS Postal, Mailmark, Signature Capture</td>
</tr>
<tr>
<td>]g</td>
<td>Grid Matrix, Grid Matrix Inverse, Grid Matrix Mirror</td>
</tr>
</tbody>
</table>
### Table 42  Modifier Characters (Continued)

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Option Value</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 128</td>
<td>0</td>
<td>Standard data packet, no Function code 1 in first symbol position.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Function code 1 in first symbol character position.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Function code 1 in second symbol character position.</td>
</tr>
<tr>
<td>Example: A Code (EAN) 128 barcode with Function 1 character FNC1 in the first position, AIMID is transmitted as <strong>JC1AIMID</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2 of 5</td>
<td>0</td>
<td>No check digit processing.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Reader has validated check digit.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Reader has validated and stripped check digit.</td>
</tr>
<tr>
<td>Example: An I 2 of 5 barcode without check digit, 4123, is transmitted as <strong>J04123</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Codabar</td>
<td>0</td>
<td>No check digit processing.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Reader has checked check digit.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Reader has stripped check digit before transmission.</td>
</tr>
<tr>
<td>Example: A Codabar barcode without check digit, 4123, is transmitted as <strong>JF04123</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 93</td>
<td>0</td>
<td>No options specified at this time. Always transmit 0.</td>
</tr>
<tr>
<td>Example: A Code 93 barcode 012345678905 is transmitted as <strong>JG012345678905</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSI</td>
<td>0</td>
<td>Check digits are sent.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>No check digit is sent.</td>
</tr>
<tr>
<td>Example: An MSI barcode 4123, with a single check digit checked, is transmitted as <strong>JM14123</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D 2 of 5</td>
<td>0</td>
<td>No options specified at this time. Always transmit 0.</td>
</tr>
<tr>
<td>Example: A D 2 of 5 barcode 4123, is transmitted as <strong>JS04123</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPC/EAN</td>
<td>0</td>
<td>Standard data packet in full EAN format, i.e., 13 digits for UPC-A, UPC-E, and EAN-13 (not including supplemental data).</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Two digit supplemental data only.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Five digit supplemental data only.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Combined data packet comprising 13 digits from EAN-13, UPC-A or UPC-E symbol and 2 or 5 digits from supplemental symbol.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>EAN-8 data packet.</td>
</tr>
<tr>
<td>Example: A UPC-A barcode 012345678905 is transmitted as <strong>JE0012345678905</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bookland EAN</td>
<td>0</td>
<td>No options specified at this time. Always transmit 0.</td>
</tr>
<tr>
<td>Example: A Bookland EAN barcode 123456789X is transmitted as <strong>JX0123456789X</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSN EAN</td>
<td>0</td>
<td>No options specified at this time. Always transmit 0.</td>
</tr>
<tr>
<td>Example: An ISSN EAN barcode 123456789X is transmitted as <strong>JX0123456789X</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code Type</td>
<td>Option Value</td>
<td>Option</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Code 11</td>
<td>0</td>
<td>Single check digit</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Two check digits</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Check characters validated but not transmitted.</td>
</tr>
<tr>
<td>GS1 DataBar Family</td>
<td></td>
<td>No option specified at this time. Always transmit 0. GS1 DataBar Omnidirectional and GS1 DataBar Limited transmit with an Application Identifier &quot;01&quot;. Note: In GS1-128 emulation mode, GS1 DataBar is transmitted using Code 128 rules (i.e., J[C1]).</td>
</tr>
<tr>
<td>EAN.UCC Composites (GS1 DataBar, GS1-128, 2D portion of UPC composite)</td>
<td></td>
<td>Native mode transmission. Note: UPC portion of composite is transmitted using UPC rules.</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Standard data packet.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Data packet containing the data following an encoded symbol separator character.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Data packet containing the data following an escape mechanism character. The data packet does not support the ECI protocol.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Data packet containing the data following an escape mechanism character. The data packet supports the ECI protocol.</td>
</tr>
<tr>
<td>PDF417, Micro PDF417</td>
<td>0</td>
<td>Reader set to conform to protocol defined in 1994 PDF417 symbology specifications. Note: When this option is transmitted, the receiver cannot reliably determine whether ECIs have been invoked or whether data byte 92_BE has been doubled in transmission.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Reader set to follow the ECI protocol (Extended Channel Interpretation). All data characters 92_BE are doubled.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Reader set for Basic Channel operation (no escape character transmission protocol). Data characters 92_BE are not doubled. Note: When decoders are set to this mode, unbuffered Macro symbols and symbols requiring the decoder to convey ECI escape sequences cannot be transmitted.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>The barcode contains a GS1-128 symbol, and the first codeword is 903-907, 912, 914, 915.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>The barcode contains a GS1-128 symbol, and the first codeword is in the range 908-909.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>The barcode contains a GS1-128 symbol, and the first codeword is in the range 910-911.</td>
</tr>
</tbody>
</table>

Example: A GS1 DataBar Omnidirectional barcode 0110012345678902 is transmitted as J[0]0110012345678902.

Example: A PDF417 barcode ABCD, with no transmission protocol enabled, is transmitted as J[L2ABCD].
<table>
<thead>
<tr>
<th>Code Type</th>
<th>0</th>
<th>Option Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Matrix</td>
<td></td>
<td>ECC 000-140, not supported.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>ECC 200.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>ECC 200, FNC1 in first or fifth position.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>ECC 200, FNC1 in second or sixth position.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>ECC 200, ECI protocol implemented.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>ECC 200, FNC1 in first or fifth position, ECI protocol implemented.</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>ECC 200, FNC1 in second or sixth position, ECI protocol implemented.</td>
</tr>
<tr>
<td>GS1 Data Matrix</td>
<td>2</td>
<td>ECC 200, FNC1 in first or fifth position.</td>
</tr>
<tr>
<td>MaxiCode</td>
<td>0</td>
<td>Symbol in Mode 4 or 5.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Symbol in Mode 2 or 3.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Symbol in Mode 4 or 5, ECI protocol implemented.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Symbol in Mode 2 or 3, ECI protocol implemented in secondary message.</td>
</tr>
<tr>
<td>QR Code</td>
<td>0</td>
<td>Model 1 symbol.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Model 2 / MicroQR symbol, ECI protocol not implemented.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Model 2 symbol, ECI protocol implemented.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Model 2 symbol, ECI protocol not implemented, FNC1 implied in first position.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Model 2 symbol, ECI protocol implemented, FNC1 implied in first position.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Model 2 symbol, ECI protocol not implemented, FNC1 implied in second position.</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Model 2 symbol, ECI protocol implemented, FNC1 implied in second position.</td>
</tr>
<tr>
<td>GS1 QR</td>
<td>3</td>
<td>Model 2 symbol, ECI protocol not implemented, FNC1 implied in first position.</td>
</tr>
<tr>
<td>Aztec</td>
<td>0</td>
<td>Aztec symbol.</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Aztec Rune symbol.</td>
</tr>
<tr>
<td>Han Xin</td>
<td>0</td>
<td>Generic data, no special features are set. The transmitted data does not follow the AIM ECI protocol.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>ECI protocol enabled. There is at least one ECI mode encoded. Transmitted data must follow the AIM ECI protocol.</td>
</tr>
<tr>
<td>Code Type</td>
<td>Option Value</td>
<td>Option</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------</td>
<td>----------------------------------------------------------</td>
</tr>
<tr>
<td>Grid Matrix, Grid Matrix Inverse, Grid Matrix Mirror</td>
<td>0</td>
<td>No options specified at this time. Always transmit 0.</td>
</tr>
<tr>
<td>Mailmark</td>
<td>0</td>
<td>No option specified at this time. Always transmit 0.</td>
</tr>
</tbody>
</table>
**Communication Protocol Functionality**

**Functionality Supported via Communication (Cable) Interface**

Table 43 lists supported scanner functionality by communication protocol.

<table>
<thead>
<tr>
<th>Communication Interfaces</th>
<th>Data Transmission</th>
<th>Remote Management</th>
<th>Image and Video Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HID Keyboard Emulation</td>
<td>Supported</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>CDC COM Port Emulation</td>
<td>Supported</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>SSI over CDC COM Port Emulation</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>IBM Table-top USB</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Available</td>
</tr>
<tr>
<td>IBM Hand-held USB</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Available</td>
</tr>
<tr>
<td>USB OPOS Hand-held</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Available</td>
</tr>
<tr>
<td>Symbol Native API (SNAPI) without Imaging Interface</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Available</td>
</tr>
<tr>
<td>Symbol Native API (SNAPI) with Imaging Interface</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>RS-232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard RS-232</td>
<td>Supported</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>ICL RS-232</td>
<td>Supported</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Fujitsu RS-232</td>
<td>Supported</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Wincor-Nixdorf RS-232 Mode A</td>
<td>Supported</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Wincor-Nixdorf RS-232 Mode B</td>
<td>Supported</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Olivetti ORS4500</td>
<td>Supported</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Omron</td>
<td>Supported</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
### Table 43  Communication Interface Functionality (Continued)

<table>
<thead>
<tr>
<th>Communication Interfaces</th>
<th>Data Transmission</th>
<th>Remote Management</th>
<th>Image and Video Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUTE</td>
<td>Supported</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>OPOS/JPOS</td>
<td>Supported</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>SSI</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td><strong>IBM 4690</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand-held Scanner Emulation (Port 9B)</td>
<td>Supported</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Table-top Scanner Emulation (Port 17)</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Available</td>
</tr>
<tr>
<td>Non-IBM Scanner Emulation (Port 5B)</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Available</td>
</tr>
<tr>
<td><strong>Keyboard Wedge</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM PC/AT &amp; IBM PC Compatibles</td>
<td>Supported</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>IBM AT Notebook</td>
<td>Supported</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
Country Codes

Introduction

This chapter provides instructions for programming the keyboard to interface with a USB or Keyboard Wedge host. The host powers the scanner. For host setup information, see USB Interface and Keyboard Wedge Interface.

To select a code page for the country keyboard type, see Country Code Pages.

Throughout the programming barcode menus, default values are indicated with asterisks (*).

* Indicates Default — US English (North American) — Feature/Option
USB and Keyboard Wedge Country Keyboard Types (Country Codes)

Scan the barcode corresponding to the keyboard type. For a USB host, this setting applies only to the USB Keyboard (HID) device. If the keyboard type is not listed, see Keypad Emulation on page 244 for the USB HID host. For a keyboard wedge host, see Alternate Numeric Keypad Emulation on page 309.

NOTE: When changing USB country keyboard types the scanner automatically resets and issues the standard startup beep sequences.

NOTE: For best results when using international keyboards, enable Quick Keypad Emulation on page 244.

IMPORTANT:
- Some country keyboard barcode types are specific to certain Windows operating systems (that is, XP and Windows 7 or higher). Barcodes requiring a specific Windows OS are noted in the barcode captions.
- Use the French International barcode for Belgian French keyboards.

* US English (North American)

US English (Mac)

Albanian

Arabic (101)
Country Codes (Continued)

Arabic (102)

Arabic (102) AZERTY

Azeri (Latin)

Azeri (Cyrillic)

Belarusian

Bosnian (Latin)

Bosnian (Cyrillic)
Country Codes (Continued)

Bulgarian (Latin)

Bulgarian Cyrillic (Typewriter)
(Bulgarian - Windows XP
Typewriter - Windows 7 or higher)

Canadian French Win7

Canadian French (Legacy)

Canadian Multilingual Standard

Chinese (ASCII)
Country Codes (Continued)

Chinese (Simplified)*

Chinese (Traditional)*
*For CJK keyboard types, see CJK Decode Control.

Croatian

Czech

Czech (Programmer)

Czech (QWERTY)

Danish
Country Codes (Continued)

- Dutch (Netherlands)
- Estonian
- Faeroese
- Finnish
- French (France)
- French International (Belgian French)
- French (Canada) 95/98
Country Codes (Continued)

French (Canada) 2000/XP*
*There is also a country code barcode for Canadian Multilingual Standard on page 473. Be sure to select the appropriate barcode for your host system.

Galician

German

Greek Latin

Greek (220) Latin

Greek (319) Latin

Greek
Country Codes (Continued)

Greek (220)

Greek (319)

Greek Polytonic

Hebrew Israel

Hungarian

Hungarian_101KEY

Icelandic
Country Codes (Continued)

Irish

Italian

Italian (142)

Japanese (ASCII)

Japanese (SHIFT-JIS)*
*For CJK keyboard types, see CJK Decode Control.

Kazakh

Korean (ASCII)
Korean (Hangul)*
*For CJK keyboard types, see CJK Decode Control.
Country Codes (Continued)

Macedonian (FYROM)

Maltese_47KEY

Mongolian

Norwegian

Polish (214)

Polish (Programmer)

Portuguese (Brazil)
(Windows XP)
Country Codes (Continued)

Portuguese (Brazilian ABNT)

Portuguese (Brazilian ABNT2)

Portuguese (Portugal)

Romanian (Windows XP)

Romanian (Legacy) (Windows 7 or higher)

Romanian (Standard) (Windows 7 or higher)
Country Codes (Continued)

Romanian (Programmer)
(Windows 7 or higher)

Russian

Russian (Typewriter)

Serbian (Latin)

Serbian (Cyrillic)

Slovak
Country Codes (Continued)

Slovak (QWERTY)

Slovenian

Spanish

Spanish (Variation)

Swedish

Swiss French

Swiss German
<table>
<thead>
<tr>
<th>Country Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tatar</td>
<td></td>
</tr>
<tr>
<td>Thai (Kedmanee)</td>
<td></td>
</tr>
<tr>
<td>Turkish F</td>
<td></td>
</tr>
<tr>
<td>Turkish Q</td>
<td></td>
</tr>
<tr>
<td>UK English</td>
<td></td>
</tr>
<tr>
<td>Ukrainian</td>
<td></td>
</tr>
<tr>
<td>US Dvorak</td>
<td></td>
</tr>
</tbody>
</table>
Country Codes (Continued)

- US Dvorak Left
- US Dvorak Right
- US International
- Uzbek
- Vietnamese
Country Code Pages

Introduction

This chapter provides barcodes for selecting code pages for the country keyboard type selected in Country Codes. If the default code page in Table 44 is appropriate for your selected country keyboard type, you do not need to scan a country code page barcode.

NOTE: ADF rules can also specify a code page based on the symbology and other ADF criteria. Refer to the Advanced Data Formatting Programmer Guide.

Country Code Page Defaults

Table 44 lists the code page default for each country keyboard.

<table>
<thead>
<tr>
<th>Country Keyboard</th>
<th>Code Page Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>US English (North American)</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>US English (Mac)</td>
<td>Mac CP10000</td>
</tr>
<tr>
<td>Albanian</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Arabic 101</td>
<td>Windows 1256</td>
</tr>
<tr>
<td>Arabic 102</td>
<td>Windows 1256</td>
</tr>
<tr>
<td>Arabic 102 AZERTY</td>
<td>Windows 1256</td>
</tr>
<tr>
<td>Azeri Latin</td>
<td>Windows 1254</td>
</tr>
<tr>
<td>Azeri Cyrillic</td>
<td>Windows 1251</td>
</tr>
<tr>
<td>Belarusian</td>
<td>Windows 1251</td>
</tr>
<tr>
<td>Bosnian Latin</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Bosnian Cyrillic</td>
<td>Windows 1251</td>
</tr>
<tr>
<td>Bulgarian Latin</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Bulgarian Cyrillic</td>
<td>Windows 1251</td>
</tr>
<tr>
<td>Country Keyboard</td>
<td>Code Page Default</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Canadian French Win7</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Canadian French (Legacy)</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Canadian Multilingual</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Croatian</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Chinese ASCII</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Chinese (Simplified)</td>
<td>Windows 936, GBK</td>
</tr>
<tr>
<td>Chinese (Traditional)</td>
<td>Windows 950, Big5</td>
</tr>
<tr>
<td>Czech</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Czech Programmers</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Czech QWERTY</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Danish</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Dutch Netherland</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Estonian</td>
<td>Windows 1257</td>
</tr>
<tr>
<td>Faeroese</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Finnish</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>French (France)</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>French (Canada) 95/98</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>French (Canada) 2000/XP</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>French International (Belgian French)</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Galician</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>German</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Greek Latin</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Greek220 Latin</td>
<td>Windows 1253</td>
</tr>
<tr>
<td>Greek319 Latin</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Greek</td>
<td>Windows 1253</td>
</tr>
<tr>
<td>Greek220</td>
<td>Windows 1253</td>
</tr>
<tr>
<td>Greek319</td>
<td>Windows 1253</td>
</tr>
<tr>
<td>Greek Polytonic</td>
<td>Windows 1253</td>
</tr>
<tr>
<td>Hebrew Israel</td>
<td>Windows 1255</td>
</tr>
<tr>
<td>Hungarian</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Hungarian_101KEY</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Country Keyboard</td>
<td>Code Page Default</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Icelandic</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Irish</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Italian</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Italian_142</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Japanese ASCII</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Japanese (Shift-JIS)</td>
<td>Windows 932, Shift-JIS</td>
</tr>
<tr>
<td>Kazakh</td>
<td>Windows 1251</td>
</tr>
<tr>
<td>Korean ASCII</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Korean (Hangul)</td>
<td>Windows 949, Hangul</td>
</tr>
<tr>
<td>Kyrgyz Cyrillic</td>
<td>Windows 1251</td>
</tr>
<tr>
<td>Latin America</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Latvian</td>
<td>Windows 1257</td>
</tr>
<tr>
<td>Latvian QWERTY</td>
<td>Windows 1257</td>
</tr>
<tr>
<td>Lithuanian</td>
<td>Windows 1257</td>
</tr>
<tr>
<td>Lithuanian IBM</td>
<td>Windows 1257</td>
</tr>
<tr>
<td>Macedonian -FYROM</td>
<td>Windows 1251</td>
</tr>
<tr>
<td>Maltese_47KEY</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Mongolian-Cyrillic</td>
<td>Windows 1251</td>
</tr>
<tr>
<td>Norwegian</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Polish_214</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Polish Programmer</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Portuguese Brazil</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Portuguese Brazilian ABNT</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Portuguese Brazilian ABNT2</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Portuguese Portugal</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Romanian</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Romanian Legacy</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Romanian Standard</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Romanian Programmer</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Russian</td>
<td>Windows 1251</td>
</tr>
<tr>
<td>Russian Typewriter</td>
<td>Windows 1251</td>
</tr>
<tr>
<td>Country Keyboard</td>
<td>Code Page Default</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Serbian Latin</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Serbian Cyrillic</td>
<td>Windows 1251</td>
</tr>
<tr>
<td>Slovak</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Slovak QWERTY</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Slovenian</td>
<td>Windows 1250</td>
</tr>
<tr>
<td>Spanish</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Spanish Variation</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Swedish</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Swiss French</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Swiss German</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Tatar</td>
<td>Windows 1251</td>
</tr>
<tr>
<td>Thai-Kedmanee</td>
<td>Windows 874</td>
</tr>
<tr>
<td>Turkish F</td>
<td>Windows 1254</td>
</tr>
<tr>
<td>Turkish Q</td>
<td>Windows 1254</td>
</tr>
<tr>
<td>Ukrainian</td>
<td>Windows 1251</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>United States</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>US Dvorak</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>US Dvorak Left Hand</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>US Dvorak Right Hand</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>US International</td>
<td>Windows 1252</td>
</tr>
<tr>
<td>Uzbek Cyrillic</td>
<td>Windows 1251</td>
</tr>
<tr>
<td>Vietnamese</td>
<td>Windows 1258</td>
</tr>
</tbody>
</table>
Country Code Page Barcodes

Scan the barcode corresponding to the country keyboard code page.

Windows 1250
Latin 2, Central European

Windows 1251
Cyrillic, Slavic

Windows 1252
Latin 1, Western European

Windows 1253
Greek

Windows 1254
Latin 5, Turkish
Country Code Pages (Continued)

Windows 1255
Hebrew

Windows 1256
Arabic

Windows 1257
Baltic

Windows 1258
Vietnamese

Windows 874
Thai
Country Code Pages

Windows 20866
Cyrillic KOI8-R

Windows 932
Japanese Shift-JIS

Windows 936
Simplified Chinese GBK

Windows 54936
Simplified Chinese GB18030

Windows 949
Korean Hangul

Windows 950
Traditional Chinese Big5
Country Code Pages (Continued)

- **MS-DOS 437**
  - Latin US

- **MS-DOS 737**
  - Greek

- **MS-DOS 775**
  - Baltic

- **MS-DOS 850**
  - Latin 1

- **MS-DOS 852**
  - Latin 2
Country Code Pages (Continued)

MS-DOS 855
Cyrillic

MS-DOS 857
Turkish

MS-DOS 860
Portuguese

MS-DOS 861
Icelandic

MS-DOS 862
Hebrew
Country Code Pages (Continued)

MS-DOS 863
French Canada

MS-DOS 865
Nordic

MS-DOS 866
Cyrillic

MS-DOS 869
Greek 2
Country Code Pages (Continued)

ISO 8859-1
Latin 1, Western European

ISO 8859-2
Latin 2, Central European

ISO 8859-3
Latin 3, South European

ISO 8859-4
Latin 4, North European

ISO 8859-5
Cyrillic
Country Code Pages (Continued)

ISO 8859-6
Arabic

ISO 8859-7
Greek

ISO 8859-8
Hebrew

ISO 8859-9
Latin 5, Turkish

ISO 8859-10
Latin 6, Nordic
ISO 8859-11
Thai

ISO 8859-13
Latin 7, Baltic

ISO 8859-14
Latin 8, Celtic

ISO 8859-15
Latin 9

ISO 8859-16
Latin 10, South-Eastern European
Introduction

This chapter describes control parameters for CJK (Chinese, Japanese, Korean) barcode decode through USB HID Keyboard Emulation mode.

NOTE: Because ADF does not support CJK character processing, there is no format manipulation for CJK output.

CJK Control Parameters

Unicode Output Control

Parameter # 973

For a Unicode encoded CJK barcode, select one of the following options for unicode output:

- **Universal Output to Unicode and MBCS Application** - This default method applies to Unicode and MBCS expected applications, such as MS Word and Notepad on a Windows host.

  NOTE: To support Unicode universal output, set up the registry table for the Windows host. See Unicode/CJK Decode Setup with Windows Host on page 504.

- **Output to Unicode Application Only** - This method applies only to Unicode expected applications, such as MS Word and WordPad, but not Notepad.

* Universal Output (0)

* Unicode Application Only (1)
CJK Output Method to Windows Host

Parameter # 972

For a national standard encoded CJK barcode, select one of the following options for CJK output to a Windows host:

- **Universal CJK Output** - This is the default universal CJK output method for US English IME or Chinese/Japanese/Korean ASCII IME on a Windows host. This method converts CJK characters to Unicode and emulates the characters when transmitting to the host. Use the Unicode Output Control parameter to control Unicode output.

  NOTE: To support universal CJK output, set up the registry table for the Windows host. See Unicode/CJK Decode Setup with Windows Host on page 504.

- **Other options for CJK output** - With the following methods, the scanner sends the CJK character hexadecimal internal code (Nei Ma) value to the host, or converts the CJK character to Unicode and sends the hexadecimal Unicode value to the host. When using these methods, the Windows host must select the corresponding IME to accept the CJK character. See Unicode/CJK Decode Setup with Windows Host on page 504.

  - Japanese Unicode Output
  - Simplified Chinese GBK Code Output
  - Simplified Chinese Unicode Output
  - Korean Unicode Code Output
  - Traditional Chinese Big5 Code Output (Windows XP)
  - Traditional Chinese Big5 Code Output (Windows 7)
  - Traditional Chinese Unicode Code Output (Windows XP)
  - Traditional Chinese Unicode Code Output (Windows 7)

  NOTE: The Unicode emulate output method depends on the host system (Windows XP or Windows 7).

* Universal CJK Output (0)

Japanese Unicode Output (34)

(For Japanese Unicode Output, select Simplified Chinese Unicode IME on the Windows host)
CJK Output Method to Windows Host (continued)

Chinese (Simplified) GBK Output (1)

Chinese (Simplified) Unicode Output (2)

Korean Unicode Output (50)
(for Korean Unicode Output, select Simplified Chinese Unicode IME on the Windows host)

Chinese (Traditional) Big5 Output (Windows XP) (17)

Chinese (Traditional) Big5 Output (Windows 7) (19)

Chinese (Traditional) Unicode Output (Windows XP) (18)

Chinese (Traditional) Unicode Output (Windows 7) (20)
Non-CJK UTF Barcode Output

Parameter # 960

Some country keyboard type layouts contain characters that do not exist in the default code page (see Country Keyboard Type Missing Characters on page 503). Although the default code page can not encode these characters in a barcode, they can be encoded in the UTF-8 barcode. Scan the following barcode to output the Unicode values by emulation mode.

NOTE: Use this special country keyboard type to decode the non-CJK UTF-8 barcode. After decoding, re-configure the scanner to use the original country keyboard type.

Use US English IME on Windows. See Unicode Output Control on page 500.

Non-CJK UTF-8 Emulation Output

Country Keyboard Type Missing Characters

Country keyboard type: Tatar, Uzbek, Mongolian, Kyrgyz, Kazakh and Azeri

Default code page: CP1251

Table 45  Missing Characters

<table>
<thead>
<tr>
<th>Г</th>
<th>Ғ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Х</td>
<td>Ҳ</td>
</tr>
<tr>
<td>К</td>
<td>Қ</td>
</tr>
<tr>
<td>Һ</td>
<td>Һ</td>
</tr>
<tr>
<td>О</td>
<td>Ө</td>
</tr>
<tr>
<td>Э</td>
<td>Ә</td>
</tr>
<tr>
<td>Ы</td>
<td>Ү</td>
</tr>
<tr>
<td>Н</td>
<td>Ң</td>
</tr>
<tr>
<td>Ж</td>
<td>Җ</td>
</tr>
<tr>
<td>Т</td>
<td>Ҭ</td>
</tr>
<tr>
<td>Н</td>
<td>Ң</td>
</tr>
<tr>
<td>У</td>
<td>Ұ</td>
</tr>
<tr>
<td>К</td>
<td>Ҝ</td>
</tr>
</tbody>
</table>
Setting Up the Windows Registry Table for Unicode Universal Output

To support the Unicode universal output method, set up the Windows host registry table as follows:

1. Select **Start > Run > regedt32** to start the registry editor.
2. Under `HKEY_CURRENT_USER\Control Panel\Input Method`, set `EnableHexNumpad` to `1` as follows:

   ```plaintext
 [HKEY_CURRENT_USER\Control Panel\Input Method]
 "EnableHexNumpad"="1"
 ``

 If this key does not exist, add it as type `REG_SZ` (string value).
3. Reboot the computer to implement the registry change.

Adding CJK IME on Windows

To add the desired CJK input language:

1. Click **Start > Control Panel**.

Table 45 Missing Characters (Continued)

<table>
<thead>
<tr>
<th>咧</th>
<th>㮩</th>
</tr>
</thead>
<tbody>
<tr>
<td>Қ</td>
<td>Қ</td>
</tr>
</tbody>
</table>

Country keyboard type: **Romanian (Standard)**
Default code page: CP1250

Table 46 Missing Characters

<table>
<thead>
<tr>
<th>§</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>!</td>
</tr>
</tbody>
</table>

Country keyboard type: **Portuguese-Brazilian (ABNT), Portuguese-Brazilian (ABNT2)**
Default code page: CP1252
Missing character: ꞙ

Country keyboard type: **Azeri-Latin**
Default code page: CP1254
Missing characters: ə, Є

Unicode/CJK Decode Setup with Windows Host

This section describes how to set up CJK decode with a Windows host.
2. If the Control Panel opens in category view, select **Switch to Classic View** in the top left corner.

3. Select **Regional and Language Options**.

4. Click the **Language** tab.

5. Under **Supplemental Language Support**, select the **Install Files for East Asian Languages** check box if not already selected, and click **Apply**. This may require a Windows installation CD to install the required files. This step ensures that the East Asian Languages (CJK) are available.

6. Under **Text Services and Input Language**, click **Details**.

7. Under **Installed Services**, click **Add**.

8. In the **Add Input Language** dialog box, choose the CJK input language and keyboard layout or Input Method Editor (IME) to add.

9. Click **OK** twice. The language indicator appears in the system tray (at bottom right corner of the desktop by default). To switch between input languages (keyboard languages) select the language indicator in the system tray.

10. Select the language indicator in the system tray to select the desired country keyboard type.

11. Verify that the characters displayed on each country’s keyboard appear.
Selecting the Simplified Chinese Input Method on the Host

To select the Simplified Chinese input method:

- Select Unicode/GBK input on Windows XP: Chinese (Simplified) - NeiMa, then click the input bar to select Unicode or GBK NeiMa input.

Or

- Select Unicode/GBK input on Windows 7: Chinese (Simplified) - Microsoft Pinyin New Experience Input Style, then select Tool Menu > Secondary Inputs > Unicode Input or GB Code Input.
Selecting the Traditional Chinese Input Method on the Host

To select the Traditional Chinese input method:

- Select Unicode input on Windows XP: **Chinese (Traditional) - Unicode**

- Select Big5 input on Windows XP: **Chinese (Traditional) - Big5 Code**

- Select Unicode/Big5 input on Windows 7: **Chinese (Traditional) - New Quick**. This option supports both Unicode and Big5 input.
Signature Capture

Introduction

CapCode, a signature capture code, is a special pattern that encloses a signature area on a document and allows a scanner to capture a signature.

There are several accepted patterns that allow automatic identification of different signatures on the same form. For example, on the federal tax return 1040 form there are three signature areas, one each for two joint filers, and one for a professional preparer. By using different patterns, a program can correctly identify all three, so they can be captured in any sequence and still be identified correctly.

Code Structure

Signature Capture Area

A CapCode is printed as two identical patterns on either side of a signature capture box, as shown in Figure 28. Each pattern extends the full height of the signature capture box.

The box is optional, so you can omit it, replace it with a single baseline, or print a baseline with an "X" on top of it towards the left, as is customarily done in the US to indicate a request for signature. However, if an "X" or other markings are added in the signature box area, these are captured with the signature.

Figure 28 CapCode
CapCode Pattern Structure

A CapCode pattern structure consists of a start pattern followed by a separator space, a signature capture box, a second separator space, and then a stop pattern. Assuming that X is the dimension of the thinnest element, the start and stop patterns each contains 9X total width in 4 bars and 3 spaces. A 7X quiet zone is required to the left and to the right of the CapCode pattern.

Figure 29 CapCode Structure

The separator spaces on either side of the signature capture box can be between 1X and 3X wide.

Start / Stop Patterns

Table 47 lists the accepted start / stop patterns. The bar and space widths are expressed as multiples of X. You must use the same pattern on either side of a signature capture box. The type value is reported with the captured signature to indicate the purpose of the signature captured.

Table 47 Start / Stop Pattern Definitions

<table>
<thead>
<tr>
<th>Bar/Space Patterns</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>B S B S B S B</td>
<td></td>
</tr>
<tr>
<td>1 1 2 2 1 1 1 1</td>
<td>2</td>
</tr>
<tr>
<td>1 2 2 1 1 1 1 1</td>
<td>5</td>
</tr>
<tr>
<td>2 1 1 2 1 1 1 1</td>
<td>7</td>
</tr>
<tr>
<td>2 2 1 1 1 1 1 1</td>
<td>8</td>
</tr>
<tr>
<td>3 1 1 1 1 1 1 1</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 48 lists selectable parameters used to generate the image of the captured signature.

Table 48 User Defined CapCode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>Number of pixels</td>
</tr>
<tr>
<td>Height</td>
<td>Number of pixels</td>
</tr>
<tr>
<td>Format</td>
<td>JPEG, BMP, TIFF</td>
</tr>
<tr>
<td>JPEG quality</td>
<td>1 (most compression) to 100 (best quality)</td>
</tr>
</tbody>
</table>
BMP format does not use compression, JPEG and TIFF formats do.

Dimensions

The size of the signature capture box is determined by the height and separation of the start and stop patterns. The line width of the signature capture box is insignificant.

The thinnest element width, referred to here as X, is nominally 10 mils (1 mil = 0.0254 mm). Select this as an exact multiple of the pixel pitch of the printer used. For example, when using a 203 DPI (dots-per-inch) printer and printing 2 dots per module, the resulting X dimension is 9.85 mils.

Data Format

The decoder output is formatted according to Table 49. Zebra decoders allow different user options to output or inhibit barcode type. Selecting "Symbol ID" as the barcode type for output identifies the CapCode with letter "i".

<table>
<thead>
<tr>
<th>File Format (1 byte)</th>
<th>Type (1 byte)</th>
<th>Image Size (4 bytes, BIG Endian)</th>
<th>Image Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG - 1</td>
<td>See Table 47, last column</td>
<td></td>
<td>(Same bytes as in a data file.)</td>
</tr>
<tr>
<td>BMP - 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIFF - 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Additional Capabilities

Regardless of how the signature is captured, the output signature image is de-skewed and right-side up.

A scanner that captures signatures automatically determines whether it is scanning a signature or a barcode. You can disable the signature capturing capability in a decoder.

Signature Boxes

Figure 30 illustrates the five acceptable signature boxes.

Figure 30 Acceptable Signature Boxes

Type 2:

Type 5:

Type 7:

Type 8:

Type 9:
Non-Parameter Attributes
(Attribute Data Dictionary)

Introduction
This chapter defines non-parameter attributes.

Attributes

Model Number
Attribute #533
Model number of the scanner. This electronic output matches the printout on the physical device label, for example DS9308-SR00004ZCWW.

<table>
<thead>
<tr>
<th>Type</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td>18</td>
</tr>
<tr>
<td>User Mode Access</td>
<td>R</td>
</tr>
<tr>
<td>Values</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Serial Number
Attribute #534
Unique serial number assigned in the manufacturing facility. This electronic output matches the printout on the physical device label, for example M1J26F45V.

<table>
<thead>
<tr>
<th>Type</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td>16</td>
</tr>
<tr>
<td>User Mode Access</td>
<td>R</td>
</tr>
<tr>
<td>Values</td>
<td>Variable</td>
</tr>
</tbody>
</table>
Non-Parameter Attributes (Attribute Data Dictionary)

Date of Manufacture

Attribute #535

Date of device manufacture assigned in the manufacturing facility. This electronic output matches the printout on the physical device label, for example 31OCT18 (which reads the 31st of October 2018).

<table>
<thead>
<tr>
<th>Type</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td>7</td>
</tr>
<tr>
<td>User Mode Access</td>
<td>R</td>
</tr>
<tr>
<td>Values</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Date of First Programming

Attribute #614

Date of first electronic programming represents the first time settings where electronically loaded to the scanner either by 123Scan or via SMS, for example 18MAY17 (which reads the 18th of May 2017).

<table>
<thead>
<tr>
<th>Type</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td>7</td>
</tr>
<tr>
<td>User Mode Access</td>
<td>R</td>
</tr>
<tr>
<td>Values</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Configuration Filename

Attribute #616

The name assigned to the configuration settings loaded electronically to the device either by 123Scan or via SMS.

NOTE: Scanning the Set Defaults barcode automatically changes the configuration filename to factory defaults.

To indicate the configuration settings loaded to the device were changed, the configuration filename changes to Modified upon scanning any parameter barcode.

<table>
<thead>
<tr>
<th>Type</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td>17</td>
</tr>
<tr>
<td>User Mode Access</td>
<td>RW</td>
</tr>
<tr>
<td>Values</td>
<td>Variable</td>
</tr>
</tbody>
</table>
Beeper/LED

Attribute #6000

Activates the beeper and/or LED.

<table>
<thead>
<tr>
<th>Type</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td>N/A</td>
</tr>
<tr>
<td>User Mode Access</td>
<td>W</td>
</tr>
</tbody>
</table>

Values:

<table>
<thead>
<tr>
<th>Beep / LED Action</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 high short beep</td>
<td>0</td>
</tr>
<tr>
<td>2 high short beeps</td>
<td>1</td>
</tr>
<tr>
<td>3 high short beeps</td>
<td>2</td>
</tr>
<tr>
<td>4 high short beeps</td>
<td>3</td>
</tr>
<tr>
<td>5 high short beeps</td>
<td>4</td>
</tr>
<tr>
<td>1 low short beep</td>
<td>5</td>
</tr>
<tr>
<td>2 low short beeps</td>
<td>6</td>
</tr>
<tr>
<td>3 low short beeps</td>
<td>7</td>
</tr>
<tr>
<td>4 low short beeps</td>
<td>8</td>
</tr>
<tr>
<td>5 low short beeps</td>
<td>9</td>
</tr>
<tr>
<td>1 high long beep</td>
<td>10</td>
</tr>
<tr>
<td>2 high long beeps</td>
<td>11</td>
</tr>
<tr>
<td>3 high long beeps</td>
<td>12</td>
</tr>
<tr>
<td>4 high long beeps</td>
<td>13</td>
</tr>
<tr>
<td>5 high long beeps</td>
<td>14</td>
</tr>
<tr>
<td>1 low long beep</td>
<td>15</td>
</tr>
<tr>
<td>2 low long beeps</td>
<td>16</td>
</tr>
<tr>
<td>3 low long beeps</td>
<td>17</td>
</tr>
<tr>
<td>4 low long beeps</td>
<td>18</td>
</tr>
<tr>
<td>5 low long beeps</td>
<td>19</td>
</tr>
<tr>
<td>Fast warble beep</td>
<td>20</td>
</tr>
<tr>
<td>Slow warble beep</td>
<td>21</td>
</tr>
<tr>
<td>High-low beep</td>
<td>22</td>
</tr>
<tr>
<td>Low-high beep</td>
<td>23</td>
</tr>
<tr>
<td>High-low-high beep</td>
<td>24</td>
</tr>
<tr>
<td>Low-high-low beep</td>
<td>25</td>
</tr>
<tr>
<td>High-high-low-low beep</td>
<td>26</td>
</tr>
<tr>
<td>Green LED off</td>
<td>42</td>
</tr>
<tr>
<td>Green LED on</td>
<td>43</td>
</tr>
<tr>
<td>Red LED on</td>
<td>47</td>
</tr>
<tr>
<td>Red LED off</td>
<td>48</td>
</tr>
</tbody>
</table>
Parameter Defaults

Attribute #6001
This attribute restores all parameters to their factory defaults.

<table>
<thead>
<tr>
<th>Type</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td>N/A</td>
</tr>
<tr>
<td>User Mode Access</td>
<td>W</td>
</tr>
</tbody>
</table>
| Values | 0 = Restore Defaults
1 = Restore Factory Defaults
2 = Write Custom Defaults |

Parameter Buffer

Attribute #6002
Retrieves entire parameter buffer.

<table>
<thead>
<tr>
<th>Type</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td>Variable</td>
</tr>
<tr>
<td>User Mode Access</td>
<td>R</td>
</tr>
<tr>
<td>Values</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Beep on Next Bootup

Attribute #6003
This attribute configures (enables or disables) beep on next boot up of scanner.

<table>
<thead>
<tr>
<th>Type</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td>N/A</td>
</tr>
<tr>
<td>User Mode Access</td>
<td>W</td>
</tr>
</tbody>
</table>
| Values | 0 = Disable beep on next bootup
1 = Enable beep on next bootup |

Reboot

Attribute #6004
This attribute initiates a device reboot.

<table>
<thead>
<tr>
<th>Type</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td>N/A</td>
</tr>
<tr>
<td>User Mode Access</td>
<td>W</td>
</tr>
<tr>
<td>Values</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Host Trigger Session

Attribute #6005

This attribute triggers a decode session similar to manually depressing the scanner trigger button.

<table>
<thead>
<tr>
<th>Type</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td>N/A</td>
</tr>
<tr>
<td>User Mode Access</td>
<td>W</td>
</tr>
<tr>
<td>Values</td>
<td>1 = Start Host Trigger Session 0 = Stop Host Trigger Session</td>
</tr>
</tbody>
</table>

Firmware Version

Attribute #20004

The scanner's operating system version. For example, **NBRFMAAC** or **PAAAAABS00-007-R03D0**.

<table>
<thead>
<tr>
<th>Type</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td>Variable</td>
</tr>
<tr>
<td>User Mode Access</td>
<td>R</td>
</tr>
<tr>
<td>Values</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Device Class

Attribute #20007

Description of the device's hardware, for example, **Imager** or **Cordless 2D Imager**.

<table>
<thead>
<tr>
<th>Type</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td>18</td>
</tr>
<tr>
<td>User Mode Access</td>
<td>R</td>
</tr>
<tr>
<td>Values</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Scankit Version

Attribute #20008

Identifies the 1D decode algorithms resident on the device, for example **SKIT4.33T02**.

<table>
<thead>
<tr>
<th>Type</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td>Variable</td>
</tr>
<tr>
<td>User Mode Access</td>
<td>R</td>
</tr>
<tr>
<td>Values</td>
<td>Variable</td>
</tr>
</tbody>
</table>
Combined Firmware Version

Attribute #20009

Reports firmware version of the multiple CPU's on the single product with space delimiters, for example NBRPUAAA NBRPUDAA.

Type S
Size (Bytes) Variable
User Mode Access R
Values Variable

RSM Version

Attribute #20011

Identifies the RSM version resident in the device, for example 2.0.

Type S
Size (Bytes) 3
User Mode Access R
Values Variable

Top Level Release Name

Attribute #20012

Returns top level combined image firmware name, for example CAAABS00-008-R00.

Type S
Size (Bytes) Variable
User Mode Access R
Values Variable

Imagekit Version

Attribute #20013

Identifies the 2D decode package resident in the device, for example IMGKIT_4.04T02.

Type S
Size (Bytes) Variable
User Mode Access R
Values Variable
DL Parser Version

Attribute #25011
Type: Type Array
Size (Bytes): Variable
Values: Variable

DL Parser Activated

Attribute #25012
Type: Flag
Size (Bytes): 1
Values: 0 = Not Activated (SR Model)
 1 = Activated (DL Model)

ScanSpeed Analytics

IMPORTANT: Decodes times are only reported for barcodes decoded in hand-held mode.

Identifies problematic barcodes to speed up scanning processes.

Zebra ScanSpeed Analytics software allows you to visually identify barcodes that slow down processing and impact efficiency. Over time, the software uses collected data to eliminate poor performing barcodes from inventory. For more information go to www.zebra.com/scanspeedanalytics.
Introduction

IMPORTANT: Decodes times are only reported for barcodes decoded in hand-held mode.

This chapter describes the Zebra ScanSpeed Analytics software that allows the identification of barcodes that slow down processes. Over time, the collected data can be used to eliminate poor performing barcodes from inventory. When scanners capture and read data faster, processes run faster.

For more information go to www.zebra.com/scanspeedanalytics.

Histogram Decode Information

Within the scanner, each barcode symbology has a series of RSM attributes ([Table 50](#)) to access its statistic information: Decode Count; Minimum Decode Time; Slowest Decode Time; Average Decode Time; Slowest Decode Data; and, ScanSpeed Histogram.

ScanSpeed Histogram is an array of eight items of double WORD (4 bytes). Each bin holds the count of decoded barcodes per range of decode time. For example, the range of Bin1 decode times is from 0 ms to 75 ms. All the Bin time ranges are show below:

- Bin1 \(\leq 75\) ms
- Bin2 \(\leq 110\) ms
- Bin3 \(\leq 170\) ms
- Bin4 \(\leq 300\) ms
- Bin5 \(\leq 600\) ms
- Bin6 \(\leq 1000\) ms
- Bin7 \(\leq 1500\) ms
- Bin8 \(> 1500\) ms

123Scan displays this histogram data in its **Statistics** tab shown in [Figure 31 on page 520](#).
Figure 31 123Scan Statistics Tab - Histogram Data

![123Scan Statistics Tab - Histogram Data](image)

Table 50 Attributes Numbers of Barcode Symbology Statistic Information

<table>
<thead>
<tr>
<th>Barcode Name</th>
<th>Decode Count</th>
<th>Hex Value (Shown in Little Endian Format)</th>
<th>Minimum Decode Time</th>
<th>Slowest Decode Time (Max Decode Time)</th>
<th>Average Decode Time</th>
<th>Slowest Decode Data</th>
<th>ScanSpeed Histogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPC</td>
<td>15421</td>
<td>0x3D, 0x3C</td>
<td>15424</td>
<td>15425</td>
<td>15426</td>
<td>15707</td>
<td>15706</td>
</tr>
<tr>
<td>EAN/JAN</td>
<td>15428</td>
<td>0x44, 0x3C</td>
<td>15431</td>
<td>15432</td>
<td>15433</td>
<td>15709</td>
<td>15708</td>
</tr>
<tr>
<td>2 of 5</td>
<td>15449</td>
<td>0x59, 0x3C</td>
<td>15452</td>
<td>15453</td>
<td>15454</td>
<td>15715</td>
<td>15714</td>
</tr>
<tr>
<td>Codabar</td>
<td>15456</td>
<td>0x60, 0x3C</td>
<td>15459</td>
<td>15460</td>
<td>15461</td>
<td>15717</td>
<td>15716</td>
</tr>
<tr>
<td>Code 11</td>
<td>15477</td>
<td>0x75, 0x3C</td>
<td>15480</td>
<td>15481</td>
<td>15482</td>
<td>15723</td>
<td>15722</td>
</tr>
<tr>
<td>Code 128</td>
<td>15442</td>
<td>0x52, 0x3C</td>
<td>15445</td>
<td>15446</td>
<td>15447</td>
<td>15713</td>
<td>15712</td>
</tr>
<tr>
<td>Code 39</td>
<td>15435</td>
<td>0x4B, 0x3C</td>
<td>15438</td>
<td>15439</td>
<td>15440</td>
<td>15711</td>
<td>15710</td>
</tr>
</tbody>
</table>
Table 50 Attributes Numbers of Barcode Symbology Statistic Information (Continued)

<table>
<thead>
<tr>
<th>Barcode Name</th>
<th>Decode Count</th>
<th>Hex Value (Shown in Little Endian Format)</th>
<th>Minimum Decode Time</th>
<th>Slowest Decode Time (Max Decode Time)</th>
<th>Average Decode Time</th>
<th>Slowest Decode Data</th>
<th>ScanSpeed Histogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 93</td>
<td>15463</td>
<td>0x67, 0x3C</td>
<td>15466</td>
<td>15467</td>
<td>15468</td>
<td>15719</td>
<td>15718</td>
</tr>
<tr>
<td>Composite</td>
<td>15519</td>
<td>0x9F, 0x3C</td>
<td>15522</td>
<td>15523</td>
<td>15524</td>
<td>15735</td>
<td>15734</td>
</tr>
<tr>
<td>GS1 DataBar</td>
<td>15512</td>
<td>0x98, 0x3C</td>
<td>15515</td>
<td>15516</td>
<td>15517</td>
<td>15733</td>
<td>15732</td>
</tr>
<tr>
<td>MSI</td>
<td>15470</td>
<td>0x6E, 0x3C</td>
<td>15473</td>
<td>15474</td>
<td>15475</td>
<td>15721</td>
<td>15720</td>
</tr>
<tr>
<td>Data Matrix</td>
<td>15491</td>
<td>0x83, 0x3C</td>
<td>15494</td>
<td>15495</td>
<td>15496</td>
<td>15727</td>
<td>15726</td>
</tr>
<tr>
<td>PDF</td>
<td>15484</td>
<td>0x7C, 0x3C</td>
<td>15487</td>
<td>15488</td>
<td>15489</td>
<td>15725</td>
<td>15724</td>
</tr>
<tr>
<td>Postal Codes</td>
<td>15505</td>
<td>0x91, 0x3C</td>
<td>15508</td>
<td>15509</td>
<td>15510</td>
<td>15731</td>
<td>15730</td>
</tr>
<tr>
<td>QR</td>
<td>15498</td>
<td>0x8A, 0x3C</td>
<td>15501</td>
<td>15502</td>
<td>15503</td>
<td>15729</td>
<td>15728</td>
</tr>
<tr>
<td>Aztec</td>
<td>15533</td>
<td>0xAD, 0x3C</td>
<td>15536</td>
<td>15537</td>
<td>15538</td>
<td>15739</td>
<td>15738</td>
</tr>
<tr>
<td>OCR</td>
<td>15526</td>
<td>0xA6, 0x3C</td>
<td>15529</td>
<td>15530</td>
<td>15531</td>
<td>15737</td>
<td>15736</td>
</tr>
<tr>
<td>Maxicode</td>
<td>15659</td>
<td>0x2B, 0x3D</td>
<td>15662</td>
<td>15663</td>
<td>15664</td>
<td>15755</td>
<td>15754</td>
</tr>
<tr>
<td>GS1-Data Matrix</td>
<td>15673</td>
<td>0x39, 0x3D</td>
<td>15676</td>
<td>15677</td>
<td>15678</td>
<td>15747</td>
<td>15746</td>
</tr>
<tr>
<td>GS1-QR Code</td>
<td>15680</td>
<td>0x40, 0x3D</td>
<td>15683</td>
<td>15684</td>
<td>15685</td>
<td>15749</td>
<td>15748</td>
</tr>
<tr>
<td>Coupon</td>
<td>15666</td>
<td>0x32, 0x3D</td>
<td>15669</td>
<td>15670</td>
<td>15671</td>
<td>15757</td>
<td>15756</td>
</tr>
<tr>
<td>Other 1D</td>
<td>15540</td>
<td>0xB4, 0x3C</td>
<td>15543</td>
<td>15544</td>
<td>15545</td>
<td>15741</td>
<td>15740</td>
</tr>
<tr>
<td>Other 2D</td>
<td>15547</td>
<td>0xBB, 0x3C</td>
<td>15550</td>
<td>15551</td>
<td>15552</td>
<td>15743</td>
<td>15742</td>
</tr>
<tr>
<td>Other</td>
<td>15554</td>
<td>0xC2, 0x3C</td>
<td>15557</td>
<td>15558</td>
<td>15559</td>
<td>15745</td>
<td>15744</td>
</tr>
</tbody>
</table>
Table 50 Attributes Numbers of Barcode Symbology Statistic Information (Continued)

<table>
<thead>
<tr>
<th>Barcode Name</th>
<th>Decode Count</th>
<th>Minimum Decode Time</th>
<th>Slowest Decode Time</th>
<th>Average Decode Time</th>
<th>Slowest Decode Data</th>
<th>ScanSpeed Histogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unused Statistic ID</td>
<td>19999</td>
<td>0x1F, 0x4E</td>
<td>19999</td>
<td>19999</td>
<td>19999</td>
<td>19999</td>
</tr>
</tbody>
</table>

Example

The UPC data below is taken from the first row of Table 50 above.

UPC DECODE COUNT

Attribute #: 15421
Type: DWORD (4 bytes)
Description: Returns the UPC barcode decode count, including all variants (UPC-A, UPC-E, UPC-E1, etc.).

UPC MINIMUM DECODE TIME

Attribute #: 15424
Type: DWORD (4 bytes)
Description: Returns the Minimum Decode Time in milliseconds of all UPC barcode decodes.

UPC SLOWEST DECODE TIME

Attribute #: 15425
Type: DWORD (4 bytes)
Description: Returns the Slowest Decode Time in milliseconds of all UPC barcode decodes.

UPC AVERAGE DECODE TIME

Attribute #: 15426
Type: DWORD (4 bytes)
Description: Returns the Average Decode Time in milliseconds of all UPC barcode decodes.

UPC SLOWEST DECODE DATA

Attribute #: 15707
Type: Array of BYTE (25 bytes)
Description: Returns the UPC barcode data with the Slowest Decode Time.

UPC SCANSPED HISTOGRAM

Attribute #: 15706
Type: Array of DWORD (32 bytes)
Description: Returns the UPC barcode ScanSpeed Histogram.
Image of Slowest Decoded Barcode

The user can configure the scanner to store the image(s) of the slowest decoded barcode.

Table 51 RSM Attributes to Store/Retrieve Image of Slowest Decoded Barcode

<table>
<thead>
<tr>
<th>Attribute #</th>
<th>Type</th>
<th>Property</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1755</td>
<td>Array of WORD</td>
<td>RW</td>
<td>Default format = {0x1F, 0x4E}</td>
<td>Attribute 1755 is named List of Stored Images. This attribute defines which image, by symbology, of the slowest decoded barcode will be stored in the scanner. One symbology image can be stored in the scanner.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0x1F, 0x4E</td>
<td>No image retained</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Barcode name = Unused Statistic ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decimal value = 19999</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>see last row in Table 50 on page 520)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0x3D, 0x3C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Image retained for UPC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decimal value = 15421</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sample image retained for UPC only = {0x3D, 0x3C}</td>
<td></td>
</tr>
</tbody>
</table>

1756	WORD	RW	0	Attribute 1756 is named Threshold To Store Slowest Decode Barcode Image. This attribute defines the threshold above which the scanner stores the image of the slowest decoded barcode. Specify a Histogram Bin value (0, 1, 2, 3, 4, 5, 6 or 7). The purpose of setting up this threshold is to reduce the barcode image storage frequency.
				0 - No threshold check (default value)
				1 - Specifies the decode time threshold as Histogram Bin 1 value of 75 ms
				Similarly, the other Histogram Bins specify the corresponding threshold time as follows:
				Bin 1 <= 75ms
				Bin 2 <= 110ms
				Bin 3 <= 170ms
				Bin 4 <= 300ms
				Bin 5 <= 600ms
				Bin 6 <= 1000ms
				Bin 7 <= 1500ms
Table 51 RSM Attributes to Store/Retrieve Image of Slowest Decoded Barcode (Continued)

<table>
<thead>
<tr>
<th>Attribute #</th>
<th>Type</th>
<th>Property</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6036</td>
<td>WORD</td>
<td>WO</td>
<td>N/A</td>
<td>Attribute 6036 is named Retrieve Slowest Decoded Barcode Image. The image must be retrieved using the SNAPI communication protocol. This attribute allows you to retrieve from the scanner a single image, by symbology, of the slowest decoded data. For example, to retrieve the slowest decoded barcode image for a UPC symbology, enter its hex value, 0x3D, 0x3C (decimal value 15421), using a SET command. See Table 50 on page 520 for symbology hex and decimal values.</td>
</tr>
</tbody>
</table>
Sample Barcodes

IMPORTANT: To read a sample barcode the parameter must be enabled. To enable a parameter scan the appropriate Enable barcode in Symbologies.

UPC/EAN

UPC-A, 100%

UPC-A with 2-digit Add-on
Sample Barcodes

UPC-A with 5-digit Add-on

UPC-E

UPC-E with 2-digit Add-on
Sample Barcodes

UPC-E with 5-digit Add-on

EAN-8

EAN-13, 100%
EAN-13 with 2-digit Add-on

EAN-13 with 5-digit Add-on

Code 128
Sample Barcodes

GS1-128

Code 39

Code 93
Sample Barcodes

Code 11 with 2 Check Digits

Interleaved 2 of 5

MSI with 2 Check Digits
Sample Barcodes

Chinese 2 of 5

Matrix 2 of 5

Korean 3 of 5
Sample Barcodes

GS1 DataBar

GS1 DataBar Omnidirectional (formerly GS1 DataBar-14)

7612341562341

GS1 DataBar Truncated

GS1 DataBar Stacked
Sample Barcodes

GS1 DataBar Stacked Omnidirectional

GS1 DataBar Limited

GS1 DataBar Expanded
Sample Barcodes

GS1 DataBar Expanded Stacked

2D Symbologies

PDF417

Data Matrix
Sample Barcodes

GS1 Data Matrix

Maxicode

QR Code

GS1 QR
Sample Barcodes

MicroQR

![MicroQR Barcode]

Aztec

![Aztec Barcode]

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
7890123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

Grid Matrix

- **NOTE** Grid Matrix must be enabled to read the following barcode (see Grid Matrix on page 220).
Postal Codes

US Postnet

UK Postal

Japan Postal
Sample Barcodes

Australian Post

OCR

OCR-A

WFSGH67890

OCR-B

12345ABMKP

MICR E13B

01234567890
US Currency

F01840626D
Index

Numerics

123Scan ... 39
requirements ... 40
123scan LED indicators (on scanner) 44
2D bar codes
aztec ... 218
aztec inverse .. 218
code 128 emulation 211
data matrix .. 212
data matrix inverse 213
data matrix mirror images 214
grid matrix ... 220
grid matrix inverse 220
grid matrix mirror 221
GS1 data matrix ... 212
GS1 QR ... 216
han xin .. 219
han xin inverse 219
linked QR mode 217
maxicode .. 215
microPDF417 .. 210
microQR ... 216
PDF417 .. 210
QR code ... 215

A

AAMVA field parsing 379
accessories
cables .. 24
configurations .. 24
EAS ... 47
interface cable 24
partner portal ... 24
power supplies .. 24
stands and holders 24
ADF .. 370
invalid rule .. 53
transmit error .. 53
ADF programming indicators 43
advanced data formatting 53, 370

aiming
momentary trigger mode timeout 76
pattern, hand-held 74
pattern, hands-free 75
pattern, snapshot 108
snapshot mode timeout 107
aiming pattern
orientation .. 46
ASCII character sets 450
attributes, non-parameter
beep on next bootup 515
configuration filename 513
date of first programming 513
date of manufacture 513
firmware version 516
host trigger session 516
model number .. 512
parameter defaults 515
reboot ... 515
scankit version 516
scanspeed analytics 518
serial number .. 512
autoexposure .. 103
aztec bar codes 218
inverse .. 218
sample ... 536

B

bar codes
1D quiet zone level 204
alphanumeric 433
analog gain .. 105
autoexposure .. 103
aztec .. 218
inverse ... 218
bits per pixel .. 117
cancel ... 431
Chinese 2 of 5 190
CJK
non-CJK UTF bar code output 503
output method 501
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>unicode output control</td>
<td>500</td>
</tr>
<tr>
<td>codabar</td>
<td>179</td>
</tr>
<tr>
<td>CLSI editing</td>
<td>181</td>
</tr>
<tr>
<td>lengths</td>
<td>179</td>
</tr>
<tr>
<td>NOTIS editing</td>
<td>181</td>
</tr>
<tr>
<td>start and stop characters</td>
<td>183</td>
</tr>
<tr>
<td>codabar security level</td>
<td>182</td>
</tr>
<tr>
<td>code 11</td>
<td>167</td>
</tr>
<tr>
<td>check digit verification</td>
<td>169</td>
</tr>
<tr>
<td>lengths</td>
<td>167</td>
</tr>
<tr>
<td>transmit check digits</td>
<td>170</td>
</tr>
<tr>
<td>code 128</td>
<td>150</td>
</tr>
<tr>
<td>check ISBT table</td>
<td>154</td>
</tr>
<tr>
<td>code 128 fnc4</td>
<td>155</td>
</tr>
<tr>
<td>GS1-128</td>
<td>152</td>
</tr>
<tr>
<td>ISBT 128</td>
<td>153</td>
</tr>
<tr>
<td>ISBT concatenation</td>
<td>153</td>
</tr>
<tr>
<td>ISBT concatenation redundancy</td>
<td>155</td>
</tr>
<tr>
<td>lengths</td>
<td>151</td>
</tr>
<tr>
<td>reduced quiet zone</td>
<td>157</td>
</tr>
<tr>
<td>security level</td>
<td>156</td>
</tr>
<tr>
<td>code 128 emulation</td>
<td>211</td>
</tr>
<tr>
<td>code 39</td>
<td>157</td>
</tr>
<tr>
<td>check digit verification</td>
<td>161</td>
</tr>
<tr>
<td>code 32 prefix</td>
<td>159</td>
</tr>
<tr>
<td>convert code 39 to code 32</td>
<td>158</td>
</tr>
<tr>
<td>full ASCII conversion</td>
<td>162</td>
</tr>
<tr>
<td>lengths</td>
<td>159</td>
</tr>
<tr>
<td>reduced quiet zone</td>
<td>164</td>
</tr>
<tr>
<td>security level</td>
<td>163</td>
</tr>
<tr>
<td>transmit check digit</td>
<td>161</td>
</tr>
<tr>
<td>trioptic code 39</td>
<td>158</td>
</tr>
<tr>
<td>code 93</td>
<td>164</td>
</tr>
<tr>
<td>lengths</td>
<td>165</td>
</tr>
<tr>
<td>composite</td>
<td></td>
</tr>
<tr>
<td>beep mode</td>
<td>209</td>
</tr>
<tr>
<td>composite CC-A/B</td>
<td>206</td>
</tr>
<tr>
<td>composite CC-C</td>
<td>205</td>
</tr>
<tr>
<td>composite inverse</td>
<td>206</td>
</tr>
<tr>
<td>composite TLC-39</td>
<td>206</td>
</tr>
<tr>
<td>GS1-128 emulation mode</td>
<td>209</td>
</tr>
<tr>
<td>UPC composite mode</td>
<td>208</td>
</tr>
<tr>
<td>continuous bar code read</td>
<td>78</td>
</tr>
<tr>
<td>country code page defaults</td>
<td>486</td>
</tr>
<tr>
<td>country code pages</td>
<td>490</td>
</tr>
<tr>
<td>country codes</td>
<td>471</td>
</tr>
<tr>
<td>country keyboard types (country codes)</td>
<td>471</td>
</tr>
<tr>
<td>crop to address</td>
<td>109</td>
</tr>
<tr>
<td>data matrix</td>
<td>212</td>
</tr>
<tr>
<td>data matrix inverse</td>
<td>213</td>
</tr>
<tr>
<td>GS1 data matrix</td>
<td>212</td>
</tr>
<tr>
<td>mirror images</td>
<td>214</td>
</tr>
<tr>
<td>decode session timeout</td>
<td>79</td>
</tr>
<tr>
<td>digimarc digital watermarks/dw</td>
<td>369</td>
</tr>
<tr>
<td>digital gain</td>
<td>105</td>
</tr>
<tr>
<td>disable all code types</td>
<td>131</td>
</tr>
<tr>
<td>discrete 2 of 5</td>
<td>176</td>
</tr>
<tr>
<td>lengths</td>
<td>177</td>
</tr>
<tr>
<td>driver’s license parsing</td>
<td>375</td>
</tr>
<tr>
<td>AAMVA field parsing</td>
<td>379</td>
</tr>
<tr>
<td>driver’s license date format</td>
<td>390</td>
</tr>
<tr>
<td>driver’s license gender format</td>
<td>389</td>
</tr>
<tr>
<td>no separator</td>
<td>391</td>
</tr>
<tr>
<td>parser version ID</td>
<td>388</td>
</tr>
<tr>
<td>parsing field</td>
<td>377</td>
</tr>
<tr>
<td>send control characters</td>
<td>392</td>
</tr>
<tr>
<td>send keyboard characters</td>
<td>396</td>
</tr>
<tr>
<td>set defaults</td>
<td>389</td>
</tr>
<tr>
<td>elevel</td>
<td>86</td>
</tr>
<tr>
<td>enable all code types</td>
<td>131</td>
</tr>
<tr>
<td>enter</td>
<td>87</td>
</tr>
<tr>
<td>febraban</td>
<td>174</td>
</tr>
<tr>
<td>fixed exposure</td>
<td>104</td>
</tr>
<tr>
<td>FN1 substitution values</td>
<td>92</td>
</tr>
<tr>
<td>gain and exposure priority for snapshot mode</td>
<td>106</td>
</tr>
<tr>
<td>grid matrix</td>
<td>220</td>
</tr>
<tr>
<td>grid matrix inverse</td>
<td>220</td>
</tr>
<tr>
<td>grid matrix mirror</td>
<td>221</td>
</tr>
<tr>
<td>GS1 databar</td>
<td>196</td>
</tr>
<tr>
<td>convert to UPC/EAN/JAN</td>
<td>198</td>
</tr>
<tr>
<td>GS1 databar expanded</td>
<td>197</td>
</tr>
<tr>
<td>GS1 databar limited</td>
<td>197</td>
</tr>
<tr>
<td>GS1 databar limited margin check</td>
<td>200</td>
</tr>
<tr>
<td>GS1 databar omnidirectional</td>
<td>196</td>
</tr>
<tr>
<td>security level</td>
<td>199</td>
</tr>
<tr>
<td>han xin</td>
<td>219</td>
</tr>
<tr>
<td>inverse</td>
<td>219</td>
</tr>
<tr>
<td>IBM</td>
<td></td>
</tr>
<tr>
<td>bar code configuration directive</td>
<td>303</td>
</tr>
<tr>
<td>beep directive</td>
<td>302</td>
</tr>
<tr>
<td>convert unknown to code 39</td>
<td>302</td>
</tr>
<tr>
<td>default table</td>
<td>300</td>
</tr>
<tr>
<td>IBM specification version</td>
<td>303</td>
</tr>
<tr>
<td>port address</td>
<td>301</td>
</tr>
<tr>
<td>IDC</td>
<td></td>
</tr>
<tr>
<td>aspect</td>
<td>357</td>
</tr>
<tr>
<td>bits per pixel</td>
<td>358</td>
</tr>
<tr>
<td>border type</td>
<td>362</td>
</tr>
<tr>
<td>captured image brighten</td>
<td>360</td>
</tr>
<tr>
<td>captured image sharpen</td>
<td>361</td>
</tr>
<tr>
<td>default table</td>
<td>352</td>
</tr>
<tr>
<td>delay time</td>
<td>363</td>
</tr>
<tr>
<td>file format selector</td>
<td>357</td>
</tr>
<tr>
<td>find box outline</td>
<td>359</td>
</tr>
<tr>
<td>height</td>
<td>356</td>
</tr>
<tr>
<td>JPEG quality</td>
<td>358</td>
</tr>
<tr>
<td>maximum rotation</td>
<td>364</td>
</tr>
<tr>
<td>maximum text length</td>
<td>360</td>
</tr>
<tr>
<td>minimum text length</td>
<td>359</td>
</tr>
<tr>
<td>operating mode</td>
<td>353</td>
</tr>
<tr>
<td>Symbol</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>symbology</td>
<td>354</td>
</tr>
<tr>
<td>width</td>
<td>356</td>
</tr>
<tr>
<td>X coordinate</td>
<td>355</td>
</tr>
<tr>
<td>Y coordinate</td>
<td>355</td>
</tr>
<tr>
<td>zoom limit</td>
<td>363</td>
</tr>
<tr>
<td>illumination</td>
<td>83, 103</td>
</tr>
<tr>
<td>illumination brightness</td>
<td>83</td>
</tr>
<tr>
<td>image brightness (target white)</td>
<td>112</td>
</tr>
<tr>
<td>image capture</td>
<td></td>
</tr>
<tr>
<td>default table</td>
<td>100</td>
</tr>
<tr>
<td>image cropping</td>
<td>109</td>
</tr>
<tr>
<td>image enhancement</td>
<td>114</td>
</tr>
<tr>
<td>image file format</td>
<td>115</td>
</tr>
<tr>
<td>image rotation</td>
<td>116</td>
</tr>
<tr>
<td>image size</td>
<td>111</td>
</tr>
<tr>
<td>intercharacter gap size</td>
<td>205</td>
</tr>
<tr>
<td>interleaved 2 of 5</td>
<td>170</td>
</tr>
<tr>
<td>check digit verification</td>
<td>172</td>
</tr>
<tr>
<td>convert to EAN-13</td>
<td>173, 174</td>
</tr>
<tr>
<td>lengths</td>
<td>171, 172</td>
</tr>
<tr>
<td>reduced quiet zone</td>
<td>176</td>
</tr>
<tr>
<td>security level</td>
<td>175</td>
</tr>
<tr>
<td>transmit check digit</td>
<td>173</td>
</tr>
<tr>
<td>inverse 1D</td>
<td>194</td>
</tr>
<tr>
<td>JPEG image options</td>
<td>112</td>
</tr>
<tr>
<td>JPEG quality</td>
<td>113</td>
</tr>
<tr>
<td>JPEG size</td>
<td>113</td>
</tr>
<tr>
<td>keyboard wedge</td>
<td></td>
</tr>
<tr>
<td>alternate numeric keypad emulation</td>
<td>309</td>
</tr>
<tr>
<td>caps lock override</td>
<td>311</td>
</tr>
<tr>
<td>convert case</td>
<td>311</td>
</tr>
<tr>
<td>default table</td>
<td>306</td>
</tr>
<tr>
<td>FN1 substitution</td>
<td>312</td>
</tr>
<tr>
<td>function key mapping</td>
<td>312</td>
</tr>
<tr>
<td>host types</td>
<td>307</td>
</tr>
<tr>
<td>intra-keystroke delay</td>
<td>308</td>
</tr>
<tr>
<td>keystroke delay</td>
<td>308</td>
</tr>
<tr>
<td>quick keypad emulation</td>
<td>309</td>
</tr>
<tr>
<td>send make and break</td>
<td>313</td>
</tr>
<tr>
<td>simulated caps lock</td>
<td>310</td>
</tr>
<tr>
<td>unknown characters</td>
<td>307</td>
</tr>
<tr>
<td>Korean 3 of 5</td>
<td>194</td>
</tr>
<tr>
<td>linked QR mode</td>
<td>217</td>
</tr>
<tr>
<td>macro PDF</td>
<td></td>
</tr>
<tr>
<td>abort entry</td>
<td>226</td>
</tr>
<tr>
<td>flush buffer</td>
<td>226</td>
</tr>
<tr>
<td>matrix 2 of 5</td>
<td>190</td>
</tr>
<tr>
<td>check digit</td>
<td>193</td>
</tr>
<tr>
<td>lengths</td>
<td>191</td>
</tr>
<tr>
<td>transmit check digit</td>
<td>193</td>
</tr>
<tr>
<td>maxicode</td>
<td>215</td>
</tr>
<tr>
<td>microPDF417</td>
<td>210</td>
</tr>
<tr>
<td>mobile phone/display mode</td>
<td>81</td>
</tr>
<tr>
<td>motion tolerance</td>
<td>85</td>
</tr>
<tr>
<td>MSI</td>
<td>184</td>
</tr>
<tr>
<td>check digit algorithm</td>
<td>189</td>
</tr>
<tr>
<td>check digits</td>
<td>187</td>
</tr>
<tr>
<td>lengths</td>
<td>185</td>
</tr>
<tr>
<td>reduced quiet zone</td>
<td>189</td>
</tr>
<tr>
<td>transmit check digit</td>
<td>187</td>
</tr>
<tr>
<td>numeric</td>
<td>431</td>
</tr>
<tr>
<td>numeric bar codes</td>
<td>431</td>
</tr>
<tr>
<td>OCR</td>
<td></td>
</tr>
<tr>
<td>check digit</td>
<td>339</td>
</tr>
<tr>
<td>check digit multiplier</td>
<td>339</td>
</tr>
<tr>
<td>check digit validation</td>
<td>340</td>
</tr>
<tr>
<td>default table</td>
<td>316</td>
</tr>
<tr>
<td>inverse OCR</td>
<td>346</td>
</tr>
<tr>
<td>lines</td>
<td>327</td>
</tr>
<tr>
<td>maximum characters</td>
<td>328</td>
</tr>
<tr>
<td>MICR E13B</td>
<td>324</td>
</tr>
<tr>
<td>minimum character</td>
<td>327</td>
</tr>
<tr>
<td>OCR-A</td>
<td>317</td>
</tr>
<tr>
<td>OCR-A variant</td>
<td>318</td>
</tr>
<tr>
<td>OCR-B</td>
<td>319</td>
</tr>
<tr>
<td>OCR-B variant</td>
<td>320</td>
</tr>
<tr>
<td>orientation</td>
<td>325</td>
</tr>
<tr>
<td>parameters</td>
<td>317</td>
</tr>
<tr>
<td>quiet zone</td>
<td>329</td>
</tr>
<tr>
<td>redundancy</td>
<td>347</td>
</tr>
<tr>
<td>subset</td>
<td>328</td>
</tr>
<tr>
<td>template</td>
<td>329</td>
</tr>
<tr>
<td>US currency serial number</td>
<td>325</td>
</tr>
<tr>
<td>operational modes</td>
<td>102</td>
</tr>
<tr>
<td>PDF prioritization</td>
<td>.82</td>
</tr>
<tr>
<td>PDF prioritization timeout</td>
<td>.82</td>
</tr>
<tr>
<td>PDF417</td>
<td>210</td>
</tr>
<tr>
<td>pid type</td>
<td>.85</td>
</tr>
<tr>
<td>pid value</td>
<td>.86</td>
</tr>
<tr>
<td>postal</td>
<td>226</td>
</tr>
<tr>
<td>Australia post</td>
<td>229</td>
</tr>
<tr>
<td>Australia post format</td>
<td>230</td>
</tr>
<tr>
<td>Japan postal</td>
<td>229</td>
</tr>
<tr>
<td>mailmark</td>
<td>232</td>
</tr>
<tr>
<td>Netherlands KIX code</td>
<td>231</td>
</tr>
<tr>
<td>transmit UK postal check digit</td>
<td>228</td>
</tr>
<tr>
<td>transmit US postal check digit</td>
<td>227</td>
</tr>
<tr>
<td>UK postal</td>
<td>228</td>
</tr>
<tr>
<td>UPU FICS postal</td>
<td>232</td>
</tr>
<tr>
<td>US planet</td>
<td>227</td>
</tr>
<tr>
<td>US postnet</td>
<td>226</td>
</tr>
<tr>
<td>USPS 4CB/One Code/Intelligent Mail</td>
<td>231</td>
</tr>
<tr>
<td>prefix/suffix values</td>
<td>.89</td>
</tr>
<tr>
<td>product information</td>
<td></td>
</tr>
<tr>
<td>manufacturing info</td>
<td>.54</td>
</tr>
<tr>
<td>serial number</td>
<td>.54</td>
</tr>
<tr>
<td>software version</td>
<td>.54</td>
</tr>
<tr>
<td>QR code</td>
<td>215</td>
</tr>
<tr>
<td>GS1 QR</td>
<td>216</td>
</tr>
<tr>
<td>microQR</td>
<td>216</td>
</tr>
</tbody>
</table>
Index

redundancy level .. 201
RS-232
 baud rate .. 286
 beep on bef 294
 check receive errors 288
 data bits 288
 default table 281
 hardware handshaking 289
 host serial response timeout 293
 host types 284
 intercharacter delay 295
 nixdorf beep LED options 296
 parity .. 287
 RTS line state 294
 software handshaking 291, 292
 stop bits 287
 unknown characters 296
samples ... 525
scan data options 90
security level 203
securPharm .. 95
securPharm output formatting 96
signature capture 118
 signature capture bits per pixel 120
 signature capture file format 119
 signature capture height 121
 signature capture JPEG quality 121
 signature capture width 121
silence operational mode changes 108
snapshot aiming pattern 108
snapshot mode timeout 107
SSI
 baud rate 265
 boot up event 277
 check parity 268
 data packet format 271
 decode event 276
 host character timeout 273
 host RTS line state 270
 host serial response timeout 272
 interpacket delay 275
 multipacket option 274
 parameter event 278
 parity ... 267
 selecting 265
 software handshaking 269
 stop bits 268
symbologies
 default table 124
 tab key ... 87
 timeout between decodes, different symbols ... 80
 timeout between decodes, same symbol .. 79
 transmit code ID character 88
 transmit no read message 93
 triggered timeout, same symbol 80
unique bar code reporting 78
unsolicited heartbeat interval 94
UPC/EAN supplemental redundancy 140
UPC/EAN/JAN
 bookland EAN 134
 bookland ISBN 135
 convert UPC-E to UPC-A 147
 convert UPC-E1 to UPC-A 147
 coupon report 149
 EAN-13/JAN-13 133
 EAN-8/JAN-8 133
 ISSN EAN 136
 supplemental AIM ID format 141
 suppleminals 137
 transmit UPC-A check digit 142
 transmit UPC-E check digit 142
 transmit UPC-E1 check digit 143
 UCC coupon extended code 148
 UPC reduced quiet zone 150
 UPC-A .. 131
 UPC-A preamble 144
 UPC-E .. 132
 UPC-E preamble 145
 UPC-E1 .. 132
 UPC-E1 preamble 146
 user programmable suppleminals 140
USB
 bar code configuration directive 249
 beep directive 249
 caps lock override 240
 convert case 247
 convert unknown to code 39 241
 default table 235
 device type 237, 238
 fast HID 241
 function key mapping 246
 IBM specification version 249
 keyboard FN1 substitution 245
 keypad emulation 244
 keypad emulation with leading zero 245
 keystroke delay 239
 polling interval 242
 quick keypad emulation 244
 simulated caps lock 246
 SNAPI handshaking 239
 static CDC 248
 unknown characters 240
barcodes
 beep after good decode 63
 beep duration 66
 beep tones
 standard tones 65
 direct decode indicator 69
 hand-held decode aiming pattern 74
 hand-held trigger mode 73

543
Index

hands-free decode aiming pattern 75
low power mode 70
momentary trigger mode timeout 76
parameter scanning 63
picklist mode 77
set defaults 62
speaker volume 64
suppress power up beeps 68
time delay to low power mode 71
UPC/EAN/JAN
 EAN/JAN extend 148
USB
 CDC beep on bel 248
user preferences
 default table 60
beep
duration ... 66
beep tone adjustment
 standard beep tones 65
beeper
 beep after good decode 63
 suppress on power up 68
beeper indicators
 123scan host specific 44
 ADF programming 43
 image capture 42
 macro PDF 44
 maintenance 44
 parameter programming 43
 RS-232 host specific 43
 scanning 42
 SMS ... 44
 USB host specific 43

C
cables
 inserting 31
 interface 24, 33
 removing 32
 signal descriptions 58
character sets
 ALT key 455
 ASCII ... 450
 extended key 459
 F key ... 458
 GUI key 456
 numeric key 458
 PF key .. 457
Chinese 2 of 5 bar codes 190
 sample .. 531
CJK .. 500
control parameters 500
country keyboard missing characters 503
decode setup 504
input method 506
cleaning the devices
 approved for standard devices 49
 how to ... 50
 known harmful ingredients 49
codabar bar codes 179
 CLSI editing 181
 lengths .. 179
 NOTIS editing 181
 security level 182
 start and stop characters 183
code 11 bar codes 167
 check digit verification 169
 lengths .. 167
 sample .. 530
 transmit check digits 170
code 128 bar codes 150
 check ISBT table 154
 fnC4 .. 155
 GS1-128 152
 ISBT 128 153
 ISBT concatenation 153
 ISBT concatenation redundancy 155
 lengths .. 151
 reduced quiet zone 157
 sample .. 528
 security level 156
code 128 emulation bar codes 211
code 32 bar codes 157
 check digit verification 161
 code 32 prefix 159
 code 39 security level 163
 convert code 39 to code 32 158
 full ASCII conversion 162
 lengths .. 159
 reduced quiet zone 164
 sample .. 525, 529
 transmit check digit 161
trioptic .. 158
code 39 bar codes 164
 lengths .. 165
 sample .. 529
code identifiers
 AIM ... 462
 modifier characters 463
 Symbol .. 461
 transmitting 88
communication protocol
 cable interface 468
composite bar codes
 beep mode 209
 composite CC-A/B 206
 composite CC-C 205
 composite inverse 206
 composite TLC-39 206

544
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS1-128 emulation mode</td>
</tr>
<tr>
<td>UPC composite mode</td>
</tr>
<tr>
<td>configurations</td>
</tr>
<tr>
<td>accessories</td>
</tr>
<tr>
<td>cables</td>
</tr>
<tr>
<td>scanner</td>
</tr>
<tr>
<td>stands and holders</td>
</tr>
<tr>
<td>connecting</td>
</tr>
<tr>
<td>IBM interface</td>
</tr>
<tr>
<td>interface cable</td>
</tr>
<tr>
<td>keyboard wedge interface</td>
</tr>
<tr>
<td>power</td>
</tr>
<tr>
<td>RS-232 interface</td>
</tr>
<tr>
<td>USB interface</td>
</tr>
<tr>
<td>conventions</td>
</tr>
<tr>
<td>notational</td>
</tr>
<tr>
<td>country code pages</td>
</tr>
<tr>
<td>defaults</td>
</tr>
<tr>
<td>country codes</td>
</tr>
<tr>
<td>cropping images</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>data matrix bar codes</td>
</tr>
<tr>
<td>data matrix inverse</td>
</tr>
<tr>
<td>GS1 data matrix</td>
</tr>
<tr>
<td>mirror images</td>
</tr>
<tr>
<td>sample</td>
</tr>
<tr>
<td>decode ranges</td>
</tr>
<tr>
<td>default parameters</td>
</tr>
<tr>
<td>all</td>
</tr>
<tr>
<td>DL parsing</td>
</tr>
<tr>
<td>IBM</td>
</tr>
<tr>
<td>IDC</td>
</tr>
<tr>
<td>image capture</td>
</tr>
<tr>
<td>keyboard wedge</td>
</tr>
<tr>
<td>OCR</td>
</tr>
<tr>
<td>RS-232</td>
</tr>
<tr>
<td>setting</td>
</tr>
<tr>
<td>SSI</td>
</tr>
<tr>
<td>USB</td>
</tr>
<tr>
<td>user preferences</td>
</tr>
<tr>
<td>digimarc digital watermarks/dw</td>
</tr>
<tr>
<td>discrete 2 of 5 bar codes</td>
</tr>
<tr>
<td>lengths</td>
</tr>
<tr>
<td>driver’s license parsing</td>
</tr>
<tr>
<td>AAMVA field parsing</td>
</tr>
<tr>
<td>ADF example</td>
</tr>
<tr>
<td>bar codes</td>
</tr>
<tr>
<td>control characters</td>
</tr>
<tr>
<td>data fields</td>
</tr>
<tr>
<td>date format</td>
</tr>
<tr>
<td>default parameters</td>
</tr>
<tr>
<td>field parsing bar codes</td>
</tr>
<tr>
<td>gender format</td>
</tr>
<tr>
<td>keyboard characters</td>
</tr>
<tr>
<td>no separator</td>
</tr>
<tr>
<td>parser version ID</td>
</tr>
<tr>
<td>rule example</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS</td>
</tr>
<tr>
<td>error indications</td>
</tr>
<tr>
<td>ADF</td>
</tr>
<tr>
<td>format</td>
</tr>
<tr>
<td>input</td>
</tr>
<tr>
<td>exposure options</td>
</tr>
<tr>
<td>analog gain</td>
</tr>
<tr>
<td>autoexposure</td>
</tr>
<tr>
<td>digital gain</td>
</tr>
<tr>
<td>fixed exposure</td>
</tr>
<tr>
<td>gain and exposure priority for snapshot mode</td>
</tr>
<tr>
<td>illumination</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>features, scanner</td>
</tr>
<tr>
<td>LED</td>
</tr>
<tr>
<td>firmware</td>
</tr>
<tr>
<td>flash update</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>gain</td>
</tr>
<tr>
<td>analog</td>
</tr>
<tr>
<td>digital</td>
</tr>
<tr>
<td>grid matrix bar codes</td>
</tr>
<tr>
<td>sample</td>
</tr>
<tr>
<td>gs1 data matrix bar codes</td>
</tr>
<tr>
<td>sample</td>
</tr>
<tr>
<td>GS1 databar bar codes</td>
</tr>
<tr>
<td>convert GS1 databar to UPC/EAN/JAN</td>
</tr>
<tr>
<td>GS1 databar expanded</td>
</tr>
<tr>
<td>GS1 databar limited</td>
</tr>
<tr>
<td>GS1 databar limited margin check</td>
</tr>
<tr>
<td>GS1 databar omnidirectional</td>
</tr>
<tr>
<td>sample</td>
</tr>
<tr>
<td>security level</td>
</tr>
<tr>
<td>GS1 QR bar codes</td>
</tr>
<tr>
<td>sample</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>han xin bar codes</td>
</tr>
<tr>
<td>inverse</td>
</tr>
<tr>
<td>sample</td>
</tr>
<tr>
<td>host specific indicators</td>
</tr>
<tr>
<td>123scan</td>
</tr>
</tbody>
</table>
Index

RS-232 .. 43
USB ... 43

host types
IBM ... 301
keyboard wedge 307
RS-232 ... 284
SSI ... 265
USB ... 237

I
IBM
bar codes ... 301
connection ... 299
default parameters 300
IDC ... 348
bar code acceptance test 349
bar codes ... 353
capture region .. 349
data transmission 350
default parameters 352
demonstrations 366
image post processing 350
operating mode 350
quick start ... 365
quick start form 367
sample setup ... 365
support .. 350
illumination .. 83, 103
brightness ... 83
image capture
default parameters 100
operational modes 102
image capture beeper and LED indicators 42
image options
bits per pixel .. 117
cropping .. 109
file formats .. 115
image brightness (target white) 112
image enhancement 114
image rotation .. 116
image size ... 111
JPEG image options 112
JPEG quality .. 113
JPEG size ... 113
signature capture 118
signature capture file format 119
information, service 27
interface
cables ... 24
interleaved 2 of 5 bar codes 170
check digit verification 172
convert to EAN-13 173
febraban .. 174
lengths ... 171, 172
reduced quiet zone 176
sample .. 530
security level ... 175
transmit check digit 173

J
JPEG image options 112
quality ... 113
size ... 113

K
keyboard types (country codes)
 Albanian ... 471
 Arabic (101) .. 471
 Arabic (102) .. 472
 Arabic (102) Azerty 472
 Azeri (Cyrillic) 472
 Azeri (Latin) .. 472
 Belarusan .. 472
 Bosnian (Cyrillic) 472
 Bosnian (Latin) 472
 Bulgarian (Latin) 473
 Bulgarian Cyrillic (Typewriter) 473
 Canadian French (Legacy) 473
 Canadian French Win7 473
 Canadian Multilingual Standard 473
 Chinese (ASCII) 473
 Chinese (Simplified) 474
 Chinese (Traditional) 474
 Croatian ... 474
 Czech ... 474
 Czech (Programmer) 474
 Czech (qwerty) 474
 Danish ... 474
 Dutch (Netherlands) 475
 Estonian ... 475
 Faeroese ... 475
 Finnish ... 475
 French (Canada) 2000/XP 476
 French (Canada) 95/98 475
 French (France) 475
 French International 475
 Galician .. 476
 German .. 476
 Greek .. 476
 Greek (220) Latin 476
 Greek (319) Latin 476
 Greek 220 ... 477
 Greek 319 ... 477
 Greek Latin .. 476
 Greek Polytonic 477
 Hebrew Israel 477
 Hungarian .. 477
<table>
<thead>
<tr>
<th>Language</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian_101KEY</td>
<td>477</td>
</tr>
<tr>
<td>Irish</td>
<td>478</td>
</tr>
<tr>
<td>Icelandic</td>
<td>477</td>
</tr>
<tr>
<td>Italian</td>
<td>478</td>
</tr>
<tr>
<td>Italian (142)</td>
<td>478</td>
</tr>
<tr>
<td>Japanese (ASCII)</td>
<td>478</td>
</tr>
<tr>
<td>Japanese (SHIFT-JIS)</td>
<td>478</td>
</tr>
<tr>
<td>Kazakh</td>
<td>478</td>
</tr>
<tr>
<td>Korean (ASCII)</td>
<td>478</td>
</tr>
<tr>
<td>Korean (Hangul)</td>
<td>479</td>
</tr>
<tr>
<td>Kyrgyz</td>
<td>479</td>
</tr>
<tr>
<td>Latin American</td>
<td>479</td>
</tr>
<tr>
<td>Latvian</td>
<td>479</td>
</tr>
<tr>
<td>Latvian (QWERTY)</td>
<td>479</td>
</tr>
<tr>
<td>Lithuanian</td>
<td>479</td>
</tr>
<tr>
<td>Lithuanian (IBM)</td>
<td>479</td>
</tr>
<tr>
<td>Macedonian (FYROM)</td>
<td>480</td>
</tr>
<tr>
<td>Maltese_47KEY</td>
<td>480</td>
</tr>
<tr>
<td>Mongolian</td>
<td>480</td>
</tr>
<tr>
<td>Norwegian</td>
<td>480</td>
</tr>
<tr>
<td>Polish (214)</td>
<td>480</td>
</tr>
<tr>
<td>Polish (Programmer)</td>
<td>480</td>
</tr>
<tr>
<td>Portuguese (Brazil)</td>
<td>480</td>
</tr>
<tr>
<td>Portuguese (Brazilian ABNT)</td>
<td>481</td>
</tr>
<tr>
<td>Portuguese (Brazilian ABNT2)</td>
<td>481</td>
</tr>
<tr>
<td>Portuguese (Portugal)</td>
<td>481</td>
</tr>
<tr>
<td>Romanian</td>
<td>481</td>
</tr>
<tr>
<td>Romanian (Legacy)</td>
<td>481</td>
</tr>
<tr>
<td>Romanian (Programmer)</td>
<td>482</td>
</tr>
<tr>
<td>Romanian (Standard)</td>
<td>481</td>
</tr>
<tr>
<td>Russian</td>
<td>482</td>
</tr>
<tr>
<td>Russian (Typewriter)</td>
<td>482</td>
</tr>
<tr>
<td>Serbian (Cyrillic)</td>
<td>482</td>
</tr>
<tr>
<td>Serbian (Latin)</td>
<td>482</td>
</tr>
<tr>
<td>Slovak</td>
<td>482</td>
</tr>
<tr>
<td>Slovak (QWERTY)</td>
<td>483</td>
</tr>
<tr>
<td>Slovenian</td>
<td>483</td>
</tr>
<tr>
<td>Spanish</td>
<td>483</td>
</tr>
<tr>
<td>Spanish (Variation)</td>
<td>483</td>
</tr>
<tr>
<td>Swedish</td>
<td>483</td>
</tr>
<tr>
<td>Swiss French</td>
<td>483</td>
</tr>
<tr>
<td>Swiss German</td>
<td>483</td>
</tr>
<tr>
<td>Tatar</td>
<td>484</td>
</tr>
<tr>
<td>Thai (Kedmanee)</td>
<td>484</td>
</tr>
<tr>
<td>Turkish F</td>
<td>484</td>
</tr>
<tr>
<td>Turkish Q</td>
<td>484</td>
</tr>
<tr>
<td>UK English</td>
<td>484</td>
</tr>
<tr>
<td>Ukrainian</td>
<td>484</td>
</tr>
<tr>
<td>US Dvorak</td>
<td>484</td>
</tr>
<tr>
<td>US Dvorak Left</td>
<td>485</td>
</tr>
<tr>
<td>US Dvorak Right</td>
<td>485</td>
</tr>
<tr>
<td>US English</td>
<td>471</td>
</tr>
<tr>
<td>US International</td>
<td>485</td>
</tr>
<tr>
<td>Uzbek</td>
<td>485</td>
</tr>
<tr>
<td>Vietnamese</td>
<td>485</td>
</tr>
</tbody>
</table>

keyboard wedge

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar codes</td>
<td>307</td>
</tr>
<tr>
<td>connection</td>
<td>305</td>
</tr>
<tr>
<td>default parameters</td>
<td>306</td>
</tr>
<tr>
<td>keyboard map</td>
<td>313</td>
</tr>
<tr>
<td>Korean 3 of 5 bar codes</td>
<td>194</td>
</tr>
<tr>
<td>sample</td>
<td>531</td>
</tr>
</tbody>
</table>

L

LED indicators

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>123scan host specific</td>
<td>44</td>
</tr>
<tr>
<td>ADF programming</td>
<td>43</td>
</tr>
<tr>
<td>image capture</td>
<td>42</td>
</tr>
<tr>
<td>macro PDF</td>
<td>44</td>
</tr>
<tr>
<td>maintenance</td>
<td>44</td>
</tr>
<tr>
<td>parameter programming</td>
<td>43</td>
</tr>
<tr>
<td>RS-232 host specific</td>
<td>43</td>
</tr>
<tr>
<td>scanning</td>
<td>42</td>
</tr>
<tr>
<td>SMS</td>
<td>44</td>
</tr>
<tr>
<td>USB host specific</td>
<td>43</td>
</tr>
</tbody>
</table>

M

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>macro PDF</td>
<td>225</td>
</tr>
<tr>
<td>abort entry</td>
<td>226</td>
</tr>
<tr>
<td>flush buffer</td>
<td>226</td>
</tr>
<tr>
<td>macro PDF beeper and LED indicators</td>
<td>44</td>
</tr>
<tr>
<td>maintenance</td>
<td>49</td>
</tr>
<tr>
<td>approved cleaners for standard devices</td>
<td>49</td>
</tr>
<tr>
<td>how to clean the devices</td>
<td>50</td>
</tr>
<tr>
<td>known harmful ingredients</td>
<td>49</td>
</tr>
<tr>
<td>matrix 2 of 5 bar codes</td>
<td>190</td>
</tr>
<tr>
<td>check digit</td>
<td>193</td>
</tr>
<tr>
<td>lengths</td>
<td>191</td>
</tr>
<tr>
<td>sample</td>
<td>531</td>
</tr>
<tr>
<td>transmit check digit</td>
<td>193</td>
</tr>
<tr>
<td>maxicode bar codes</td>
<td>215</td>
</tr>
<tr>
<td>MDF</td>
<td>370</td>
</tr>
<tr>
<td>microPDF417 bar codes</td>
<td>210</td>
</tr>
<tr>
<td>microQR code bar codes</td>
<td></td>
</tr>
<tr>
<td>sample</td>
<td>536</td>
</tr>
<tr>
<td>mounting</td>
<td></td>
</tr>
<tr>
<td>wall</td>
<td>24</td>
</tr>
<tr>
<td>MSI bar codes</td>
<td>184</td>
</tr>
<tr>
<td>check digit algorithm</td>
<td>189</td>
</tr>
<tr>
<td>check digits</td>
<td>187</td>
</tr>
<tr>
<td>lengths</td>
<td>185</td>
</tr>
<tr>
<td>reduced quiet zone</td>
<td>189</td>
</tr>
<tr>
<td>sample</td>
<td>530</td>
</tr>
<tr>
<td>transmit check digit</td>
<td>187</td>
</tr>
<tr>
<td>multicode data formatting</td>
<td>370</td>
</tr>
</tbody>
</table>
non-parameter attributes

- beep on next bootup ... 515
- configuration filename 513
- date of first programming 513
- date of manufacture .. 513
- firmware version ... 516
- host trigger session .. 516
- model number ... 512
- parameter defaults .. 515
- reboot .. 515
- scankit version ... 516
- scanspeed analytics ... 518
- serial number .. 512

pinouts

- scanner signal descriptions 58
- postal code bar codes ... 226
 - Australia post .. 229
 - Australia post format 230
 - Japan postal .. 229
 - mailmark .. 232
 - Netherlands KIX code 231
 - sample .. 537
 - transmit UK postal check digit 228
 - transmit US postal check digit 227
 - UK postal .. 228
 - UPU FICS postal ... 232
- US planet ... 227
- US postnet ... 226
- USPS 4CB/One Code/Intelligent Mail 231

power supplies ... 24

power supply

- connecting ... 33
- preferred symbol ... 373

product id (pid) value .. 86

product id type .. 85

product information

- manufacturing info .. 54
- report software version 54
- serial number .. 54

Q

QR code bar codes .. 215
 - GS1 QR .. 216
 - microQR ... 216
 - sample .. 536, 537, 538

data matrix ... 536, 537, 538

gs1 data matrix ... 535

GS1 databar ... 532

GS1 QR .. 535

han xin ... 537

interleaved 2 of 5 ... 530

Korean 3 of 5 .. 531

matrix 2 of 5 .. 531

microQR code ... 536

MSI ... 530

PDF417 .. 534

QR code .. 534

UPC/EAN .. 537

US postal ... 537

scanning

- aiming ... 46

scanning beeper and LED indicators 42

scanspeed analytics ... 519

security

- 1D quiet zone level .. 204
- intercharacter gap size .. 205
- redundancy level .. 201
- security level .. 203

service information .. 27

setting defaults ... 62
Setup
- Connecting a keyboard wedge host: 305
- Connecting a USB interface: 234
- Connecting an IBM host: 299
- Connecting an RS-232 interface: 280
- Connecting power: 33
- Inserting interface cable: 31
- Unpacking: 29

Signal Descriptions
- Bits per pixel: 120
- Code structure: 508
- Data format: 510
- Dimensions: 510
- File format selector: 119
- Height: 121
- JPEG quality: 121
- Signature boxes: 511
- Start and stop patterns: 509
- Width: 121

SMS LED Indicators (on scanner)
- 123Scan: 39
- ADF: 370
- MDF: 370
- Preferred symbol: 373

Speaker
- Speaker volume: 64

Specifications
- 55

SSI
- Bar codes: 265
- Commands: 255
- Communications: 254, 258
- Data transmission: 257
- Default parameters: 264
- Event reporting: 276
- Handshaking: 256, 258
- Low power mode: 260
- RSM commands and responses: 261
- RTS CTS: 258
- Transactions: 256

Symbologies
- Bar codes: 131
- Default parameters: 124

T
- Technical specifications: 55
- Trigger mode, hand-held: 73
- Troubleshooting: 51

U
- Unicode
 - Output control: 500

UPC/EAN Bar codes
- Supplemental redundancy: 140

UPC/EAN/JAN Bar codes
- Bookland EAN: 134
- Bookland ISBN: 135
- Convert UPC-E to UPC-A: 147
- Convert UPC-E1 to UPC-A: 147
- Coupon report: 149
- Decode supplementals: 137
- EAN-13/JAN-13: 133
- EAN-8/JAN-8: 133
- ISSN EAN: 136
- Samples: 525
- Supplemental AIM ID format: 141
- Transmit UPC-A check digit: 142
- Transmit UPC-E check digit: 142
- Transmit UPC-E1 check digit: 143
- UCC coupon extended code: 148
- UPC reduced quiet zone: 150
- UPC-A: 131
- UPC-A preamble: 144
- UPC-E: 132
- UPC-E preamble: 145
- UPC-E1: 132
- UPC-E1 preamble: 146
- User programmable supplementals: 140

UPC/EAN/JAN Barcodes
- EAN/JAN zero extend: 148

USB
- Bar codes: 237
- Connection: 234
- Default parameters: 235