<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Storage</td>
<td>11</td>
</tr>
<tr>
<td>Communication</td>
<td>12</td>
</tr>
<tr>
<td>Cradle Port</td>
<td>12</td>
</tr>
<tr>
<td>IrDA Port</td>
<td>12</td>
</tr>
<tr>
<td>Radio</td>
<td>12</td>
</tr>
<tr>
<td>Serial/Keyboard Connector</td>
<td>14</td>
</tr>
<tr>
<td>Power</td>
<td>14</td>
</tr>
<tr>
<td>AC Adapter</td>
<td>14</td>
</tr>
<tr>
<td>Battery Pack</td>
<td>15</td>
</tr>
<tr>
<td>Bridge Battery</td>
<td>15</td>
</tr>
<tr>
<td>Vehicle Adapter</td>
<td>16</td>
</tr>
<tr>
<td>Other Features</td>
<td>17</td>
</tr>
<tr>
<td>Advanced Power Management</td>
<td>17</td>
</tr>
<tr>
<td>Bar Code Autodiscrimination</td>
<td>18</td>
</tr>
<tr>
<td>Automatic Keyboard Recognition</td>
<td>18</td>
</tr>
<tr>
<td>Backlight</td>
<td>18</td>
</tr>
<tr>
<td>Clock</td>
<td>19</td>
</tr>
<tr>
<td>Display Contrast</td>
<td>19</td>
</tr>
<tr>
<td>Low-Battery Warning</td>
<td>19</td>
</tr>
<tr>
<td>Accessories</td>
<td>20</td>
</tr>
<tr>
<td>Getting Started</td>
<td>21</td>
</tr>
<tr>
<td>Unpacking the PTC-2134</td>
<td>21</td>
</tr>
<tr>
<td>PTC Setup</td>
<td>22</td>
</tr>
<tr>
<td>Work Area Selection</td>
<td>22</td>
</tr>
<tr>
<td>Connecting the Antenna</td>
<td>22</td>
</tr>
<tr>
<td>Battery Pack Installation/Removal</td>
<td>22</td>
</tr>
<tr>
<td>Attaching the Stylus Holder to the PTC</td>
<td>23</td>
</tr>
<tr>
<td>Loading Software</td>
<td>23</td>
</tr>
<tr>
<td>External Components</td>
<td>24</td>
</tr>
<tr>
<td>Shoulder Strap</td>
<td>24</td>
</tr>
<tr>
<td>Stylus</td>
<td>24</td>
</tr>
<tr>
<td>Drive Lettering and Boot Sequence</td>
<td>34</td>
</tr>
<tr>
<td>Drive Lettering</td>
<td>34</td>
</tr>
<tr>
<td>Without Card and Socket Services</td>
<td>34</td>
</tr>
</tbody>
</table>
Drive Letter Assignment ... 34
With Card and Socket Services and DOS 35
With Card and Socket Services and Windows............................ 35
Boot Sequence.. 35

Operating the PTC-2134 ... 37
Holding the PTC ... 37
Turning On the PTC .. 37
Turning Off the PTC ... 37
Entering Information on the Screen .. 38

Using the PCMCIA Slots... 39
Inserting a PCMCIA Card or Device.. 39
Removing a PCMCIA Card or Device .. 41

Communication and Connections... 42
Communicating Via Radio.. 42
Communicating Via Cable.. 42
Connecting a Serial Device... 43
 Equipment Required.. 43
Disconnecting a Serial Device ... 44
Connecting a Keyboard ... 45
 Equipment Required.. 45
PCMCIA Communication Options .. 46
Using the IrDA Port.. 46
Connecting to a Communication Cradle 46

Battery Pack Maintenance ... 47
Low-Battery Warning .. 47
Checking Battery Charge ... 47
Recharging the Battery Pack.. 47
 Charging via the AC or Vehicle Adapter 48
 Charging via a Communication Cradle 49
 Charging via a Four-Bay Battery Charger.............................. 49
Operating the PTC with the AC or Vehicle Adapter Connected .. 50
Replacing the Battery Pack .. 51
Removing the Battery Pack ... 51
Installing a New Battery Pack .. 51
Getting the most out of your Battery Pack 52
Maximizing Operating Time ... 52
Battery Pack Life ... 53
Battery Pack Care ... 53
Gas Gage Recalibration ... 54
Disposing of Battery Packs ... 54

Bridge Battery Maintenance .. 55
Recharging the Bridge Battery ... 55
Conditioning the Bridge Battery ... 56
Replacing the Bridge Battery ... 57
Using a Four Bay Charger .. 57

Maintaining the PTC-2134 .. 58
Operating Conditions ... 58
Handling the PTC-2134 ... 58
Antenna Handling ... 59
PTC Storage .. 60
Cleaning the PTC ... 61
Equipment Required ... 61
Servicing the PTC .. 61
Disposing of the PTC ... 61

Troubleshooting .. 62
General ... 62
Beep Codes .. 63
Five Sets of Three Beeps .. 63
Five Beeps .. 63
LED Codes .. 63
Common Solutions .. 64
The PTC does not turn on .. 64
The PTC does not respond to the stylus or responds inappropriately .. 64
The PTC does not recognize the information written on the screen .. 64
The PTC's screen is slow to refresh .. 64
The radio fails to establish contact ... 65
The battery pack does not hold a full charge
 after being recharged.. 65
The battery pack runs down rapidly after being charged........ 65
The bar code wand does not read a label 65
The laser scanner does not read a label.................................. 65
The application locks up.. 66
Getting Help .. 66
If you cannot correct the problem ... 66

Rebooting/Resetting the PTC ... 67
Rebooting the PTC .. 67
 Warm Boot.. 67
 From an Attached Keyboard ... 68
 Via the pop-up keyboard from the DOS prompt................. 68
Resetting the PTC ... 68
 Procedure.. 68

References .. 69

Specifications .. 71
 Communication and I/O... 71

Accessory Part Numbers .. 77

LED Indicators .. 81
 Power LED.. 81

Expansion Module Interface ... 83
 Attaching an Expansion Module .. 83
 Disconnecting an Expansion Module 84

Expansion Modules ... 85
 Using the Optional Expansion Modules 85
 Laser Scanner Module ... 85
Using the RJ-41 Connector Module ... 88
Connecting an external bar code wand or laser scanner 88
Using a Bar Code Wand .. 89
Using an External Laser Scanner .. 90
Disconnecting an External Bar Code Wand or Laser Scanner.. 91

Connector Pinouts.. 93

Stylus Information.. 99
 Stylus Data Entry Tips... 99
 General Guidelines.. 99
This Guide’s Purpose and Scope

This manual was written by the Symbol Technical Publications Group. This group is tasked with providing technical documentation for the Symbol PTC-2134 product line that uses the Microsoft® Windows CE® Operating System. Every effort has been made to provide accurate and concise information to you, our customer.

The PTC-2134 User’s Guide provides information that allows the user to set up and use the PTC-2134. This manual is meant to provide information on the various components of this product, including:

- General regulations,
- Overview of the PTC-2134,
- Maintenance and troubleshooting,
- Available accessories.

This manual, however, does not provide instructions on how to perform the tasks specific to your job within your organization. For job-specific information, refer to the instructions provided by your organization.
Contacting Symbol’s Support Center

Symbol’s Support Center may be contacted to obtain help in resolving any PTC-2134 system problem that you may experience.

If you have a problem running your unit or using your equipment, contact your facility's technical or system support. If there is a problem with the equipment, the system support will contact the Symbol Support Center at 1-800-653-5350.

For additional information on Symbol’s products and services, please visit our website at www.symbol.com.
Chapter 1

Radio Regulations

Direct-Sequence and Frequency-Hopping Spread Spectrum Radios

FCC Regulations
The PTC-2134 uses radios (transceivers) and radio communication in its operation. The PTC-2134 uses a spread spectrum radio transceiver that qualifies for unlicensed use. The FCC ID is on the unit's rear label.

DOC Statement
The PTC-2134’s radio is also approved for use in Canada. The PTC-2134 uses a spread spectrum radio transceiver that qualifies for unlicensed use. The Canadian DOC ID is on the unit's rear label. This device complies with RSS-210 of Industry and Science Canada. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.
DataTAC Radio Regulations

The PTC-2134's internal transmitter has been type accepted in accordance with FCC CFR Title 47, Part 90. The FCC ID, Canadian DOC ID, or ID number for another appropriate regulatory agency is on the unit's rear label. The user must subscribe to the DataTAC radio network (U.S.), Bell-Mobility (Canada), or the DataTAC system carrier in the country of operation before using the internal radio. The user will need to provide the Logical Link Identifier (LLI) number from the unit's rear label for network registration.

Contact your Symbol representative for information on subscribing to the network in the country in which the PTC will be used. No license is required to operate this product in the U.S. or Canada. For information on operating regulations in other countries, contact your Symbol representative.

Mobitect Radio Regulations

The PTC-2134's internal transmitter has been type accepted in accordance with FCC CFR Title 47, Part 90. The FCC ID, Canadian DOC ID, or ID number for another appropriate regulatory agency is on the unit's rear label. The user must subscribe to the Bell-South Mobile Data radio network in the country of operation before using the internal radio. The user will need to provide the Mobitect Access Number (MAN) from the unit's rear label for registration on the network.

Contact your Symbol representative for information on subscribing to the network in the country in which the PTC will be used. No license is required to operate this product in the U.S. or Canada. For information on operating regulations in other countries, contact your Symbol representative.
CDPD Radio Regulations

A local cellular carrier subscription will be required for Cellular Digital Packet Data (CDPD) service. The user will need to provide the equipment identification (EID) number, which can be found on the unit’s rear label. The cellular carrier will, in turn, provide a Network Entity Identifier (NEI) to be entered into the PTC. Refer to the instructions provided with the software application for information on how to register the PTC on the network. In service areas where CDPD is not available, the AMPS mode may be selected for data service via standard voice channels. Different usage rates may apply. Contact your cellular carrier for more information.
Chapter 3

PTC-2134 Overview

The PTC-2134 is a rugged, SC400-processor-powered, PC-compatible, pen-based portable teletransaction computer (PTC). It is used to collect, store, and transmit data. A passive stylus is the PTC's primary input device. The stylus allows the user to make selections on the screen or to write on the screen in much the same way as on paper with an ink pen. In general, the PTC is operated by using the stylus to write directly on the screen to fill in forms, to check off boxes, or to make choices from menus.

An organization's specific application program that was developed for its needs will determine the actions to be taken by a user. See the manuals or instructions provided by your organization for application details.

Through its pen operating environment, the PTC recognizes the written letters and numbers on its screen and translates them into a form that can be used and stored in the PTC.

Processor

The PTC's 100-MHz AMD Elan SC400 microprocessor is fully IBM PC compatible. It provides exceptional processing speed and is designed for low power consumption.
Operating Systems

The PTC-2134 may use the MS-DOS 6.22, Windows 95, or Windows CE operating system. PenRight! is a separate pen operating environment that runs on top of the operating system and allows the PTC to recognize screen taps as well as written letters and numbers.

Applications

The Symbol Pen-Based SC400 Software Development Kit is available to assist in the development of pen-based applications for the PTC. Contact your Symbol representative for more information.

Memory

The PTC-2134 has two types of memory: read-only memory (ROM) and random access memory (RAM).

ROM

The PTC-2134 comes with 512 kilobytes (KB) of read-only memory. It contains the Basic Input/Output System (BIOS) for MS-DOS/Windows 95 or the bootloader for Windows CE.

RAM

The PTC-2134 contains 4, 20, 36, or 64 megabytes (MB) of random access memory. RAM is used to store data that is required by the PTC while it is running. One MB of RAM is reserved for running the operating system and the application.

RAM data may be easily read, written, and changed. It is also volatile. All data in RAM will be lost if the PTC’s battery pack and bridge battery becomes fully depleted or if the PTC is reset.
During normal operation, the PTC’s advanced power management (APM) feature automatically protects data in RAM and saves the user’s place in the application.

Display Options

The PTC-2134 has a VGA monochrome liquid crystal display (LCD) that can show up to 16 shades of gray, and features a resistive touch panel digitizer. The PTC-2134 is available with either a transmissive or transflective display (depending on the environment in which the PTC will be used).

Transflective Display

A transflective display uses reflected ambient light to produce viewable display images. It is ideal for use in outdoor applications. For indoor use, the PTC’s backlight may be used to optimize the display visibility in low lighting or under fluorescent lights.

Transmissive Display

A transmissive display does not reflect ambient light and is intended for indoor use only. It requires the backlight to be on at all times. The transmissive display generally produces brighter images than transflective displays, but consumes more battery power.
Digitizer

The PTC-2134 features a resistive touch panel digitizer, which is mounted above the display. The digitizer enables the PTC to recognize data entered with a passive stylus. It also has a palm reject feature, which prevents accidental activation of the unit by casual hand or finger contact.

Data Entry Methods

Data may be entered into the PTC-2134 in a variety of ways. Each method is discussed below.

Data Entry Via the Stylus

As a pen-based computer, the PTC-2134 is ideal for forms-based data gathering. The PTC’s stylus may be used to select menu options, to write in the fields of a form displayed on the PTC’s screen, or to check off items on a list. The PTC may also be equipped with an option that captures signatures onto electronic forms (for example, when a delivery is made or an order is placed).

Data Entry Via the Keyboard

Caution: Do not connect a keyboard to a PTC installed in the SC/VC-2X34 cradle.

Data may also be entered into the PTC via an external PC/AT keyboard. The keyboard connects to the PTC via an optional serial/keyboard Y adapter cable.
Data Entry Via the Laser Scanner/Bar Code Wand

Entering data may also be accomplished with the PTC’s optional laser scanner module, an external laser scanner, or a bar code wand. When scanning a 1D bar code, the PTC and the scanner/wand interpret the data and store it into the PTC’s memory. See Appendix E on p. 85 for instructions on using the scanner/wand and for a list of supported bar codes.

Data Entry Via the Magnetic Stripe Reader

The PTC’s optional magnetic stripe reader module is designed to read information embedded in the magnetic strip on the back of credit cards or debit cards.

Data Entry Via the Radio

The PTC may be configured to interface with a wide area network (WAN).

Refer to the section titled “Radio” on p. 12 for further information on radio communication.
Data Storage

Data entered into the PTC may be stored in the PTC’s RAM, on an internal compact flash hard disk drive, on an optional auxiliary storage card, or on a removable PCMCIA solid state data card. The PTC’s internal solid state compact flash hard disk drive stores the unit’s operating system. The PTC’s application program and data entered by the user may reside in compact flash or on a factory-installed solid state or rotating ATA drive (auxiliary storage card).

PCMCIA data cards are credit-card-size memory cards that are used much as floppy disks are used in a desktop computer. The PTC-2134 has two user-accessible PCMCIA slots that can accept two Type II cards (one per slot) or one Type III card. Each Type II card occupies one slot, and Type III cards, which must be inserted into slot 1, occupy both slots.

The number of available PCMCIA slots is dependent on the PTC’s factory configuration options. For example, an auxiliary storage card or a field-installed radio card uses one or both PCMCIA slots, depending on the card type.
Communication

Cradle Port
The PTC’s cradle port allows direct connection to an optional single-bay/vehicle cradle. The cradle provides both communication and battery pack charging.

For more information, see the documentation shipped with the cradle.

IrDA Port
The IrDA 1.0 port allows the PTC to communicate via pulses of infrared light to and from other IrDA-compliant devices, such as printers or host systems.

Radio
A Type III field-installed radio (optional) occupies both of the user-accessible PCMCIA slots.

The PTC-2134 may be ordered with an internal factory-installed radio or with the radio-ready feature. A radio-ready unit enables a field-installed Type II or Type III 2.4-GHz radio to be inserted into one of the PTC’s PCMCIA slots. Units with internal radios or the radio-ready feature are shipped with antennas. The PTC may be equipped with either a local area network (LAN) radio or a wide area network (WAN) radio.

LAN Radio Options
- 2.4-GHz **direct-sequence** 802.11-compliant spread spectrum radio.
- 2.4-GHz **frequency-hopping** 802.11-compliant spread spectrum radio.
Spread spectrum radios allow the PTC to communicate interactively in real time with a host computer on a radio-based local area network. They provide secure, interference-free communication and do not require a license for operation.

WAN Radio Options

A wide area network (WAN) is a radio network that supports data communications across a broad area, such as a city, a state, or nationwide.

No license is required to operate a WAN radio in the U.S. or Canada, but a subscription to the corresponding radio network (or another DataTAC network) is required before the radio may be operated.

DataTAC Radio

A DataTAC radio allows the PTC to communicate via a wide area DataTAC communication network.

Mobitex Radio

A Mobitex radio allows the PTC to communicate via the wide area Bell-South Wireless Data digital communication network.

CPDP Radio

A Cellular Digital Packet Data (CDPD) radio allows the PTC to communicate via the analog cellular telephone infrastructure. This radio can send data via existing cellular channels in bursts at 19.2 Kbps.

The PTC's application program controls the radio. Refer to your application's manual for details on using the radio to transmit and receive data.

The PTC uses its radio to communicate with a host computer. Via the radio, the PTC can send data to the host, and the host can send data and instructions to the PTC.
Serial/Keyboard Connector

So long as the PTC is installed in the SC/VC-2X34 cradle, the serial/keyboard Y adapter cable cannot be used with the PTC.

A built-in 15-pin connector allows the PTC to connect to standard serial devices and to an external PC/AT keyboard. An optional serial/keyboard Y adapter cable is required to make these connections.

Refer to Appendix B on p. 77 for cable part numbers.

Power

AC Adapter

Note: Use the AC adapter supplied by Symbol with the PTC. Using any other adapter may damage the PTC.

A 15-VDC, 2.7- or 3-A AC adapter provides power to recharge the PTC’s lithium-ion battery pack and bridge battery. The adapter connects to the PTC’s power jack and to an electrical outlet via an AC power cord. The adapter has a special connector that accepts a wide range of AC cords that supplies an input voltage between 100 and 240 volts AC at 50/60 Hz.

Some activities, such as using the WAN radio, require more power than the adapter can provide; this extra power is supplied by the battery pack.

When the AC or vehicle adapter is attached to the PTC, the unit draws most of its power from the electrical outlet or a vehicle’s power source, not from the PTC’s battery pack. As a result, the PTC may remain on and be operated while its battery pack is being fast charged.
Battery Pack

Note: Removal of the battery pack will drain the bridge battery (even with the unit suspended).

Operating power for the PTC-2134 is provided by a rechargeable lithium-ion battery pack. The battery pack may be charged via an AC adapter, a vehicle adapter, a single-bay/vehicle cradle, or a four-bay battery charger. The amount of time that the PTC can operate on a fully charged battery pack depends on the features and devices used and on the time that the PTC spends communicating with the host computer. The more the radio, backlight, serial port, IrDA port, PCMCIA slot(s), hard disk drive, and optional expansion modules are used, the sooner the battery pack will run out of power.

Bridge Battery

Note: Always suspend the PTC before removing the battery pack.

Refer to Chapter 11 on p. 55 for information on conditioning the bridge battery.

An internal rechargeable nickel-cadmium bridge battery provides power to protect data stored in the PTC’s RAM when the main battery pack is being replaced or if the main battery pack runs out of power. Once the main battery has been fully discharged (and is left in the unit), the bridge battery may protect the PTC's memory for as long as 24 hours.

The bridge battery is recharged automatically when the main battery pack is recharged, if the main battery is being charged while it is in the PTC. The bridge battery’s condition is checked each time the PTC is resumed.

Note: The bridge battery is recharged by simultaneously recharging the main battery within the PTC only.
Vehicle Adapter

Note: Use the vehicle adapter supplied by Symbol with the PTC. Using any other adapter may damage the PTC.

A 15-VDC, 2.7-A vehicle adapter (optional) may be used to recharge the PTC’s lithium-ion battery pack and nickel-cadmium bridge battery. The adapter plugs into the PTC’s power jack and into a vehicle’s cigarette lighter socket.
Other Features

Advanced Power Management

Sleep States

The PTC goes into a sleep state if it is not used for a period of time or if it is suspended using the Resume button. In the sleep state, the PTC turns off portions of its internal electronics to conserve power. The PTC has two stages of sleep: Standby and Resume.

Standby

Standby begins after a period of inactivity (programmable). During this stage, the PTC’s screen goes blank, the backlight turns off, and other subsystems inside the PTC may slow down or turn off to conserve power. The PTC’s Status LED blinks slowly to indicate that the PTC is in Standby mode. The application program running at the time is suspended, and any data in RAM is protected. To wake the PTC from the Standby mode, touch the display screen with the stylus.

Suspend

Suspend begins (1) after the Standby counter reaches zero, or (2) if the Resume button is pressed while the unit is on. This stage turns off additional hardware elements and provides only minimal memory refresh operations. The Status LED and the PTC turns off.

The time requirements of PTC inactivity for either sleep state is user-definable. Consult the PTC-2X34 Software Guide and the documentation provided with the Symbol Pen-Based SC400 Software Development Kit for programming instructions.
Note: PTCs using Windows 95 will not go into the Suspend mode (via the Resume button or after a period of inactivity) if either PCMCIA slot contains an ATA card.

Installing a PCMCIA card will not wake the PTC from standby or suspend. Touch the PTC’s display or press the Resume button to reactivate the PTC before inserting a PCMCIA card.

Resume

When the PTC is in the Standby mode, touching the PTC’s screen with the stylus or pressing the Resume button turns the PTC back on and returns to the point at which it left the application. When the PTC is in Suspend mode, press the Resume button to turn the PTC back on. The system will return to the point at which it left the application.

Bar Code Autodiscrimination

The PTC’s application program may be set up to read and automatically discriminate among a number of bar code types. See your organization’s application manual or instructions for the bar code types that the PTC is programmed to recognize.

Automatic Keyboard Recognition

The PTC automatically recognizes when a keyboard is attached and may immediately accept input from it.

Backlight

The PTC’s backlight makes the screen readable in low light. Pressing the Brightness button toggles the backlight on and off. To save power, the backlight automatically turns off when there has been no activity on the screen. The duration of inactivity may be set by the application program.
Clock

The PTC-2134’s built-in clock keeps track of the date (month, day, year, and day of the week) and the time (hours, minutes, seconds, and tenths of seconds). The clock operates continuously. The application program will determine how the PTC’s clock is used. For example, the PTC may use the clock to show the date and time on its screen or to time stamp a file.

Display Contrast

The PTC’s screen contrast may be increased or decreased using the PTC’s **Increase** and **Decrease Contrast** buttons. Pressing the **Increase Contrast** button lightens the PTC’s display in steps until it reaches the maximum contrast. Similarly, the **Decrease Contrast** button progressively darkens the display contrast until it reaches the minimum contrast. Eight contrast settings are available.

Low-Battery Warning

Some applications may allow the user to view the battery’s charge status on the PTC’s screen. See your application’s manual for instructions.

See Chapter 10 on p. 47 for information on battery life and recalibrating the battery pack’s internal gas gauge.

The PTC provides a warning when the battery pack or the bridge battery approaches a critically low power level. When this happens, the PTC will sound five sets of three short beeps with a pause between sets, and the Power LED will glow red. If these warnings are observed, recharge the battery pack promptly (see Chapter 10 on p. 47 for the recharging procedure).
Accessories

The PTC-2134 may be used with the following optional communication/charging accessories: the SC/VC-2X34 Single-Bay/Vehicle Cradle and the Universal Battery Charger.

The cradle allows the PTC to communicate with a host computer and provides the power to recharge the PTC’s battery pack. The universal battery charger can simultaneously recharge up to four spare PTC battery packs.
Chapter 4

Getting Started

Unpacking the PTC-2134

The PTC-2134 package contains a

- PTC-2134 pen-based computer with ordered expansion modules installed,
- lithium-ion battery pack,
- 15-VDC, 2.7- or 3-A AC or vehicle adapter (if ordered),
- stylus and stylus holder,
- radio antenna (if the PTC has an internal radio or is configured as radio ready),
- shoulder strap, and
- PTC-2134 Getting Started Sheet.

Additional accessories, such as cables, are shipped separately.

1. Remove the PTC and other parts from the box.
2. Remove all packing material from the PTC. Do not discard the packaging. Use the packaging for storage or for shipping the PTC to Symbol for servicing.
3. Ensure that all items ordered have been received.

Note: If anything is missing or damaged, notify your Symbol sales representative.

4. Check the contents for shipping damage. Pay particular attention to the PTC’s case and screen.
PTC Setup

This section provides instructions for setting up the PTC for the first time.

Work Area Selection

Choose an area that is free of rapid changes in temperature and humidity. Avoid areas that may have extremes of dust, moisture, heat, or is exposed to direct sunlight. Strong electromagnetic fields (i.e., stereo speakers) and corrosive chemicals should also be avoided.

Whether using or storing the PTC, ensure that the environment is neither too hot nor too cold. If you are comfortable, the temperature and humidity will be suitable for the PTC.

Connecting the Antenna

Caution: Radio damage may occur if the PTC is turned on or if there is an attempt to transmit data without the antenna being attached.

If the PTC has an antenna, screw it into the antenna mount on the PTC’s upper left corner. Refer to Chapter 12 on p.58 for information on handling the antenna.

Battery Pack Installation/Removal

To install the battery pack, align the six keyway holes of the battery pack with the six keys on the back of the PTC. With the battery pack’s connector and the PTC’s connector facing each other, slide the connectors together.

To remove the battery pack, press and hold the oval button at the top of the battery pack while sliding the battery pack toward the bottom of the PTC.
The battery pack and bridge battery must be charged before the PTC may be used. See Chapter 10 on p. 47 for instructions on charging the batteries.

Attaching the Stylus Holder to the PTC

The supplied stylus holder allows for a secure attachment to the PTC. Follow the steps below to attach the holder to the PTC.

1. Find a convenient location on the back of the PTC to attach the holder; then, clean the area with alcohol.

2. Remove the protective strip from the holder’s adhesive pad; then, firmly press the pad against the PTC at the chosen location.

3. Before using the holder, wait 4 hours for the pad’s adhesive to set.

When the PTC’s stylus is not in use, it may be stored in the stylus holder.

Loading Software

The operating system and the pen operating environment are loaded into the PTC at the factory.

To load application software, follow the instructions that are provided in the PTC-2X34 Software Guide and in the documentation that accompanies the Symbol Pen-Based SC400 Software Development Kit. Refer to Appendix B on p. 77 for ordering information.
Chapter 5

External Components

Shoulder Strap

A shoulder strap (not shown) maybe attached to the PTC to provide support when it is in use or when being carried.

Stylus

A passive stylus (not shown) is the PTC’s primary input device. The stylus allows the user to write directly onto the PTC’s screen. It is specially designed not to scratch the coating on the screen’s touch panel.

Using instruments other than the stylus for performing screen input functions may damage the screen.
1. If the PTC has an internal radio or is configured as radio ready, a whip antenna screws onto the mount on the PTC’s upper left corner. Refer to Chapter 12 on p. 58 for information on handling the antenna.

2. The Power LED glows solid red when the battery pack is low and blinks red when the bridge battery is low. It is off when both batteries are adequately charged. When the PTC is connected to a charger, the Power LED blinks green until the battery pack reaches a 90% charge and remains solid green thereafter. If the charger is disconnected from the PTC, the Power LED turns off.

3. The green Status LED indicates the status of the PTC. When the Status LED blinks at a 2-second interval, it indicates that the PTC is in the Standby mode. Once the PTC enters the second sleep stage (Suspend), the Status LED blinks at a 4-second interval. Press the Resume button to
reactivate the PTC from either sleep stage. The **Status LED** blinks rapidly when the PTC is reset (restarted).

4. The **Scanning LED** glows red when the laser scanner module is scanning. It glows green to indicate a good scan.

5. The PTC has a laser scanner activation trigger on both sides to accommodate left- or right-hand use. There is also a trigger on each side of the optional laser scanner module (if so equipped). Pressing either scan trigger turns on the laser scanner module.

6. The screen is either a white-on-black or a white-on-black, VGA-resolution liquid crystal display (LCD). It has 640 x 480 lines of resolution and features a built-in backlight to make it readable in dim lighting. The screen displays data entered into the PTC and may show prompts, error messages, and other information. The screen may display a list of choices on a menu or a form with fields that require input.
1. Pressing the **Resume** button toggles the PTC between sleep and awake.

2. Pressing the **Decrease Contrast** button decreases screen contrast in steps until the screen reaches the minimum setting.

3. Pressing the **Brightness** button toggles the screen’s backlight **On** and **Off**.

4. Pressing the **Increase Contrast** button increases screen contrast in steps until the screen reaches the maximum setting.

5. The **Right Mouse** button’s default function is to emulate the right button on a Microsoft mouse. However, the button is software programmable and may be used to perform a user-defined function. See the instructions in the PTC-2x34 Software Guide for further information.

Figure 2. PTC-2134 front panel buttons.
1. The PTC may be equipped with one of a number of removable expansion modules, including a laser scanner, an RJ-41 connector module, or a magnetic stripe reader. If no option has been ordered, a blank module is installed. Appendix B on p. 77 lists part numbers for ordering expansion modules; Appendix C on p. 83 provides instructions for attaching or removing the modules; Appendix E on p. 85 provides instructions for using the modules; and Appendix F on p. 93 lists the expansion module connector pinouts.

2. The cradle port allows the PTC to be quickly and easily connected to a single-bay/vehicle cradle for communication and charging. See Appendix F on p. 93 for the cradle port pinouts.
3. This spring-loaded latch above the battery pack holds the pack in place. Pressing on the latch frees the battery pack so that it may be removed.

4. These two indentations on either side of the battery pack are designed to provide a solid grip when holding the PTC.

5. The PTC receives its operating power from a lithium-ion battery.

6. An elastic handstrap is attached to the back of the battery pack. It is used to secure the PTC to the user’s hand.

![PTC-2134 (side view)](image)

Figure 4. The PTC-2134 (side view).

1. Pressing both module release buttons (one on either side) releases the expansion module from the PTC.

2. These recesses (one on either side) are used to secure the PTC into the single-bay/vehicle cradle.
1. Opening this door provides access to the PCMCIA slots and the Reset/Ship button. When the door is closed, it helps to protect the PTC from dust, dirt, and moisture. The door is permanently attached to the PTC by a durable plastic strip.

2. PTCs that have an internal radio or are configured as radio ready will have a whip antenna screwed into this mount. PTCs with no radio will have the antenna mount sealed with a rubber plug. See Chapter 12 on p. 58 for instructions on handling the antenna.

3. To open the PCMCIA door, slide the latch toward the middle of the door; then pull the door open. To close the door, insert the end with the tab into the notch in the opening in the PTC. Then, press the door into place and slide the latch toward the outside of the PTC until it stops.
1. This small blue button resets the PTC or puts the unit into **Ship** mode. Before pressing this button, see “Resetting the PTC” on p. 68.

2. Press these buttons to release PCMCIA cards from the PCMCIA slots.

3. The PCMCIA slots house connectors that allow the user to attach a variety of credit-card-size accessories. These include data cards, modems, local area network (LAN) adapters, and wireless communication cards. The PTC-2134’s PCMCIA slots accept two Type II or one Type III PCMCIA card.

 Note: Type III cards, which occupy both PCMCIA slots, must be inserted into Slot 1, the slot closest to the battery.

Figure 6. The PTC-2134 (top view-PCMCIA door open).
1. The shoulder strap clips attach to these two pins.

2. When snapped in place over the serial/keyboard connector, this cover protects the PTC from dust, dirt, and moisture.

3. This connector is available for future options. The connector is sealed with a rubber plug.

4. This infrared v1.0 port allows the PTC to communicate via pulses of infrared light to and from other IrDA-compliant devices, such as printers.

5. The AC or vehicle adapter connects to this jack when recharging the battery pack.

6. The beeper, located behind this grill, can be used by the application to warn the user of problems or
Stylus PT-2134 User’s Guide

...to prompt the user to take an action. For example, if invalid data are input, the PTC may beep to alert the user. The beeper also provides a series of beeps as a warning when the battery pack or bridge battery approaches depletion.

See Appendix C on p. 81 for an explanation of the standard beep codes. Other codes may be specific to your application. The application program may also allow for adjustments to the beeper’s volume.

Figure 8. Serial/Keyboard Connector.

1. Serial/Keyboard Connector

1. This 15-pin connector allows the PTC to connect to external serial devices, such as printers and modems, and to an external IBM PC/AT-type keyboard (the pinouts for this connector may be found in Appendix F on p. 93). A special Y adapter cable must be used for these connections. See Appendix B on p. 77 for cable part numbers.
Chapter 6

Drive Lettering and Boot Sequence

Drive Lettering

The PTC’s operating system identifies the drive letters according to the PTC’s software configuration. This chapter provides information on the possible PTC drive letter assignments.

Without Card and Socket Services

Under normal conditions, the PTC boots from the internal Compact Flash card and then loads Card and Socket Services to support SRAM and ATA cards.

The PTC may be booted from a PCMCIA slot without Card and Socket Services.

Note: PCMCIA access without Card and Socket Services installed applies during the boot sequence only.

Drive Letter Assignment

A — SRAM support in PCMCIA Slot 0.

B — SRAM support in PCMCIA Slot 1.

C — Internal compact flash hard disk drive (if present) or ATA hard disk drive card in Slot 0 or 1 (replaces drives A and B).

D or above — RAM disk drives.

Note: If booting from an ATA card in Slot 0 as drive C, the other PCMCIA slot will not be usable for other PCMCIA devices.
With Card and Socket Services and DOS

The following drive letters are assigned if the PTC is used with the Card and Socket Services utility installed and is using the DOS operating system.

Drive Letter Assignment

C — Internal compact flash hard disk drive.

D — SRAM support or ATA hard disk drive card in Slot 0 (based on configuration of Card services ATA driver).

E — SRAM support or ATA hard disk drive card in Slot 1 (based on configuration of Card services ATA driver).

F — ATA hard disk drive card in Slot 0 (if SRAM support is configured in the ATA driver).

G — ATA hard disk drive card in Slot 1 (if SRAM support is configured in the ATA driver).

With Card and Socket Services and Windows

If the PTC is used with the Card and Socket Services utility installed and is using Windows as an operating system, the drives are assigned dynamically as they are installed and allocated.

Boot Sequence

The boot sequence is the order in which the PTC searches its disk drives (physical and logical) to locate the config.sys and autoexec.bat files. The PTC is preconfigured to look in drive A first for a bootable device. If it does not find one, it looks in drive C. The order in which this is performed may be changed in the CMOS setup, so that drive C is searched before drive A.

Once the PTC finds the first bootable drive, it locates the config.sys and autoexec.bat files on that drive and looks no further.
For example, if the sequence is drive A followed by drive C and a bootable device is found in drive A, the PTC loads `config.sys` and `autoexec.bat` from that device without looking further.
Chapter 7

Operating the PTC-2134

Holding the PTC

The PTC's battery is equipped with a 1.5 inch elastic strap along its back side. With the battery installed, insert the right or left hand underneath the strap. The battery has grooves on either side for the thumb and fingers.

Turning On the PTC

To turn on the PTC, press the Resume button. The Status LED blinks rapidly while the PTC boots. When the PTC is in the Standby mode (indicated by a slowly blinking Status LED), it may be awakened by touching the PTC's screen with the stylus or by pressing the Resume button. When the PTC is in the Suspend mode, it may be awakened by pressing the Resume button.

Turning Off the PTC

The PTC must be placed into the Suspend mode to turn it off (Suspend = Off). Before placing the PTC in the Suspend mode, ensure that the PTC is not accessing the PCMCIA slot(s) or the hard disk drive; the PTC is not communicating through its serial/keyboard connector, radio, or IrDA port; and all open files may be saved as a precaution.

Press the Resume button to Suspend the PTC (or put it to sleep). Suspending the PTC saves power and allows the unit to resume operation exactly where it left off.
In addition, the PTC suspends automatically if it has not been used for 16 minutes (programmable). Refer to the section titled “Advanced Power Management” on p. 17 for more information.

Entering Information on the Screen

Note: Using instruments other than the stylus supplied with the PTC may damage the screen.

To enter data via the PTC’s screen, use the PTC’s stylus to select a menu option or to write letters and numbers in a field. The application may allow only certain portions of the screen to be sensitive to the stylus. These are the menu “buttons” or fields in a form. The rest of the screen does not react.

Follow this procedure to enter information with the stylus.

1. Hold the stylus as you would an ink pen or pencil.
2. To make a choice from a menu, use the stylus to touch that choice.
3. To write data into a field on a form, use the stylus to print the letters or numbers. Screen entries require less pressure than when writing on paper.
Chapter 8

Using the PCMCIA Slots

The PTC-2134 contains two user-accessible PCMCIA slots that can accept two Type II or one Type III PCMCIA card or device.

The number of available PCMCIA slots is dependent upon the PTC’s factory configuration options. For example, an auxiliary storage card or a field-installed radio card uses one or both PCMCIA slots, depending upon the card type. Type II cards occupy one slot, and Type III cards, which must be inserted into Slot 1, occupy both slots.

Installing a PCMCIA card will not wake the PTC from the Standby or Suspend modes. Touch the PTC’s display or press the Resume button to reactivate the PTC before inserting a PCMCIA card.

A PTC that is using the Windows 95 operating system will not go into the Suspend mode (via the Resume button or after a period of inactivity) if either PCMCIA slot contains an ATA card. The unit will remain in the Standby mode indefinitely.

Inserting a PCMCIA Card or Device

Use the following procedure to insert PCMCIA cards or devices into the PTC’s PCMCIA slot(s).

Do not force a card into the slot; the card or the slot may be damaged. If the card does not go in easily, turn the card over and try again. Do not insert anything other than PCMCIA cards or devices into the slot.
Note that one end of the card has two rows of holes. This is the female connector that connects to the male strip of the PCMCIA slot. The card has a notch on one side and a slot on the other (see Figure 9) to facilitate proper insertion. Data cards have a write-protect switch on the end opposite the connector.

1. Suspend the PTC.
2. Open the PCMCIA door by sliding the latch toward the middle of the door and then pulling the door open.

 Note: The PCMCIA door is permanently attached to the PTC. Do not attempt to remove it completely.

3. Hold the PCMCIA card such that its connector is toward the PTC and the slot is near the Eject button.

 Note: Type III cards must be inserted into PCMCIA slot 1, which is the slot closest to the battery.

Figure 9. PCMCIA card features.
4. Insert the card into the PCMCIA slot until the Eject button extends to the card’s edge.
5. Close the PCMCIA door.
6. Resume the PTC.

Removing a PCMCIA Card or Device

1. Suspend the PTC.
2. Open the PCMCIA door.
3. Use the PTC’s stylus to press the Eject button to eject the card.
4. Remove the card.
5. Close the PTC’s PCMCIA door.
6. Resume the PTC.
Communication and Connections

The PTC-2134 can communicate with a host computer or other devices via radio, cable, optional PCMCIA devices, or its IrDA port. Communication may also be accomplished by inserting the PTC into an optional single-bay/vehicle cradle.

Communicating Via Radio

See the section titled “Radio” on page 12 for information on the PTC’s radio options.

All radio communication is controlled by the application program. See the instructions provided with the application program for specifics on radio communication.

Communicating Via Cable

A serial device may be connected, such as a printer or a modem, and an IBM PC/AT-type keyboard to the PTC-2134 by attaching a Y adapter cable to the PTC’s 15-pin serial/keyboard connector.

Note: When the PTC is installed in the SC/VC-2X34 cradle, the serial/keyboard Y adapter cable cannot be used with the PTC.

The Y adapter cable has a 15-pin female connector (PTC), a round 5-pin female DIN connector (keyboard), and a 9-pin male D-type RS-232 connector (serial comm).

Note: See Appendix B on p. 77 for cable part numbers.
Connecting a Serial Device

Equipment Required

- Serial/keyboard Y adapter cable.
- Serial cable for the device to which the PTC is being connected.

Follow this procedure to connect an external serial device to the PTC.
1. Suspend the PTC and turn off the serial device.
2. Pull open the serial/keyboard connector cover (see Figure 7 on p. 32).

Note: The connectors mate easily. Do not force them together. The connector or the pins may be damaged by forcing the connection.

Ensure that the pins are straight and that the mating connectors are lined up correctly.
3. Connect the adapter cable’s 15-pin female connector to the PTC’s serial/keyboard connector.
4. Secure the cable to the PTC using the two connector mounted screws.
5. To dissipate any PTC static charge from the PTC, touch the adapter cable and the serial device’s connector together. If you are using a serial cable, touch the adapter cable and the serial cable together. Then, connect the adapter cable’s 9-pin male connector to the serial device (or to the device’s serial cable).
6. Turn on the serial device; then, resume the PTC.
Disconnecting a Serial Device

1. Suspend the PTC and turn off the serial device.
2. Undo the securing screws of the adapter cable.

 Note: Grasp the connector while removing the cable. Pulling the cable may break the conductors inside. Pull straight out with no rocking or twisting motion.

3. Pull the adapter cable’s connector from the PTC.
4. Pull the adapter cable’s connector from the serial device (or serial cable).
5. Close the serial/keyboard connector cover.
Connecting a Keyboard

The PTC automatically recognizes when a keyboard is attached and accepts input from it.

Note: Do not connect a keyboard to the PTC via the serial/keyboard Y adapter cable when the PTC is in a cradle with a keyboard already attached. Having two keyboards connected to the PTC will adversely affect the PTC’s performance.

Equipment Required

- Serial/keyboard Y adapter cable.
- IBM PC/AT-type keyboard with a standard 5-pin male DIN connector (not a PS/2 connector).

Use the following procedure to connect a keyboard to your PTC.
1. Suspend the PTC.
2. If your keyboard is switchable between XT and AT, make sure the switch is in the AT position.
3. Attach the adapter cable to the PTC’s serial/keyboard connector.
4. Line up the pins on the keyboard’s connector with the holes in the adapter cable’s round 5-pin female DIN connector; then, press the connectors together.

Note: The connectors mate easily. Do not force them together. The connector or the pins may be damaged by forcing the connection.

5. Resume the PTC.
PCMCIA Communication Options

See the instructions provided with the PCMCIA device.

Using the IrDA Port

The PTC-2134’s IrDA 1.0 port allows the PTC to communicate via pulses of infrared light to and from other IrDA-compliant devices, such as printers and host systems.

To use the PTC’s IrDA port, perform the following:

1. Line up the PTC and the other IrDA-compliant device, such that their IrDA ports are within 2 – 3 feet (0.6 – 0.9 meters) of one another.
2. Follow the instructions or manual provided by your organization for the proper communication procedure to follow.

Connecting to a Communication Cradle

See the documentation provided with the SC/V/C-2X34 for instructions on connecting the PTC.
Chapter 10

Battery Pack Maintenance

Low-Battery Warning

When the battery pack’s charge depletes to the “low power” threshold, the PTC sounds five sets of three beeps. There is a pause between sets, and the Power LED glows or blinks red. When these warnings are observed, promptly recharge the PTC’s battery pack.

Note: If the Power LED blinks red, see Chapter 11 on p.55 for bridge battery maintenance information.

Checking Battery Charge

The application program may allow the user to monitor the battery’s charge. See your application’s instructions for more information.

Recharging the Battery Pack

Spare battery packs may be recharged via a four-bay battery charger.

Note: When using an external battery pack recharging system, ensure that there is a battery pack in the PTC during the charging of the depleted main battery. Failure to do this enables the bridge battery of the PTC to supply RAM power and may last up to 24 hours only.
The PTC’s lithium-ion battery pack may be recharged via an AC or vehicle adapter or by a single-bay/vehicle cradle. Charge the PTC’s battery pack before the unit’s first-time use and when the low-battery indication is observed.

Note: A lithium-ion battery pack will take longer to recharge if the charging process occurs below room temperature.

The PTC’s built-in charger recharges a depleted battery pack to a 90% capacity in 5 to 6 hours (at room temperature). The charger senses the power remaining in the battery pack and decreases the charging time accordingly. For example, a half-discharged battery pack takes 2.5 to 3 hours to reach a 90% charge.

The built-in charger also protects the battery pack from being overcharged if charging continues after the pack has reached a full charge.

Charging via the AC or Vehicle Adapter

The PTC-2134’s battery pack can be recharged in one of two ways: via an AC adapter that connects to both the PTC’s power jack and an AC electrical outlet (via a power cord) or via a vehicle adapter that attaches to the PTC’s power jack and to a vehicle’s cigarette lighter socket.

Equipment Required

- A power cord with an appropriate connector for the power supply at one end and an appropriate wall plug at the other end (if using the PTC outside of the U.S. or Canada).
- A 15-VDC, 2.7- or 3-A AC adapter and an appropriate power cord or a 15-VDC, 2.7-A vehicle adapter.
- An electrical outlet providing 100 to 240 volts AC or a vehicle’s cigarette lighter socket.
Procedure

1. Connect the appropriate power cord to the AC adapter.

2. Connect the AC or vehicle adapter to the PTC’s power jack; then, plug the AC adapter’s power cord into an electrical outlet or the vehicle adapter into a vehicle’s 12 VDC power source.

3. The Power LED glows solid green when the battery pack reaches a 90% charge. Reaching a 100% charge takes another 2 to 3 hours because the charge rate drops as the battery nears capacity.

4. Charge the battery pack for 5 to 6 hours or until the Power LED glows solid green (or overnight if the bridge battery was depleted).

5. When charging is finished, disconnect the AC adapter from the electrical outlet and the PTC or disconnect the vehicle adapter from the cigarette lighter socket and the PTC.

Charging via a Communication Cradle

To charge the PTC’s battery pack via the SC/VC-2X34 Single-Bay/Vehicle Cradle, simply insert the PTC into the cradle, following the instructions provided. The PTC’s battery pack will be recharged automatically.

Note: If the PTC is not stored in a cradle, it must be periodically recharged (at least once every several days).

Charging via a Four-Bay Battery Charger

Spare battery packs can be recharged by a Universal Battery Charger. This charger can simultaneously recharge up to four PTC-2134 lithium-ion battery packs. Refer to the documentation shipped with the charger for more information.
Operating the PTC with the AC or Vehicle Adapter Connected

Some activities, such as using the WAN radio, require more power than the adapter can provide; this extra power is supplied by the battery pack.

When the AC or vehicle adapter is attached to the PTC, the unit draws most of its power from the electrical outlet or a vehicle’s power source, not from the PTC’s battery pack. As a result, the PTC can remain on and be operated while its lithium-ion battery pack is being charged.
Replacing the Battery Pack

Caution: Do not leave the PTC without the battery pack installed. The bridge battery will drain in 24 hours, and all data in RAM will be lost!

Use the following procedures to remove and replace the PTC’s battery pack when necessary.

Removing the Battery Pack

Note: Removing the battery pack before suspending the PTC will drain the bridge battery.

1. Suspend the PTC.
2. Press the battery pack latch as you slide the battery pack toward the bottom of the PTC.
3. When the battery pack will slide no farther, lift it off the PTC.

Installing a New Battery Pack

1. Line up the openings on the battery pack with the hooks on the back of the PTC; then place the openings over the hooks.
2. Slide up the battery pack until the battery pack latch clicks into place.
3. Resume the PTC.
Getting the most out of your Battery Pack

How long the PTC operates on a fully charged battery pack depends on whether you are using the hard disk drive, the PCMCIA slot(s), or the screen’s backlight; whether your PTC is using an expansion module, such as a laser scanner or magnetic stripe reader; whether your PTC is spending a lot of time communicating through its serial port, IrDA port, or internal radio; what the surrounding temperature is; and what accessories are attached that draw power from the PTC.

Maximizing Operating Time

You can maximize the support time of a charged battery pack by controlling how you use your PTC.

Here are some tips:

• Keep the battery pack at room temperature. The colder a battery pack becomes, the less capacity it has. You may see a decline in capacity below 32° F (0° C).

• Do not operate the PTC’s expansion module more often than necessary. Turn it off when it is not being used, if possible.

• Keep radio use to a minimum.

• Turn the backlight off.

Note: Symbol recommends cleaning the contacts using isopropyl alcohol or a battery contact cleaner.

• Keep the battery pack contacts and the contacts on the PTC clean.
Battery Pack Life
The PTC’s battery pack is rated for approximately 500 recharges. The battery pack’s capacity gradually decreases until approximately the 500th charge, at which point the capacity is about 80% that of a new battery pack.

Battery Pack Care
The following guidelines will help you to protect your battery pack and get the most use out of it.

- Do not take the battery pack apart.
- Keep sharp objects away from the battery pack case and contacts.
- To avoid short circuiting the battery pack, do not touch the battery pack contacts with any metal object.

Note: See *Cleaning the PTC on p. 61 for cleaning instructions.*

- Periodically clean the battery pack contacts and the contacts on the PTC.
- Store spare battery packs in a cool, dry place out of direct sunlight.
- Do not incinerate old battery packs. See the instructions for disposing of them in *Chapter 2 on p. 4.*
Gas Gage Recalibration

The battery pack has an internal gas gage that the application may read and display on the PTC’s screen. The application may be configured to alert the user once the battery charge drops to a predetermined level.

The battery pack’s gas gage should be recalibrated once per month to ensure its accuracy. This procedure may be performed at any time if the gas gage reading is suspected of being incorrect.

To recalibrate the gas gauge, perform the following:

1. Starting with a fully charged battery pack, allow the PTC to run until the battery pack discharges to a level that causes the Power LED to glow red and the PTC to beep.
2. Recharge the battery pack to 100% capacity (6 to 8 hours).
3. End of calibration.

Disposing of Battery Packs

Lithium-ion battery packs are hazardous waste. See Chapter 2 on p. 4 for information on how to dispose of lithium-ion battery packs properly.
Chapter 11

Bridge Battery Maintenance

Recharging the Bridge Battery

The PTC-2134 has an internal rechargeable nickel-cadmium bridge battery that protects data in the PTC’s memory when the main battery pack runs out of power or is being replaced. While a charged battery pack is in the PTC, the bridge battery is inactive.

If the bridge battery power is low, the Power LED blinks red. When low bridge battery power is detected, charge the unit for 24 hours as soon as possible.

Note: If the PTC is not stored in a cradle, it must be periodically recharged (at least once every several days). The bridge battery should be recharged at least once per week.

The bridge battery is intended to provide power to the PTC only when the battery pack is discharged or being replaced. Leaving the PTC without a battery pack in place will deplete the bridge battery power.

Under normal operating conditions, the main battery pack maintains the bridge battery charge. That is, the bridge battery receives a slow charge while the main battery pack is being fast charged.

However, upon receipt of a new PTC or if the main battery pack has been left out of the PTC for an extended period of time, it may be necessary to charge the bridge battery.
To do this, ensure that the main battery pack is properly installed in the PTC; then, plug the AC adapter into the unit’s power jack and the AC power cord into an electrical outlet. The bridge battery will be fully charged in approximately 5 hours.

RAM data may be lost if the PTC is not suspended before the main battery pack is removed.

A fully charged bridge battery can safely back up the PTC’s memory for approximately 24 hours with the main battery pack removed.

If the PTC will be stored for longer than 30 days, keep the main battery pack installed (after fully charging it) and place the PTC into ship/storage mode by following the instructions in Chapter 12 on p. 58.

Conditioning the Bridge Battery

The PTC-2134’s nickel-cadmium bridge battery is susceptible to “memory” effects. This means that even if the bridge battery appears to be fully charged, it may not be able to maintain the contents of the PTC’s memory if the main battery pack is removed before the PTC is placed in suspend mode.

Memory effects are characteristic of nickel-cadmium battery technology. To reduce the risk of memory effects, perform the following procedure about once a month to condition the bridge battery.

It is not necessary to back up data or program files that are stored on the internal solid-state hard disk drive.

1. Transfer any data stored in the PTC to a PCMCIA card or a host computer. Ensure that there is a copy of any programs stored in RAM memory.
2. Remove any PCMCIA cards from the PCMCIA slot(s).
3. Remove the main battery pack from the PTC.
4. Store the PTC and the battery pack at room temperature. The PTC must not be placed in a cradle or be connected to any power source during the ensuing discharge period.

5. Allow the PTC to remain idle while the bridge battery discharges (at least 6 hours).

6. After the 6-hour discharge period, place the main battery pack back into the PTC.

7. Charge the PTC for at least 5 hours.

The bridge battery has now been conditioned for one month of service. Repeat this procedure monthly for maximum battery life.

Replacing the Bridge Battery

The PTC’s nickel-cadmium bridge battery is not user replaceable. When the bridge battery no longer holds a charge, send your PTC to an authorized Symbol service center to have the bridge battery replaced.

The service center will replace the defective bridge battery and follow the proper recycling procedure for the failed battery.

Using a Four Bay Charger

When using a Four Bay Charger, perform the following:

- Leave a battery pack in the PTC while charging its depleted battery pack.
- Recharge the PTC from its 15 VDC power supply so that the PTC’s bridge battery is recharged.
- If the Power LED blinks red (low bridge battery status), charge the unit for 24 hours as soon as possible.
Chapter 12

Maintaining the PTC-2134

Operating Conditions

If the PTC is operated below room temperature, the display may darken, and the response time may decrease.

If the PTC’s screen is exposed to direct sunlight for a period of time (several minutes), the screen may darken from the elevated temperature. To correct this, shade the display from sunlight for a few minutes; it will resume normal operation.

Although the PTC-2134 is designed to resist dust, dirt, and moisture, it should not be used in excessively dirty or moist conditions. The PTC may be operated at temperatures between -4° and 122° F (-20° to 50° C).

Handling the PTC-2134

The following information will help to ensure safe, reliable, and trouble-free service from your PTC-2134.

Do not open the PTC’s case. Only a trained Symbol technician may service the parts inside the PTC. Opening the unit may violate the warranty.

Always keep the PCMCIA door closed and latched, unless inserting or removing PCMCIA devices.

Always secure the cover over the serial/keyboard connector when it is not in use.
If the PTC or the battery pack is stored below 32° F, allow the PTC or battery to reach room temperature before attempting to operate the unit or to charge the battery.

The display’s performance may be improved if the PTC is allowed to reach room temperature before operating.

Suspend the PTC before connecting or removing any cables or accessories or replacing the battery pack.

Use only Symbol-approved accessories. Do not attempt to connect any electrical device to the PTC that is not part of the PTC-2134 system.

Antenna Handling

Use care when handling the PTC to avoid unnecessary damage to the antenna. Although Symbol antennas are designed to rigorous electrical and mechanical reliability standards, damage may occur if the PTC is handled improperly.

The PTC’s warranty does not cover damage to the antenna resulting from improper handling. Follow the guidelines below to avoid mishandling the PTC and its antenna.

Do not use the antenna as a handle to pick up or hold the PTC. Do not use tools to install or tighten the antenna. Overtightening may result in damage to the antenna or the PTC’s antenna mount.

When handling heavy objects and the PTC at the same time, do not use the antenna to balance heavy loads. Extreme weight directly on the antenna may cause damage.

Although the PTC is designed to withstand a 3-foot drop, do not throw the device. This is considered to be intentional abuse, and such treatment may cause damage to the antenna and the PTC and may violate the warranty.

PTC Storage

Follow these instructions when planning to ship the PTC or store it for more than 30 days.

Do not store the PTC-2134 in temperatures below -13°F (-25°C) or above 158°F (70°C).

Do not store the PTC-2134 in a damp or humid environment.

1. Transfer any data stored in the PTC to a PCMCIA memory card, a host computer, another PTC or print the data.
2. Make sure you have a copy of any programs stored in the PTC.
3. Disconnect all accessories from the PTC and remove any PCMCIA cards from the PCMCIA slots.
4. Close the cover over the serial/keyboard connector.

 Note: Pressing the *Reset/Ship* button places the PTC in *Ship* mode, which results in maximum shelf storage time. See “Resetting the PTC” in Chapter 14 on p. 67 for more information.

5. Press the PTC’s *Reset/Ship* button.
6. Recharge the PTC’s battery pack.
7. Close and latch the PTC’s PCMCIA door.
8. Pack the PTC in the original packing material or in a padded box and put it in a safe place, away from dust, dirt, humidity, and excessive cold or heat.
9. Recharge the PTC’s battery pack every 120 days.
Cleaning the PTC

Equipment Required

- Soft, lint-free cloth.
- Nonabrasive liquid glass cleaner.

Caution: Do not soak the cleaning cloth and do not spray or pour cleaning liquids directly onto the PTC.

To clean the PTC, slightly moisten a soft, clean, lint-free cloth with a mild, nonabrasive liquid cleaner and wipe the outside surfaces. Do not use a paper towel.

To clean the battery pack contacts and the contacts of the PTC, use a cloth moistened with isopropyl alcohol or a battery contact cleaner. To clean the PTC’s display, use ethanol.

If the PTC becomes extremely dirty or if liquids, dirt, or other foreign materials get inside the case, contact your Symbol service representative.

Servicing the PTC

Do not attempt to service the PTC. Only a trained Symbol technician may service the PTC. Follow the procedure set up by your organization to have the PTC serviced properly.

Disposing of the PTC

When your PTC has reached the end of its useful life, do not throw it away. Send it to an authorized Symbol service center for bridge battery removal and recycling before the unit’s disposal.
Chapter 13

Troubleshooting

General

When an error occurs, halt all operations. Write down what the system is doing and what actions were taken immediately before the error message was displayed.

If any messages display on the screen, look them up in your software manuals. Do any lights glow? Which ones? Do they stay on or blink? Has the beeper sounded? How many times and in what pattern? Do the beeps seem to be related to anything you are doing? Is the PTC making any unusual noises?

Confirm that the PTC has been set up properly. Do some applications run and not others? Ensure that the software is properly installed and that the application program and data files are not corrupted.

If using more than one external device, disconnect all devices and reconnect them one at a time. Re-test the PTC after you connect each device. If the PTC locks up (the application stops responding to the stylus), reboot the PTC. See Rebooting/Resetting the PTC on p. 67 for details.
Beep Codes

The PTC beeps when the battery pack or the bridge battery is running low on power.

Five Sets of Three Beeps

Five sets of three beeps with a pause between sets means the battery pack is running low. When this warning is observed, save all open files and recharge the PTC’s battery pack.

Five Beeps

Five beeps means the bridge battery is approaching a critically low power level. When this warning is observed, recharge the bridge battery.

LED Codes

See Appendix C on p. 81 for an explanation of the Power, Status, and Scanning LED codes.
Common Solutions

Listed below are our most frequent service call issues and their solutions. If any of the following problems are experienced, follow the instructions provided.

The PTC does not turn on
Charge or replace the battery pack. See Chapter 10 on p. 47 for instructions.
Try to reboot the PTC.
If the PTC still does not operate, follow your organization’s procedure to have the PTC serviced.

The PTC does not respond to the stylus or responds inappropriately
The PTC’s digitizer may need to be recalibrated. Make arrangements with your VAR representative or an authorized Symbol service center to have the unit’s digitizer recalibrated.
If the PTC still does not respond correctly, follow your organization’s procedure to have the PTC serviced.

The PTC does not recognize the information written on the screen
Allow the PTC to warm up to room temperature if it has been stored or used in below room temperature conditions.
Refer to Appendix G on p. 99 for tips on how to form letters and numbers correctly for system recognition.

The PTC’s screen is slow to refresh
Allow the PTC to warm up to room temperature if it has been stored or used in below room temperature conditions.
The radio fails to establish contact
Change the PTC’s location by a few feet and transmit again. Recharge or replace the PTC’s battery pack. Ensure that the receiving equipment is turned on and is properly connected to the host computer. If the PTC still does not establish contact, follow your organization’s procedure to have the PTC serviced.

The battery pack does not hold a full charge after being recharged
The battery pack may be faulty or worn out, particularly if it is old. Replace it with a new one.

The battery pack runs down rapidly after being charged
Remove any PCMCIA devices from the PTC’s PCMCIA slot(s). Disconnect the AC or vehicle adapter from the PTC. Contact your Symbol service representative if the problem continues.

The bar code wand does not read a label
Ensure that the wand’s connector is firmly connected to the PTC’s RJ-41 connector module. Ensure that the application has activated the wand. Try pulling the wand across the top or bottom of the bars on the label. The label or wand tip may be dirty. Wipe off the label and wand tip. Try again.

The laser scanner does not read a label
If using an external scanner, ensure that its connector is firmly attached to the PTC’s RJ-41 connector module. Ensure that the application has activated the scanner.

Move the laser scanner closer to or farther away from the bar code label. You may not be scanning at the correct distance. Change the angle of the laser scanner to the bar code label. The scanner may be too far above or below the bar code label or too far to the side to scan properly.
Clean the scanner’s lens. Point the scanner at a blank surface and press the scan trigger. Look for the scanning line that appears on the blank surface when the scanner is operating. If no scanning line appears, follow your organization’s procedure to have the scanner serviced.

Ensure that the bar code label you are trying to scan is one of the bar code types your PTC has been programmed to recognize. The PTC’s application program may not support scanned data at this particular field. Consult the documentation for the PTC’s application program to determine when the scanner and scan triggers are enabled.

The application locks up

Reboot or reset the PTC using the instructions in Chapter 14 on p.67. Follow your organization’s procedure to have the PTC serviced if required.

Getting Help

Review the troubleshooting sections in your pen operating environment, the Microsoft manuals, and the documentation for your application before contacting Symbol.

If you cannot correct the problem

If you have a problem running your unit or using your equipment, contact your Facility’s Technical or System Support. If there is a problem with the equipment, they will contact the Symbol Support Center at 1.800.653.5350.
Rebooting/Resetting the PTC

In the event that the application locks up (fails to respond), reboot the PTC using one of the methods discussed in this chapter. If the reboot is unsuccessful, see “Resetting the PTC” on p. 72.

Note: Under normal circumstances, a reboot will unlock the unit.

Rebooting the PTC

Note: Rebooting the PTC erases all programs and data in RAM.

Rebooting stops the PTC, resets the unit, and then restarts it. When the PTC starts again, it returns to the operating system.

Warm Boot

1. Suspend the PTC.
2. Press and hold the Increase Contrast button and the Resume button.
3. Release the Increase Contrast button.
4. Press and release the Increase Contrast button.
5. Release the Resume button. Reset is now complete. The screen will be blank for 15 seconds and the Status LED blinks quickly while the unit boots up.
6. Press the Resume button to restart the PTC.
From an Attached Keyboard

If a keyboard is attached to the PTC, the unit may be rebooted by pressing the Ctrl, Alt, and Delete keys simultaneously.

Via the pop-up keyboard from the DOS prompt

To reboot the PTC from the pop-up keyboard, go to the DOS prompt and, using the stylus, touch the PTC’s screen three times. When the pop-up keyboard displays, use the stylus to select the Ctrl, Alt, and Del keys (in this order).

Resetting the PTC

Note: Resetting the PTC erases all programs and data in RAM.

If rebooting is not effective, a system reset may be required. When the PTC reboots after a reset, it returns to the operating system.

Procedure

A thin, non-conductive object will be required for the following procedure (for example, a plastic coffee stirrer).

1. Open the PTC’s PCMCIA door.

 Note: The PTC does not have to be on to be reset.

2. Use a thin, nonconductive object to press the Ship/Reset button. The Ship/Reset button is inside of the PCMCIA card area. It is the blue button adjacent to the PCMCIA card eject buttons.

3. Press the Resume button to restart the unit.
Chapter 15

References

SC/VC-2X34 User’s Guide — Contains operation and maintenance instructions for the single-bay/vehicle cradle that may be used with the PTC-2134.

Universal Battery Charger Instruction Manual — Contains information on using the four-bay battery charger that is available for use with PTC-2134 battery packs.

PTC-2X34 Software Guide — Serves as a supplement to the documentation provided with the Symbol Pen-Based SC400 Software Development Kit. The guide provides software and programming information specific to the PTC-2134.

The documentation that is supplied with the Symbol Pen-Based SC400 Software Development Kit includes a set of manuals that provides programming information for the software components of the PTC-2134.
Specifications

Communication and I/O

<table>
<thead>
<tr>
<th>I/O Device</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio</td>
<td>Choice of any single radio.</td>
</tr>
<tr>
<td>LAN radio options</td>
<td>2.4-GHz direct-sequence 802.11-compliant or 2.4-GHz frequency-hopping 802.11-compliant spread spectrum radio.</td>
</tr>
<tr>
<td>WAN radio options</td>
<td>DataTAC, Mobitex, or CDPD radio.</td>
</tr>
<tr>
<td>Serial</td>
<td>RS-232 via 15-pin connector.</td>
</tr>
<tr>
<td>Cradle port</td>
<td>14-pin connector; connects to SC/VC-2X34 single-bay/vehicle cradle.</td>
</tr>
<tr>
<td>Expansion module connector</td>
<td>40-pin connector for attaching a laser scanner, RJ-41 connector, or magnetic stripe reader module.</td>
</tr>
<tr>
<td>PCMCIA slots</td>
<td>Accept two Type II or one Type III PCMCIA device.</td>
</tr>
<tr>
<td>IrDA 1.0 port</td>
<td>Infrared lens for serial IrDA communications.</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Optional PC/AT via 15-pin connector and Y adapter cable.</td>
</tr>
</tbody>
</table>
Display Features

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type Monochrome LCD with 16 levels of gray; transflective or transmissive.</td>
</tr>
<tr>
<td>Size 4.96 x 3.74 in/12.6 x 9.5 cm.</td>
</tr>
<tr>
<td>Resolution VGA, 640 x 480 pixels.</td>
</tr>
<tr>
<td>Digitizer Transparent pressure-sensitive resistive touch panel; 200 x 270-ppi resolution, 200-ppi sampling.</td>
</tr>
</tbody>
</table>

Electrical Parameters

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery pack Lithium-ion.</td>
</tr>
<tr>
<td>Bridge battery Nickel-cadmium.</td>
</tr>
<tr>
<td>AC adapter Input: 100 – 240 VAC @ 50/60 Hz.</td>
</tr>
<tr>
<td>Output 15 VDC @2.7 or 3 A.</td>
</tr>
<tr>
<td>Vehicle adapter Input: 9 – 16 or 11 – 28 VDC.</td>
</tr>
<tr>
<td>Output 15 VDC @2.7 A.</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature -4° to 122° F (-20° to 50° C) Battery charging will take longer if performed below room temperature.</td>
</tr>
</tbody>
</table>
Environmental

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>-13°–158° F (-25°–70° C).</td>
</tr>
<tr>
<td>Operating humidity</td>
<td>0 to 95% noncondensing.</td>
</tr>
<tr>
<td>Shock</td>
<td>3.3 ft (1.0 m) drop to concrete.</td>
</tr>
<tr>
<td>Operating altitude</td>
<td>Up to 15,000 ft (4546 m).</td>
</tr>
<tr>
<td>ESD protection</td>
<td>8 kV/15 kV (direct contact/air discharge).</td>
</tr>
</tbody>
</table>

Expansion Modules (optional)

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Scanner</td>
<td>Standard range.</td>
</tr>
<tr>
<td>RJ-41 connector</td>
<td>Provides port for external bar code wands or laser scanners.</td>
</tr>
<tr>
<td>MSR</td>
<td>Three-track magnetic stripe reader.</td>
</tr>
<tr>
<td>Shock</td>
<td>3.3 ft (1.0 m) drop to concrete.</td>
</tr>
<tr>
<td>Operating altitude</td>
<td>Up to 15,000 ft (4546 m).</td>
</tr>
<tr>
<td>ESD protection</td>
<td>8 kV/15 kV (direct contact/air discharge).</td>
</tr>
</tbody>
</table>

Note: If the PTC is operated below room temperature, the display may darken, and the response time may increase.
Mass Storage

<table>
<thead>
<tr>
<th>Mass Storage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact flash</td>
<td>Internal solid-state compact flash hard disk drive.</td>
</tr>
<tr>
<td>PCMCIA</td>
<td>Two Type II or one Type III PCMCIA card.</td>
</tr>
</tbody>
</table>

Note: See Chapter 8 on p. 39 for more information on auxiliary storage cards.

Memory

<table>
<thead>
<tr>
<th>Memory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM</td>
<td>512-KB flash PROM.</td>
</tr>
<tr>
<td>RAM</td>
<td>4-, 20-, 36-, and 64-MB DRAM.</td>
</tr>
</tbody>
</table>

Microprocessor

<table>
<thead>
<tr>
<th>Microprocessor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type and speed</td>
<td>AMD Elan SC400 (100 MHz).</td>
</tr>
</tbody>
</table>

Operating System

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system</td>
<td>MS-DOS 6.22, Windows 95, or Windows CE.</td>
</tr>
</tbody>
</table>
Operating System

| Description | PenRight!, Windows 95, or Windows CE extensions. |

Physical

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>8.4 in/21.3 cm.</td>
</tr>
<tr>
<td>Width</td>
<td>5.4 in/13.7 cm.</td>
</tr>
<tr>
<td>Height</td>
<td>2.2 in/5.6 cm 2.7 in/6.9 cm (at hand grip).</td>
</tr>
<tr>
<td>Weight</td>
<td>2.5 lb/1.1 kg (w/ batt. pack).</td>
</tr>
</tbody>
</table>

Stylus

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Aluminum with spring-loaded Teflon tip.</td>
</tr>
</tbody>
</table>
The following tables contain the part numbers of PTC-2134 accessories.

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Part Name</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC adapter (15 VDC, 2.7 A)</td>
<td>21988-002</td>
<td></td>
</tr>
<tr>
<td>Antenna, spread spectrum (2.4 GHz)</td>
<td>21990-401</td>
<td></td>
</tr>
<tr>
<td>Antenna plug (no radio option)</td>
<td>18046-000</td>
<td></td>
</tr>
<tr>
<td>Lithium-ion battery pack</td>
<td>24172-003</td>
<td></td>
</tr>
<tr>
<td>Shoulder strap</td>
<td>20296-000</td>
<td></td>
</tr>
<tr>
<td>Stylus</td>
<td>24322-001</td>
<td></td>
</tr>
<tr>
<td>Stylus holder</td>
<td>19231-201</td>
<td></td>
</tr>
<tr>
<td>Vehicle adapter (15 VDC, 2.7 A)</td>
<td>21438-001</td>
<td></td>
</tr>
</tbody>
</table>
Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC/VC-2X34 Single-bay/Vehide Cradle</td>
<td>24910-001</td>
</tr>
<tr>
<td>Universal Battery Charger</td>
<td></td>
</tr>
<tr>
<td>Base charger (desktop version)</td>
<td>23151-002</td>
</tr>
<tr>
<td>Base charger (wall-mount version)</td>
<td>23152-002</td>
</tr>
<tr>
<td>2134 WAN adapter</td>
<td>24911-001</td>
</tr>
</tbody>
</table>

Expansion Modules

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank module</td>
<td>19398-001</td>
</tr>
<tr>
<td>Laser module (standard range)</td>
<td>19391-103</td>
</tr>
<tr>
<td>RJ-41 connector module</td>
<td>24171-001</td>
</tr>
<tr>
<td>Magnetic stripe reader module</td>
<td>24170-001</td>
</tr>
</tbody>
</table>

Cables

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial/keyboard Y adapter cable</td>
<td>18412-002</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol Pen-based SC400 Software Development Kit</td>
<td>SK 20-0219</td>
</tr>
<tr>
<td>Manuals</td>
<td>Number</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>SC/VC-2X34 User’s Guide</td>
<td>24907-000</td>
</tr>
<tr>
<td>PTC-2134 DOS/PR! Software Guide</td>
<td>30579-000</td>
</tr>
<tr>
<td>PTC-2X34 Windows 95 Software Guide</td>
<td>30661-000</td>
</tr>
<tr>
<td>PTC-2134 Windows CE Software Guide</td>
<td>30581-000</td>
</tr>
</tbody>
</table>
Appendix C

LED Indicators

This appendix explains the functions of the PTC-2134’s front panel light-emitting diodes (LEDs).

Power LED

The PTC’s Power LED indicates the status of the battery pack or bridge battery and is off while the PTC is running on battery power.

<table>
<thead>
<tr>
<th>LED State</th>
<th>Battery State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>The battery pack and bridge battery are not low or power is not available.</td>
</tr>
<tr>
<td>Red</td>
<td>Battery pack is low.</td>
</tr>
<tr>
<td>Blinking red</td>
<td>Bridge battery is low.</td>
</tr>
<tr>
<td>Green</td>
<td>Battery pack is charged to a 90% or greater capacity.</td>
</tr>
<tr>
<td>Blinking green</td>
<td>Battery pack is charging.</td>
</tr>
<tr>
<td>Blinking red/green</td>
<td>The temperature is too hot or too cold for charging to occur.</td>
</tr>
</tbody>
</table>
The PTC's Scanning LED glows red or green to indicate the scanning activity of the PTC-2134's laser scanner module.

<table>
<thead>
<tr>
<th>Status LED</th>
<th>PTC Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast blink</td>
<td>PTC is booting.</td>
</tr>
<tr>
<td>Slow blink</td>
<td>PTC is in the Standby or Suspend mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scanning LED</th>
<th>Scanning Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Scanning.</td>
</tr>
<tr>
<td>Green</td>
<td>Good scan.</td>
</tr>
</tbody>
</table>
Appendix D

Expansion Module Interface

The PTC-2134 may be equipped with an expansion module, such as a laser scanner, an RJ-41 connector module, or a magnetic stripe reader. These modules may be attached and removed as needed. Follow the instructions in this section to attach or remove an expansion module.

Attaching an Expansion Module

To connect an expansion module to the PTC, perform the following:

1. Suspend the PTC and remove the battery pack.
2. If a different type of module is already connected to the PTC, remove it (see).
3. Slide the module onto the PTC, such that the slotted female keyways of the module align themselves with the male keys of the PTC.
4. Slide the module down until the latches on both sides snap into place.
5. Replace the PTC’s battery pack.
6. Perform a warm boot using the instructions found in section .
Disconnecting an Expansion Module

1. Suspend the PTC.
2. Grasp the module such that the thumb and middle finger press against the release buttons on both sides of the module.
3. Slide the module up until it clears the mounting rails.
Appendix E

Expansion Modules

Using the Optional Expansion Modules

Instructions for connecting expansion modules to the PTC are provided in Appendix C on p. 83.

Follow the instructions in this chapter to operate the laser scanner module or the RJ-41 connector module.

If necessary, refer to the documentation provided with the Symbol Pen-based SC400 Software Development Kit for instructions on loading the driver.

The following procedures assume that the PTC has already been loaded with a software driver for the expansion module.

Laser Scanner Module

If the PTC-2134 has an attached laser scanner module, the unit may be programmed to automatically recognize, read, and discriminate up to six 1D bar code types. See for a list of the bar code types. Also, see the information provided by your organization for details on how the PTC has been programmed.

Warning: Do not stare into the PTC's laser beam or point the scanner at anyone's eyes. Permanent eye damage may result.
Follow this procedure to scan bar code labels with a laser scanner module.

Note: Consult the application documentation to determine when the scanner and scan triggers are enabled.

1. Point the PTC at the label to be scanned. The laser beam exits the scanner module at a 15° angle so the PTC should not have to be tilted downward when scanning.

 See the information provided by your organization for the recommended scanning distance.

 The maximum distance from the scanner lens to the label depends on the size of the label being scanned and the type of laser being used.

 Note: The application program may not support scanned data for all fields.

2. Press one of the PTC’s scan triggers to start scanning (see). The Scanning LED glows red while the laser is active.

3. Ensure that the laser line passes over all of the bars being read. If the scan is successful, the Scanning LED glows green.

 The PTC can support up to six bar code types. Other bar code types may be added and are available by special order. However, for each new type added, one of the default code types must be removed.

 Figure 10.
1D Bar Code Types

Upon receipt, the PTC-2134’s optional laser scanner module will be programmed to read and automatically discriminate among the following 1D bar code types:

- Codabar
- Code 2 of 5
- Code 39
- Code 128
- Plessey
- UPC/EAN

Press any of the scan triggers to activate the laser scanner.

The scanning line should extend beyond the sides of the bar code.
Using the RJ-41 Connector Module

See the application instructions for the codes that the PTC can recognize.

The RJ-41 connector module allows external bar code wands and laser scanners to be used with the PTC.

This section provides instructions on connecting an external wand or scanner to the RJ-41 connector module and then explains how to use these devices to scan bar codes.

Connecting an external bar code wand or laser scanner

Caution: Do not insert a telephone connector into the PTC's RJ-41 connector; this may damage the PTC.

Note: See Appendix D for instructions on attaching an RJ-41 connector module.

Only wands or laser scanners with an RJ-41-type modular connector will attach to the PTC's RJ-41 connector module. The connector resembles a modular telephone connector but has six wire contacts instead of four.

To connect an external bar code wand or laser scanner to the PTC, perform the following:

1. Suspend the PTC.
2. Locate the RJ-41 connector on the module.
3. If necessary, remove the rubber plug from the RJ-41 connector.
4. Align the wand or laser's connector with the connector on the module. The wand or laser's connector has a tab that must line up with the slot in the module's connector (see Figure 11 on p. 93).
5. Push the connector in until the locking tab clicks into place. Press down on the tab with a small screwdriver or the stylus tip to disconnect.

To connect an external bar code wand or scanner perform the following:

1. Slip the wand or laser's connector into the module's connector until the locking tab clicks into place.
2. Resume the PTC; then turn on the scanner.

Using a Bar Code Wand

Follow this procedure only if the PTC is equipped with a bar code wand. If it has a laser scanner, see section.

1. Grasp the wand in the middle of its shaft and hold it as if it were a pencil.

2. Place the tip of the bar code wand to the left or right of the bars in the bar code label. Ensure that the reader touches the label and is within 30° of vertical in any direction (see Figure 12 on p. 94).

 Note: Do not draw the wand across the label too slowly. More reading failures occur from scanning the bar code too slowly rather than too quickly.

3. Draw the wand across the label with a smooth, quick motion. The PTC may beep or provide some
other indication when it successfully reads a bar code. Start outside the bar code on either side and draw the wand all the way across the bar code and off the other side.

Figure 12

Using an External Laser Scanner

When using an external laser scanner, use the following procedure. Also, see the documentation provided by your organization for the recommended scanning distance.

1. Point the laser scanner at the label to be scanned. The scanner need not be perpendicular to the label. The maximum distance from the window on the nose of the scanner to the label depends on the range of the scanner and the size of the label being scanned.

2. Press the scanner trigger to start scanning. The scanner may have a scanning indicator light to show that the scanner is active.

3. Watch the line of light made by the scanner as it scans the bar code. Ensure that the scan line extends beyond both sides of the bar code. If the scan has been successful, your PTC may beep or inform you in some other way, depending on your application program. The scanner may also have an indicator light to indicate a successful scan (see the scanner's manual for details). Ensure that the scan line extends beyond both sides of the bar code.
Disconnecting an External Bar Code Wand or Laser Scanner

The wand or laser scanner is usually not meant to be disconnected from the PTC. However, if it must be removed, follow this procedure.

Procedure

The following procedure will require a small screwdriver or the PTC’s stylus.

1. Suspend the PTC.
2. Turn off the scanner.
3. Grasp the connector when disconnecting. Do not pull directly on the wand or laser’s cable. Doing so may break internal cable wires.
4. Use the tip of the small screwdriver or the PTC’s stylus to press the tab down on the wand or laser’s connector; then, pull the connector out of the module.
5. If necessary, replace the rubber plug in the PTC’s RJ-41 connector.
Appendix F

Connector Pinouts

This appendix provides pinouts of the PTC-2134’s communication connectors.

Table 1. Serial/keyboard connector pinouts

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Description</th>
<th>Signal Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/C</td>
<td>Not Connected</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>COMA_TXD</td>
<td>COM 2 - EIA-232 Transmit Data</td>
<td>RS-232</td>
</tr>
<tr>
<td>3</td>
<td>COMA_RXD</td>
<td>COM 2 - EIA-232 Receive Data</td>
<td>RS-232</td>
</tr>
<tr>
<td>4</td>
<td>COMA_RTS</td>
<td>COM 2 - EIA-232 Request to Send</td>
<td>RS-232</td>
</tr>
<tr>
<td>5</td>
<td>COMA_CTS</td>
<td>COM 2 - EIA-232 Clear to Send</td>
<td>RS-232</td>
</tr>
<tr>
<td>6</td>
<td>COMA_DSR</td>
<td>COM 2 - EIA-232 Data Set Ready</td>
<td>RS-232</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>COMA_CD</td>
<td>COM 2 - EIA-232 Carrier Detect</td>
<td>RS-232</td>
</tr>
<tr>
<td>9</td>
<td>COMA_DTR</td>
<td>COM 2 - EIA-232 Data Terminal Ready</td>
<td>RS-232</td>
</tr>
</tbody>
</table>
Table 2. Cradle port pinouts

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Description</th>
<th>Signal Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>COMA_RI</td>
<td>COM 2 - EIA-232 Ring Indicator</td>
<td>RS-232</td>
</tr>
<tr>
<td>11</td>
<td>KBPWR</td>
<td>Keyboard Power (+5 VDC @100 mA)</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>12</td>
<td>LS_KBCLK</td>
<td>Keyboard Clock</td>
<td>+5 V</td>
</tr>
<tr>
<td>13</td>
<td>LS_KBDATA</td>
<td>Keyboard Data</td>
<td>+5 V</td>
</tr>
<tr>
<td>14</td>
<td>N/C</td>
<td>Not Connected</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>DB15_VCHARGE</td>
<td>Charger Power (15 VDC @2.7 A)</td>
<td>+15 VDC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Description</th>
<th>Signal Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OTXD</td>
<td>COM 2 - Optical Transmit Data</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>2</td>
<td>ORXD</td>
<td>COM 2 - Optical Receive Data</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>3</td>
<td>OTXS#</td>
<td>COM 2 - Optical Transmit Status</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>4</td>
<td>ORXS#</td>
<td>COM 2 - Optical Receive Status</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>5</td>
<td>KB_CLK</td>
<td>Keyboard Clock</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>Pin</td>
<td>Signal Name</td>
<td>Description</td>
<td>Signal Level</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>7</td>
<td>VCHARGE</td>
<td>Charger Voltage</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5VSW</td>
<td>Switched Power</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>KB_DATA</td>
<td>Keyboard Data</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>11</td>
<td>ETXD+</td>
<td>Ethernet Transmit Pair</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>12</td>
<td>ETXD-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ERXD+</td>
<td>Ethernet Receive Pair</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>14</td>
<td>ERXD-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Expansion module connector pinouts

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Description</th>
<th>Signal Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHASSIS_GND</td>
<td>Chassis Ground</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SCAN_5V</td>
<td>Scanner Power</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>3</td>
<td>SCAN_RXD</td>
<td>Scanner Receive Data</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>4</td>
<td>WANDIN</td>
<td>Scanner Data</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>5</td>
<td>SCAN_DTR</td>
<td>Scanner Data Terminal Ready</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>6</td>
<td>TRIG#</td>
<td>Scanner Trigger</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>7</td>
<td>MSR3#</td>
<td>MSR Track 3 Strobe</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>8</td>
<td>SOS</td>
<td>Scanner Start of Scan</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>9</td>
<td>SCAN_DSR</td>
<td>Scanner Data Set Ready</td>
<td></td>
</tr>
<tr>
<td>Pin</td>
<td>Signal Name</td>
<td>Description</td>
<td>Signal Level</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>10</td>
<td>WANDIN</td>
<td>Scanner Data</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>11</td>
<td>SCAN_RTS</td>
<td>Scanner Request to Send</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>12</td>
<td>5V_SW</td>
<td>Backup Power-Switched</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>13</td>
<td>SCAN_CTS</td>
<td>Scanner Clear to Send</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>14</td>
<td>MSRD3#</td>
<td>MSR Track 3 Data</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>15</td>
<td>SCAN_CD</td>
<td>Scanner Carrier Detect</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>16</td>
<td>LED_EN</td>
<td>Scanner Good Scan LED Enable</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>17</td>
<td>SCAN_ID0</td>
<td>Scanner ID Bit 0</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>18</td>
<td>PEN_EN#</td>
<td>Scanner Pen Enable</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>19</td>
<td>SCAN_ID1</td>
<td>Scanner ID Bit 1</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>20</td>
<td>N/C</td>
<td>Not Connected</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>SCAN_ID2</td>
<td>Scanner ID Bit 2</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>22</td>
<td>MSR_CD#</td>
<td>MSR Card Detect</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>23</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>SCAN_7V</td>
<td>Scanner Power</td>
<td>+7 VDC</td>
</tr>
<tr>
<td>25</td>
<td>MSRS1#</td>
<td>MSR Track 1 Strobe</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>Pin</td>
<td>Signal Name</td>
<td>Description</td>
<td>Signal Level</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>26</td>
<td>SCAN_7V</td>
<td>Scanner Power</td>
<td>+7 VDC</td>
</tr>
<tr>
<td>27</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>TRIG#</td>
<td>Scanner Trigger</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>29</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>MSRD1#</td>
<td>MSR Track 1 Data</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>31</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>MSRD#2</td>
<td>MSR Track 2 Data</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>33</td>
<td>MSRS32</td>
<td>MSR Track 2 Strobe</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>34</td>
<td>MSR_5V</td>
<td>MSR Power</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>35</td>
<td>5V_SW</td>
<td>Backup Power Switched</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>36</td>
<td>V_POWER</td>
<td>Main Battery Power</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>5V_SW</td>
<td>Backup Power-Switched</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>38</td>
<td>SCAN_TXD</td>
<td>Scanner Transmit Data</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>39</td>
<td>CHASSIS_GND</td>
<td>Chassis Ground</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>CHASSIS_GND</td>
<td>Chassis Ground</td>
<td></td>
</tr>
</tbody>
</table>
Stylus Information

Stylus Data Entry Tips

This appendix provides helpful tips on how to use a stylus to write on the PTC’s screen.

General Guidelines

Write larger than the field. Writing too small is the primary cause of poor recognition.

Wrong

Better

Name: [] Name: []

Print neatly, making sure to form characters distinctly.

Leave room between characters, but make sure all strokes of a single character are connected.

Print uppercase letters larger than lowercase letters.

Write commas near the bottom of the field, and apostrophes near the top of the field.

When printing colons or semicolons, draw the top dot first.

Write the letter “Z” with a small horizontal line through its middle.
Write the number “0” with a slash through it.

\[\bigcirc \]

Write the number “1” with a small horizontal line at its base.

\[\underline{1} \]

Write the number “5” with two strokes rather than one.

\[
\begin{array}{c}
2 \\
1 \\
5
\end{array}
\]
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>AC Adapter</td>
<td>14</td>
</tr>
<tr>
<td>Accessories</td>
<td>20</td>
</tr>
<tr>
<td>Accessory Part Numbers</td>
<td>77</td>
</tr>
<tr>
<td>Advanced Power Management</td>
<td>17</td>
</tr>
<tr>
<td>Antenna Handling</td>
<td>59</td>
</tr>
<tr>
<td>Applications</td>
<td>7</td>
</tr>
<tr>
<td>Attaching an Expansion Module</td>
<td>83</td>
</tr>
<tr>
<td>Automatic Keyboard Recognition</td>
<td>18</td>
</tr>
<tr>
<td>Backlight</td>
<td>18</td>
</tr>
<tr>
<td>Bar Code Autodiscrimination</td>
<td>18</td>
</tr>
<tr>
<td>Battery Pack</td>
<td>15</td>
</tr>
<tr>
<td>Battery Pack Care</td>
<td>53</td>
</tr>
<tr>
<td>Battery Pack Life</td>
<td>53</td>
</tr>
<tr>
<td>Beep Codes</td>
<td>63</td>
</tr>
<tr>
<td>Boot Sequence</td>
<td>35</td>
</tr>
<tr>
<td>Bridge Battery</td>
<td>15</td>
</tr>
<tr>
<td>Bridge Battery Maintenance</td>
<td>55</td>
</tr>
<tr>
<td>CDPD Radio Regulations</td>
<td>3</td>
</tr>
<tr>
<td>Charging via a Communication Cradle</td>
<td>49</td>
</tr>
<tr>
<td>Charging via a Four-Bay Battery Charger</td>
<td>49</td>
</tr>
<tr>
<td>Charging via the AC or Vehicle Adapter</td>
<td>48</td>
</tr>
<tr>
<td>Checking Battery Charge</td>
<td>47</td>
</tr>
<tr>
<td>Cleaning the PTC</td>
<td>61</td>
</tr>
<tr>
<td>Clock</td>
<td>19</td>
</tr>
<tr>
<td>Common Solutions</td>
<td>64</td>
</tr>
<tr>
<td>Communicating Via Cable</td>
<td>42</td>
</tr>
<tr>
<td>Communicating Via Radio</td>
<td>42</td>
</tr>
<tr>
<td>Communication</td>
<td>12</td>
</tr>
<tr>
<td>Communication and Connections</td>
<td>42</td>
</tr>
<tr>
<td>Conditioning the Bridge Battery</td>
<td>56</td>
</tr>
<tr>
<td>Connecting a Keyboard</td>
<td>45</td>
</tr>
<tr>
<td>Connecting a Serial Device</td>
<td>43</td>
</tr>
<tr>
<td>Connecting an external bar-code wand or laser scanner</td>
<td>88</td>
</tr>
<tr>
<td>Connecting the Antenna</td>
<td>22</td>
</tr>
<tr>
<td>Connecting to a Communication Cradle</td>
<td>46</td>
</tr>
<tr>
<td>Connector Pinouts</td>
<td>93</td>
</tr>
<tr>
<td>Cradle Port</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Data Entry Methods</td>
<td>9</td>
</tr>
<tr>
<td>Data Entry Via the Keyboard</td>
<td>9</td>
</tr>
<tr>
<td>Data Entry Via the Laser Scanner/Bar Code Wand</td>
<td>10</td>
</tr>
<tr>
<td>Data Entry Via the Magnetic Stripe Reader</td>
<td>10</td>
</tr>
<tr>
<td>Data Entry Via the Radio</td>
<td>10</td>
</tr>
<tr>
<td>Data Entry Via the Stylus</td>
<td>9</td>
</tr>
<tr>
<td>Data Storage</td>
<td>11</td>
</tr>
<tr>
<td>DataTAC Radio</td>
<td>13</td>
</tr>
<tr>
<td>DataTAC Radio Regulations</td>
<td>2</td>
</tr>
<tr>
<td>Digitizer</td>
<td>9</td>
</tr>
<tr>
<td>Direct-sequence and Frequency-hopping</td>
<td></td>
</tr>
<tr>
<td>Spread Spectrum Radios</td>
<td>1</td>
</tr>
<tr>
<td>Disconnecting a Serial Device</td>
<td>44</td>
</tr>
<tr>
<td>Disconnecting an Expansion Module</td>
<td>84</td>
</tr>
<tr>
<td>Disconnecting an External Bar-code Wand or Laser Scanner</td>
<td>91</td>
</tr>
<tr>
<td>Display Contrast</td>
<td>19</td>
</tr>
<tr>
<td>Display Options</td>
<td>8</td>
</tr>
</tbody>
</table>
Disposing of Lithium-Ion and Nickel-Cadmium Batteries, 4
Disposing of the PTC, 61
DOC Statement, 1
Drive Letter Assignment, 34
Drive letter Assignment, 35
Drive Lettering, 34
Drive Lettering and Boot Sequence, 34

Entering Information on the Screen, 38
Expansion Module Interface, 83
Expansion Modules, 85
External Components, 24
External Laser Scanner, 5

FCC Regulations, 1
Five Beeps, 63
Five Sets of Three Beeps, 63

General Guidelines, 99
Getting Help, 66
Getting Started, 21

Handling the PTC-2134, 58
Holding the PTC, 37

If you still cannot correct the problem, 66
Inserting a PCMCIA Card or Device, 39
Installing a New Battery Pack, 51
IrDA Port, 12

LAN Radio Options, 12
Laser Scanner Module, 85
Laser Scanner Modules, 5
LED Codes, 63
LED Indicators, 81
Loading Software, 23
Low-Battery Warning, 19, 47

Maintaining the PTC-2134, 58
Maximizing Operating Time, 52
Memory, 7
Mobitex Radio, 13
Mobitex Radio Regulations, 2

Operating Conditions, 58
Operating Systems, 7
Operating the PTC with the AC or Vehicle Adapter Connected, 50
Operating the PTC-2134, 37
Other Features, 17

PCMCIA Communication Options, 46
Power, 14
Power LED, 81
Processor, 6
PTC Radios, 4
PTC Setup, 22
PTC Storage, 60
PTC-2134 Overview, 6
R
- Radio, 12
- Radio Regulations, 1
- RAM, 7
- Recharging the Battery Pack, 47
- Recharging the Bridge Battery, 55
- References, 69
- Removing a PCMCIA Card or Device, 41
- Removing the Battery Pack, 51
- Replacing the Battery Pack, 51
- Replacing the Bridge Battery, 57
- Resume, 18
- ROM, 7

S
- Safety Information, 4
- Serial/keyboard Connector, 14
- Servicing the PTC, 61
- Shoulder Strap, 24
- Sleep States, 17
- Specifications, 71
- Standby, 17
- Stylus, 24
- Stylus Data Entry Tips, 99
- Stylus Information, 99
- Suspend, 17

T
- The bar-code wand does not read a label, 65
- The battery pack does not hold a full charge after being recharged, 65
- The battery pack runs down rapidly after being charged, 65

The laser scanner does not read a label, 65
The PTC does not respond to the stylus or responds inappropriately, 64
The PTC does not turn on, 64
The PTC has difficulty recognizing the information you write on the screen, 64
The PTC’s screen is slow to refresh, 64
The radio fails to establish contact, 65
Transflective Display, 8
Transmissive Display, 8
Troubleshooting, 62
Turning Off the PTC, 37
Turning On the PTC, 37

U
- Unpacking the PTC-2134, 21
- Using an External Laser Scanner, 90
- Using the IrDA Port, 46
- Using the Optional Expansion Modules, 85
- Using the PCMCIA Slots, 39
- Using the RJ-41 Connector Module, 88

V
- Vehicle Adapter, 16

W
- WAN Radio Options, 13
- With Card and Socket Services and DOS, 35
- With Card and Socket Services and Windows, 35
- Without Card and Socket Services, 34
- Work Area Selection, 22