
Management and
Data Reporting
for Electronic
Temperature
Sensors

Developer Guide

P1131383-02EN Rev A

Copyright

2023/09/10

ZEBRA and the stylized Zebra head are trademarks of Zebra Technologies Corporation, registered in many
jurisdictions worldwide. All other trademarks are the property of their respective owners. ©2023 Zebra
Technologies Corporation and/or its affiliates. All rights reserved.

Information in this document is subject to change without notice. The software described in this document
is furnished under a license agreement or nondisclosure agreement. The software may be used or copied
only in accordance with the terms of those agreements.

For further information regarding legal and proprietary statements, please go to:

SOFTWARE: zebra.com/linkoslegal
COPYRIGHTS: zebra.com/copyright
PATENTS: ip.zebra.com
WARRANTY: zebra.com/warranty
END USER LICENSE AGREEMENT: zebra.com/eula

Terms of Use

Proprietary Statement

This manual contains proprietary information of Zebra Technologies Corporation and its subsidiaries
(“Zebra Technologies”). It is intended solely for the information and use of parties operating and
maintaining the equipment described herein. Such proprietary information may not be used, reproduced,
or disclosed to any other parties for any other purpose without the express, written permission of Zebra
Technologies.

Product Improvements

Continuous improvement of products is a policy of Zebra Technologies. All specifications and designs are
subject to change without notice.

Liability Disclaimer

Zebra Technologies takes steps to ensure that its published Engineering specifications and manuals are
correct; however, errors do occur. Zebra Technologies reserves the right to correct any such errors and
disclaims liability resulting therefrom.

Limitation of Liability

In no event shall Zebra Technologies or anyone else involved in the creation, production, or delivery of the
accompanying product (including hardware and software) be liable for any damages whatsoever (including,
without limitation, consequential damages including loss of business profits, business interruption, or loss
of business information) arising out of the use of, the results of use of, or inability to use such product, even
if Zebra Technologies has been advised of the possibility of such damages. Some jurisdictions do not allow
the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may
not apply to you.

http://www.zebra.com/linkoslegal
http://www.zebra.com/copyright
http://ip.zebra.com/
http://www.zebra.com/warranty
http://www.zebra.com/eula

Contents

Overview.. 5

Workflow.. 5

Getting Started... 7

API Authentication...7

Using a Simple Key.. 7

Enrolling Devices.. 11
Enrolling a ZS300 Sensor... 11

Listing the Sensors...13
Listing the ZS300 Sensors..13

Creating a Task...15

Associating a Sensor with a Task... 16
Associating a Sensor with a Task...16

Performing a Simple Task.. 17
Stopping a Task...17

3

OAuth Client Credentials... 9

OAuth Authorization Code... 10

Contents

Using Webhook Subscriptions...19
Understanding Webhook Concepts.. 19
Understanding Webhooks and APIs... 19

Knowing When to Use Webhooks...21
Creating a Webhook Subscription...22
Starting a Webhook Subscription.. 23
Stopping a Webhook Subscription.. 24
Understanding Webhook Outputs... 25

Displaying Full Event Record for Task ID..27
Using the Developer Portal Interactive Documentation.. 27

Sorting, Filtering, and Pagination... 29
Using an API Test Tool...29

Downloading AIDL Files..31

4

Overview
Overview

Workflow

This guide is for developers of applications that integrate data from the Zebra ZS300 Sensor.

The Management for Electronic Temperature Sensor Application Programming Interfaces (APIs) provide
the ability to configure sensors for use. This includes enrolling sensors, creating tasks, configuring
sensors, adding sensors to tasks, associating asset IDs with tasks, and stopping tasks.

The Data Reporting for Electronic Temperature Sensor APIs are designed to provide data for task reports.
Every sensor reading and monitored event that occurs during the use of the sensor assigned tasks are
recorded and stored for seven years.

These APIs allow you to view that history making them useful for reconciliation and final disposition
determinations. This set of APIs are designed to provide data that can be used to create post-task reports.
The log request is a raw request to the long-term data storage system.

Every temperature reading captured by the sensor is listed as a separate event. This means that every
sensor can have many thousands of events associated with it. The system also captures other major
events in the use of the sensor. The APIs provide means of filtering and paginating this data.

This table describes steps needed to achieve a simple use case for using Zebra Temperature Sensors.

Step API Comments

1. Enroll the sensor POST /devices/sensor-
enrollments

Use the serial number on the
sensor.

2. List sensors associated with a
tenant

GET /devices/environmental-
sensors

Verify that the sensor has been
enrolled. Optional filters are
available.

3. Create a task POST /environmental/tasks Configure the temperature
recording thresholds and start
method. Repeat for each task.

4. Create a Webhook
subscription

User receives only one
Webhook notification per sensor
per task.

5. Associate the sensor with the
task

POST /environmental/tasks/
{taskId)/sensors

Use the Task ID returned when
the task was created and
the Sensor ID returned when
verifying sensor enrollment.
Repeat for each sensor or
associate multiple sensors at
the same time. The task starts
when the sensor receives the
task.

5

Overview

Step API Comments

6. Add an asset to a task POST/environmental/tasks/
{taskId}/assets

Use the task ID returned when
the task was created

7. Stop the task POST /environmental/tasks/
{taskId}/stop

Stop recording temperatures.

8. Retrieve details for the task GET /environmental/tasks/
{taskId}

Use the Task ID returned when
the task was created.

9. Retrieve all tasks GET /environmental/tasks Optional filters are available.

10. Retrieve alarms for the task GET /environmental/tasks/
{taskId}/alarms

Use the Task ID returned when
the task was created. Optional
filters are available.

11. Retrieve sensor read-event
logs for the task

GET /data/environmental/tasks/
{taskId}/log

Use the Task ID returned when
the task was crated. Data may
not be immediately available.

6

Getting Started
This section details the available authentication methods needed to gain access to all Zebra APIs.

API Authentication
Access to all Zebra APIs needs to be authenticated. There are several methods available for Authentication
with Zebra APIs. Once you have been granted access to the Electronic Temperature Sensor APIs, you will
use your client key on your App page (developer.zebra.com/user/apps) of the Zebra Developer Portal. It is
very important that you keep this key safe and secure from your code, repositories, or other individuals. Do
not give or share your full key with anyone.

7

Using a Simple Key

Most of the APIs can be authenticated by providing the client key in the headers under the apikey
parameter. This is only recommended for initial testing and Proof of Concept work. This is the most
insecure method and should never be used outside of the developer’s control.

1. Click to copy the client key.

NOTE: The Client Key is sometimes referred to by several names: App Key; Consumer Key; or
Client Key. For the purposes of this guide, we will use Client Key.

https://developer.zebra.com/user/apps

Getting Started

2. Go to the desired API page.

3. Click Authorize.

8

4. Paste the Client Key into the ApiKeyAuth text box and click Authorize.

Getting Started

OAuth Client Credentials

An OAuth bearer token can be created by providing the client key and client secret. You will find a client
key and secret on the App Page of the Zebra Developer Portal. All Zebra Bearer tokens last for one hour
but can be refreshed using the previous token. Client Credentials grant type should only be used from a
client app’s server, never directly from a client app as this may provide open access to client keys.

Generate token: developer.zebra.com/apis/oauth-client-credentials

To verify, call the API above and get a token. If the token returns with abc123, then enter that in the Value
field in the Available Authorizations dialog and click Authorize.

9

https://developer.zebra.com/apis/oauth-client-credentials#/Client%2520Credentials%2520Grant%2520Type/Generate%2520Access%2520Token%2520Client%2520Credentials

Getting Started

OAuth Authorization Code

The primary method for creating a customer-specific Bearer token is the Authorization Code grant type.
This is the standard 3-legged OAuth used in many web applications. It is considered one of the most
secure methods of getting a token. All Zebra Bearer tokens last for one hour but can be refreshed using
the previous token.

Authorization code grant type is a multi-step process. First you redirect to the IDP login and provide a
redirect URI. After the customer logs in, the IDP will send the authorization code to the client app URI.
Authorization codes last for 10 seconds. The client app calls the token API with the code to get a bearer
token.

10

Figure 1 Authorization Code Workflow

Go to developer.zebra.com/apis/oauth-authorization-code-0 for more information on OAuth Authorization
Code.

https://developer.zebra.com/apis/oauth-authorization-code-0

Enrolling Devices
This section describes the steps to enroll a ZS300 Sensor via the Zebra Developer Portal.

Enrolling a ZS300 Sensor
To enroll a ZS300 Sensor in the Zebra Developer Portal:

• ZB200 Bridge or an Android v8.1 or later mobile device running the Android Sensor Discovery Service

• Access to an ethernet port and ethernet cable if using a bridge, and there is no access to a wireless
network or user is using ZSFinder.

• One or more ZS300 Sensors.

• A Client Key

1. Navigate to the Zebra Developer Portal at developer.zebra.com.

2. Login to the Portal.

3. Navigate to the Management for Electronic Temperature Sensors API page.

4. Click Authorize and enter your Client Key.

5. Click Close.

6. Expand the POST/devices/sensor-enrollments method screen.

7. Click Try It Out.

11

8. Enter the serial number located on the front of the ZS300 Sensor in the JSON body.

https://developer.zebra.com
http://developer.zebra.com/apis/management-electronic-temperature-sensors#/Devices%20Enrollment/Devices_Sensor_Enrollments

Enrolling Devices

9. Click Execute. If successful, an HTTP Status Code 200 displays, the response body is an empty JSON
body, and the device is scheduled to be enrolled.

12

10. Hold down the button on the front of the Sensor until the amber LED blinks. a The device enrolls after one
or two minutes.

11. Proceed with Listing the Sensors.

Listing the Sensors
This section describes how to list the ZS300 Sensors via the Zebra Developer Portal.

Listing the ZS300 Sensors
Before performing the following steps, at least one ZS300 Sensor must be enrolled.

13

1. Navigate to the Management for Electronic Temperature Sensors API page.

2. Click Authorize and enter your Client Key.

3. Click Close.

4. Expand the GET/devices/environmental-sensors method screen.

5. Click Try It Out.

6. In the page number field, enter 0.

7. Enter 1 in the page size field. If more than one sensor is enrolled, enter the appropriate number.

8. Enter the serial number of the Sensor in the text filter field.

9. Delete the default values in the task_id, enrolled_after and enrolled_before fields if those are not
needed.

https://developer.zebra.com/apis/management-electronic-temperature-sensors#/Devices%2520Enrollment/Devices_Sensor_Enrollments

Listing the Sensors

14

10. Click Execute. If successful, a response body with an HTTP Status Code of 200 is returned. A JSON
body is included in the response which contains details of the currently enrolled Sensor.

NOTE: Occasionally, the 327.67 temperature reading may appear in the Last Temperature
field. It is an invalid reading. When a sensor comes out from the deep sleep, it takes up
to a minute before it starts sampling. During this time, the sensor doesn't have a valid
temperature, so a value of 7FFF is used which produces the temperature reading of 327.67.

11. Save the ID of the Sensor for the next step.

Creating a Task
Creating a Task

This sections describes how to create task via the Zebra Developer Portal

1. Navigate to the Management for Electronic Temperature Sensors API page.

2. Click Authorize and enter your Client Key.

3. Click Close.

4. Expand the POST/environmental/tasks method screen.

5. Click Try It Out.

6. Enter the sample JSON in the Request Object field.

7. Enter a unique name in the name field.

8. Click Execute. If successful, a response with an HTTP Status Code of 200 is returned. The task ID is
returned in the response body.

15

https://developer.zebra.com/apis/management-electronic-temperature-sensors#/Devices%20Enrollment/Devices_Sensor_Enrollments

Associating a Sensor with a
Task
Associating a Sensor with a Task

This section describes how to associate a ZS300 Sensor with a task via the Zebra Developer Portal.

Associating a Sensor with a Task
The ID on an enrolled Sensor must be available before attempting the following procedure.

NOTE: The user can associate multiple sensors with a task at a time

1. Expand the POST/environmental/task/{taskId}/sensors method screen.

2. Click Try It Out.

3. Enter the returned task ID in the in the taskId path field.

4. Enter the returned sensor ID from Listing the Sensor in the Sensor ID array in the Request Object field.

5. Click Execute. If successful, a response with an HTTP Status code of 200 is returned. A JSON object
with the sensor_id and sensor_task_id association is returned.

6. Press the button on the Sensor and hold for 10 seconds until the LED blinks orange. After the Sensor
blinks green, the task has started.

NOTE: If the Sensor LED does not blink green, move the Sensor closer to the Bridge.

16

Performing a Simple Task
Performing a Simple Task

This section describes how to perform a simple task via the Zebra Developer Portal.

Stopping a Task
At least one ZS300 Sensor must be enrolled, a task created, and one or more Sensors associated with a
task before attempting the following procedure.

1. Repeat the Listing the Sensors procedure.

2. Note that the status field of the Sensor is SENSOR_STATUS_STOPPED.

NOTE: If you repeat the List the Sensors procedure again, the status changes to
SENSOR_STATUS_ACTIVE.

3. Allow the task to run for at least five minutes.

4. Move the Sensor around to different temperature conditions.

5. After five minutes, stop the task by expanding the POST/environmental/tasks/{taskId}/stop window.

6. Click Try It Out.

7. Enter the taskId in the path field.

17

Performing a Simple Task

8. Click Execute. If successful, a response body with an HTTP Status Code of 200 is returned and the task
is scheduled to stop. When all sensors associated with the task are within range of the bridge, then the
task is stopped.

9. Repeat the Listing the Sensors procedure to verify that the status field has
returned to the SENSOR_STATUS_STOPPED status and the sensor task status is
SENSOR_TASK_STATUS_COMPLETED.

18

Using Webhook
Subscriptions
Using Webhook Subscriptions

Webhooks enable real-time notifications and data updates. Instead of one application making a request to
another to receive a response, a webhook is a service that allows one program to send data to another as
soon as a particular event occurs.

Understanding Webhook Concepts
To help you better understand the content in this guide, the following definitions explain Webhook
concepts:

• Webhook: A single event message. Zebra sends a webhook to your application's webhook subscription
endpoint. A webhook contains a JSON payload in the body and metadata in the headers.

• Webhook Subscription: This is a persisted data object within your application that defines the webhook
subscription endpoint. Your webhook subscription should also have logic for handling data that will be
posted to your endpoint from Zebra.

• Webhook Subscription Endpoint: The destination where Zebra sends webhooks for the specified event.

• Webhook Listener: An app that provides the endpoint for a webhook subscription to which to send
event messages.

Understanding Webhooks and APIs
APIs enable two-way communication between software applications. Requests, also called polling, drive
communication between the two applications. On the other hand, webhook subscriptions allow for one-
way data sharing triggered by events rather than requests.In the following two images, you can see how
webhooks work and how they can provide more efficient, cost-effective, and timely data access than API
polling.

19

Using Webhook Subscriptions

Figure 2 Polling with APIs

20

Figure 3 Webhooks

For the most part, webhooks can be seen as a subset of the POST method, as illustrated in the image
below. This is because webhooks perform a POST call to an API endpoint you set up in your environment.
When setting up your webhook subscription, designate the endpoint you created as the place the data will
be POSTed when sent.

Using Webhook Subscriptions

21

Figure 4 HTTP Request Methods

Knowing When to Use Webhooks

Webhooks are a simplified model of communication thus, you should use webhooks when you require the
following:

• Real-time one-way communication (from source to destination)

• A non-persistent connection between the two systems' communication

• Immediate response to an event from a SaaS application that supports webhooks

• Use of the push model to immediately push updates

• One-to-one communication

Manage exceptions: You need to manage any exception that will occur, such as shipments falling outside
of regulated temperature ranges.

Using Webhook Subscriptions

Creating a Webhook Subscription
This section describes how to create a webhooks subscription via the Zebra Developer Portal for the
purpose of capturing temperature excursion events.

You must provide a server with an HTTPS-capable static endpoint to receive data from Zebra. The
endpoint must:

NOTE: It is recommended that webhooks are created after the task is created but before sensors
are associated with the task, otherwise an alarm may occur before the webhook has been
created. If that occurs, the webhook notification will not be received.

• Accept POST requests. Zebra sends customer data to the endpoint you designate in POST requests.

• Acccept JSON data. Zebra sends data in JSON form. The application/json content-type will deliver the
JSON payload directly as the body of the POST request.

• Use HTTPS. Zebra transmits potentially sensitive data on behalf of customers, and HTTPS is the first
step in ensuring their data stays safe.

Prerequisites

• Create a webhook endpoint within your application(s)

• Add logic to handle Zebra events. For [PLATFORM or SERVICE] subscriptions, these include: [TEMP
DATA]

• Test your webhook endpoint to confirm that it's working as expected

1. Ensure your application key for usage of this API is available. See the Getting Started Guide for more
details.

2. Create a POST request to api.zebra.com/v2/devices/environmental-sensors/event/
subscription with a body like the following example. Be sure to use your own Client Key, tenant,
webhookUrl and the name of your subscription.

22

https://developer.zebra.com/docs/getting-started

Using Webhook Subscriptions

3. Your cURL should look similar to the following example.

4. You will receive a 200 OK response similar to the following example. By default, the webhook
subscription starts immediately after its creation.

Using the GET method on the same API endpoint, you can confirm your webhook subscription by
performing a GET request to return all your subscriptions.

Starting a Webhook Subscription
As long as you have a functioning webhook subscription, you can start the subscription at any time by
taking the following steps.

1. Send a GET request to api.zebra.com/v2/devices/environmental-sensors/event/
subscription/:subscriptionId/start. You will need to provide the specific subscriptionId
you want to stop as a path variable. Be sure to use your own Client Key and tenant for your
subscription.

23

Using Webhook Subscriptions

2. Your cURL should look similar to the following example.

Figure 5 cURL to Start a Webhook Subscription Example

3. If your subscription started successfully, you will receive an empty 200 OK response.

4. If you are trying to start a subscription that is currently running, you will receive a 409 Conflict response
because you cannot start a subscription that is currently running.

Stopping a Webhook Subscription
As long as you have a functioning webhook subscription, you can stop the subscription at any time by
taking the following steps.

1. Send GET request to api.zebra.com/v2/devices/environmental-sensors/event/
subscription/:subscriptionId/stop You will need to provide the specific subscriptionId you
want stopped as a path variable. Be sure to use your own Client Key and tenant for your subscription.

2. Your cURL should look similar to the following example.

Figure 6 cURL to Stop a Webhook Subscription Example

3. If your subscription stopped successfully, you will receive an empty 200 OK response.

4. If you are trying to stop a subscription that is currently stopped, you will receive a 409 Conflict response
because you cannot stop a subscription that is not running.

24

Using Webhook Subscriptions

Understanding Webhook Outputs
Zebra can output webhooks is two data formats.

Standard Output

This output includes information on the sensor, task, important timestamps, temperature information,
and where the deviation was recorded. The timestamp refers to the timestamp of the event, the
recordedTimestamp refers to the timestamp when the data was uploaded.

Figure 7 Standard Webhook Output

25

Using Webhook Subscriptions

Figure 8 EPCIS 2.0 Webhook Output

26

EPCIS Output

This option displays the output in the GS1 EPCIS 2.0 format and allows the user to integrate temperature
alarms into the EPCIS workflows.

https://www.gs1.org/standards/epcis

Displaying Full Event Record
for Task ID

This use case enables developers to create detailed reports based on the full set of data from a task. The
API for this is the Data Reporting for Electronic Temperature Sensors. You first need to get an authorization
token using one of the authorization methods previously detailed in this guide.

Using the Developer Portal Interactive Documentation
The following steps describe how to use the Zebra Developer Portal interactive documentation.

1. Get your Client Key from the App page. See Authentication-Simple Key for details.

2. Go to the Documentation page on the Developer Portal at developer.zebra.com/apis/analytics-and-
reporting-temperature.

3. Click Authorize.

27

4. Paste the Client Key into the field labeled ApiDeyAuth and click Authorize.

https://developer.zebra.com/apis/data-reporting-electronic-temperature-sensors
https://developer.zebra.com/user/apps
http://developer.zebra.com/apis/analytics-and-reporting-temperature
http://developer.zebra.com/apis/analytics-and-reporting-temperature

Displaying Full Event Record for Task ID

5. Select the /tasks/{taskId}/log endpoint to drop down the documentation.

6. Click Try It Out.

7. Enter a Task ID.

8. Click Execute.

28

9. Verify the data response is similar to the response below.

Displaying Full Event Record for Task ID

Sorting, Filtering, and Pagination

The read events log services use token-based pagination due to the potentially very large number of
results. The default page size is 100. You request the first page of content and optionally request a size
(number of sense events) to return. Responses also include a token for the next page. Use this token in the
next request, optionally with a size, to get the next set of event data.

29

Using an API Test Tool
The following steps describe how to use the API test tool.

1. Go to your favorite API test tool. The example below uses Postman, but other tools can also be used.

2. Download the Yaml file from the Developer Portal.

3. Import the Yaml file as a test suite.

https://developer.zebra.com/apis/data-reporting-electronic-temperature-sensors#/Analytics%2520and%2520Reporting%2520for%2520Temperature%2520Sensors/Retrieve%2520sensor%2520read%2520events%2520by%2520task

Displaying Full Event Record for Task ID

30

4. Modify the taskID to be a valid task you created. Deselect startTime and endTime.

5. Go to the Headers tab and enter the Key apikey and Value your apikey from step 1.

6. Click Send.

7. Verify the response is the same as the response you received in step 0.

8. Modify the startTime and endTime dates as desired to filter the results within a time range.

9. In Postman, click Code Menu and select the language for your application.

10. Copy and paste the code snippet into your application code for complete integration.

Downloading AIDL Files
Downloading AIDL Files

The ZS300 ZSFinder app supports the Android Interface Definition Language (AIDL). This enables
remote procedure calls between the ZSFinder app and other Android applications.

AIDL defines an interface that details the methods available to be remotely called. Clients bind to the
interface to enable communication. Once the client is bound to the interface, it can then make calls to
the ZSFinder app. Those call are executed by the ZSFinder app, resulting in it either taking an action or
returning requested data, such as sensor type, battery level, data logs, or alarm status.

To get started:

1. Go to the ZS300 Support Page to download the AIDL files. These include the Javadoc files that contain
complete documentation on the supported Classes and Methods.

2. Copy the entire AIDL package directory structure and AIDL files into the app/src/main/aidl/ directory of
the client application. Initiate an Android build so the class files can be generated. The classes will not
be usable until the application has been built.

3. Add the following query entry to the AndroidManifest.xml inside the <manifest></manifest>:
<queries> <package android:name="com.zebra.zs300SensorDiscoveryService" />

</queries>

The Android device must be running the ZSFinder APK with the required permissions in order for the AIDL
interface to function properly.

NOTE: AIDL interface calls should be made on a non-UI thread so that they do not impact app
performance or functionality.

Additional information on AIDL is available at developer.android.com/guide/components/aidl

31

https://www.zebra.com/us/en/support-downloads/environmental-sensors/electronic-temperature-sensors-data-device-monitoring-tools/zs300-sensors.html
http://developer.android.com/guide/components/aidl

www.zebra.com

	Contents
	Overview
	Workflow

	Getting Started
	API Authentication
	Using a Simple Key
	OAuth Client Credentials
	OAuth Authorization Code

	Enrolling Devices
	Enrolling a ZS300 Sensor

	Listing the Sensors
	Listing the ZS300 Sensors

	Creating a Task
	Associating a Sensor with a Task
	Associating a Sensor with a Task

	Sorting, Filtering, and Pagination
	Stopping a Task

	Performing a Simple Task
	Stopping a Task

	Using Webhook Subscriptions
	Understanding Webhook Concepts
	Understanding Webhooks and APIs
	Knowing When to Use Webhooks

	Creating a Webhook Subscription
	Starting a Webhook Subscription
	Stopping a Webhook Subscription
	Understanding Webhook Outputs

	Creating a Webhook Subscription
	Starting a Webhook Subscription
	Stopping a Webhook Subscription
	Understanding Webhook Outputs
	Displaying Full Event Record for Task ID
	Using the Developer Portal Interactive Documentation
	Sorting, Filtering, and Pagination

	Using an API Test Tool

	Downloading AIDL Files

