Return-To-Factory Warranty

Psion Teklogix Inc. provides a return to factory warranty on this product for a period of twelve (12) months in accordance with the Statement of Limited Warranty and Limitation of Liability provided at:

www.psionteklogix.com/warranty

The warranty on Psion Teklogix manufactured equipment does not extend to any product that has been tampered with, altered, or repaired by any person other than an employee of an authorized Psion Teklogix service organization. See Psion Teklogix terms and conditions of sale for full details.

Important: Psion Teklogix warranties take effect on the date of shipment.

Service And Information

Psion Teklogix provides a complete range of product support services and information to its customers worldwide. Services include technical support and product repairs. To locate your local support services, please go to www.psionteklogix.com/service-and-support.htm

To access further information on current and discontinued products, please go to https://teknet.psionteklogix.com and log in or tap on “Not Registered?”, depending on whether you have previously registered for Teknet. A section of archived product information is available online.

This Product, and its accessories, comply with the requirements of the Waste Electrical and Electronic Equipment (WEEE) Directive 2002/96/EC. If your end-of-life Psion Teklogix product or accessory carries a label as shown here, please contact your local country representative for details on how to arrange recycling.

For a list of international subsidiaries, please go to:

www.psionteklogix.com/EnvironmentalCompliance
Restriction On Hazardous Substances (RoHS) Directive 2002/95/EC

What is RoHS?
The European Union has mandated that high environmental standards be met in the design and manufacture of electronic and electrical products sold in Europe, to reduce hazardous substances from entering the environment. The “Restriction on Hazardous Substances Directive (RoHS)” prescribes the maximum trace levels of lead, cadmium, mercury, hexavalent chromium, and flame retardants PBB and PBDE that may be contained in a product. Only products meeting these high environmental standards may be “placed on the market” in EU member states after July 1, 2006.

RoHS Logo

Although there is no legal requirement to mark RoHS-compliant products, Psion Teklogix Inc. indicates its compliance with the directive as follows:

The RoHS logo located either on the back of the product or underneath the battery in the battery compartment (or on a related accessory such as the charger or docking station) signifies that the product is RoHS-compliant as per the EU directive. Other than as noted below, a Psion Teklogix product that does not have an accompanying RoHS logo signifies that it was placed on the EU market prior to July 1, 2006, and is thereby exempt from the directive.

Note: Not all accessories or peripherals will have a RoHS logo due to physical space limitations or as a result of their exempt status.
TABLE OF CONTENTS

Approvals and Safety Summary .. xiii

Chapter 1: Introduction

1.1 About This Manual ... 3
1.2 Online Help Features, Supported Browsers, And Limitations......... 6
1.3 Text Conventions .. 7
1.4 Overview Of The 9160 G2 Wireless Gateway 7
 1.4.1 Radios ... 7
 1.4.2 Access Point Functions .. 9
 1.4.3 Base Station Functions .. 9
 1.4.4 Mini-Controller Functions ... 9
1.5 Features and Benefits ... 10
 1.5.1 IEEE Standards Support And Wi-Fi Compliance 10
 1.5.2 Wireless Features ... 10
 1.5.2.1 The Psion Teklogix 802.1Q Protocol 11
 1.5.3 Security Features .. 11
 1.5.4 Out-of-the-Box Guest Interface ... 12
 1.5.5 Clustering And Auto-Management 12
 1.5.6 Networking ... 13
 1.5.7 SNMP Support .. 13
 1.5.8 Maintainability ... 14
1.6 What’s Next? ... 14

Chapter 2: Installation Requirements

2.1 Choosing The Right Location .. 17
 2.1.1 Environment ... 17
 2.1.2 Maintenance ... 18
 2.1.3 Radios ... 18
 2.1.4 Power And Antenna Cables .. 18
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.4.1 Power</td>
<td>18</td>
</tr>
<tr>
<td>2.1.4.2 Antennas</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Connecting To External Devices</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1 Ports</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2 LAN Installation: Overview</td>
<td>21</td>
</tr>
<tr>
<td>2.2.3 LAN Installation: Ethernet</td>
<td>21</td>
</tr>
<tr>
<td>2.2.3.1 Ethernet Cabling</td>
<td>22</td>
</tr>
<tr>
<td>2.2.3.2 100Base-FX Fiber Optic Ethernet Port</td>
<td>22</td>
</tr>
<tr>
<td>2.2.4 Status Indicators (LEDs)</td>
<td>22</td>
</tr>
<tr>
<td>2.2.5 Connecting A Video Display Terminal</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Changing The Configuration With A Web Browser</td>
<td>23</td>
</tr>
</tbody>
</table>

Chapter 3: PreLaunch Checklist

3.1 The 9160 G2 Wireless Gateway | 27 |
3.1.1 Default Settings For The 9160 G2 Wireless Gateway | 27 |
3.1.2 What The Access Point Does Not Provide | 30 |
3.2 Administrator’s Computer | 30 |
3.3 Wireless Client Computers | 31 |
3.4 Understanding Dynamic & Static IP Addressing On The 9160 G2 Wireless Gateway | 32 |
3.4.1 How Does The Access Point Obtain An IP Address At Startup? | 32 |
3.4.2 Dynamic IP Addressing | 33 |
3.4.3 Static IP Addressing | 33 |
3.4.4 Recovering An IP Address | 34 |

Chapter 4: Quick Steps For Setup And Launch

4.1 Unpack The 9160 G2 Wireless Gateway | 37 |
4.1.1 9160 G2 Wireless Gateway Hardware And Ports | 37 |
4.1.2 What’s Inside The 9160 G2 Wireless Gateway? | 37 |
4.2 Connect The Access Point To Network And Power | 38 |
4.2.1 A Note About Setting Up Connections For A Guest Network | 40 |
4.2.1.1 Hardware Connections For A Guest VLAN | 40 |
4.3 Power On The Access Point | 40 |
4.4 Log On To The Administration Web Pages | 40 |
4.4.1 Viewing Basic Settings For Access Points | 41 |
4.5 Configure ‘Basic Settings’ And Start The Wireless Network | 42 |
4.5.1 Default Configuration .. 42
4.6 What’s Next? ... 42
4.6.1 Make Sure The Access Point Is Connected To The LAN 42
4.6.2 Test LAN Connectivity With Wireless Clients 43
4.6.3 Secure And Fine-tune The Access Point Using Advanced Features 43

Chapter 5: Configuring Basic Settings

5.1 Navigating To Basic Settings ... 47
5.2 Review / Describe The Access Point 48
5.3 Provide Network Settings .. 49
5.4 Update Basic Settings ... 50
5.5 Basic Settings For A Standalone Access Point 50
5.6 Your Network At A Glance: Understanding Indicator Icons 50
5.7 Viewing the User Interface with Different Colours and Style 50

Chapter 6: Managing Access Points & Clusters

6.1 Overview ... 55
6.2 Navigating To Access Points Management 55
6.3 Understanding Clustering .. 55
6.3.1 What Is A Cluster? .. 56
6.3.2 How Many APs Can A Cluster Support? 56
6.3.3 What Kinds Of APs Can Cluster Together? 56
6.3.4 What is the Relationship of the Coordinator AP to Other Cluster Members? 56
6.3.5 Which Settings Are/Are Not Shared As Part Of The Cluster Configuration? 57
6.3.5.1 Settings Shared In The Cluster Configuration 57
6.3.5.2 Settings Not Shared By The Cluster 57
6.3.6 Cluster Formation ... 58
6.3.7 Cluster Size And Membership 58
6.3.8 Intra-Cluster Security .. 58
6.4 Understanding Access Point Settings 58
6.4.1 Modifying The Location Description 60
6.4.2 Setting The Cluster Name .. 60
6.5 Starting Clustering ... 60
6.6 Stopping Clustering ... 61
6.7 Configuration Information For A Specific AP And Managing Standalone APs 61
Psion Teklogix 9160 G2 Wireless Gateway User Manual

Contents

6.7.1 Navigating To An AP By Using Its IP Address In A URL .. 61

6.8 Session Monitoring ... 62
 6.8.1 Navigating to Session Monitoring ... 62
 6.8.2 Understanding Session Monitoring Information ... 62
 6.8.3 Viewing Session Information for Access Points ... 64
 6.8.4 Sorting Session Information .. 64
 6.8.5 Refreshing Session Information .. 64

Chapter 7: Managing User Accounts

7.1 Overview ... 67

7.2 Navigating To User Management... 67
 7.2.1 Viewing User Accounts .. 68
 7.2.2 Adding A User .. 68
 7.2.3 Editing A User Account .. 69
 7.2.4 Enabling And Disabling User Accounts ... 70
 7.2.5 Enabling A User Account ... 70
 7.2.6 Disabling A User Account .. 70
 7.2.7 Removing A User Account .. 70

7.3 Backing Up And Restoring A User Database... 70
 7.3.1 Backing Up The User Database .. 70
 7.3.2 Restoring A User Database From A Backup File .. 71

Chapter 8: Channel Management

8.1 Navigating To Channel Management .. 75

8.2 Understanding Channel Management .. 75
 8.2.1 How It Works In A Nutshell .. 75
 8.2.2 For The Curious: More About Overlapping Channels 76
 8.2.3 Example: A Network Before And After Channel Management 76

8.3 Configuring And Viewing Channel Management Settings................................. 77
 8.3.1 Stopping/Starting Automatic Channel Assignment 78
 8.3.2 Viewing Current Channel Assignments And Setting Locks 78
 8.3.2.1 Update Current Channel Settings (Manual) .. 79
 8.3.3 Viewing Last Proposed Set Of Changes ... 79
 8.3.4 Configuring Advanced Settings (Customizing/Scheduling Channel Plans) 79
 Contents

8.3.4.1 Update Advanced Settings ... 81

Chapter 9: Wireless Neighborhood
9.1 Navigating To Wireless Neighborhood ... 85
9.2 Understanding Wireless Neighborhood Information 85
9.3 Viewing Wireless Neighborhood ... 86
9.4 Viewing Details For A Cluster Member .. 88

Chapter 10: Configuring Security
10.1 Understanding Security Issues On Wireless Networks 93
10.1.1 How Do I Know Which Security Mode To Use? 93
10.1.2 Comparison Of Security Modes For Key Management, Authentication And Encryption Algorithms ... 94
10.1.2.1 When To Use Unencrypted (No Security) 94
10.1.2.2 When To Use Static WEP .. 95
10.1.2.3 When To Use IEEE 802.1x .. 95
10.1.2.4 When To Use WPA Personal ... 96
10.1.2.5 When To Use WPA Enterprise ... 97
10.1.3 Does Prohibiting The Broadcast SSID Enhance Security? 99
10.1.4 How Does Station Isolation Protect The Network? 99
10.2 Configuring Security Settings .. 100
10.2.1 Broadcast SSID, Station Isolation, And Security Mode 100
10.2.2 Security Modes ... 102
10.2.2.1 None (Plain-text) ... 102
10.2.2.2 Static WEP ... 103
10.2.2.3 IEEE 802.1x ... 108
10.2.2.4 WPA Personal ... 111
10.2.2.5 WPA Enterprise ... 113
10.3 Updating Settings ... 118

Chapter 11: Maintenance And Monitoring
11.1 Interfaces .. 121
11.1.1 Ethernet (Wired) Settings ... 122
11.1.2 Wireless Settings ... 122
11.2 Event Logs ... 122
Contents

11.2.1 Enabling Or Disabling Persistence .. 123
11.2.2 Severity .. 123
11.2.3 Depth .. 124
11.2.4 Log Relay Host For Kernel Messages .. 124
 11.2.4.1 Understanding Remote Logging .. 124
 11.2.4.2 Setting Up The Log Relay Host .. 125
 11.2.4.3 Enabling/Disabling The Log Relay Host On The Status, Events Page 126
11.2.5 Events Log ... 127
11.3 Transmit/Receive Statistics .. 127
11.4 Associated Wireless Clients ... 128
 11.4.1 Link Integrity Monitoring .. 129
11.5 Neighboring Access Points .. 129

Chapter 12: The Ethernet (Wired) Interface

12.1 Navigating To Ethernet (Wired) Settings .. 137
 12.1.1 DNS Hostname .. 138
 12.1.2 Guest Access ... 138
 12.1.2.1 Configuring An Internal LAN And A Guest Network 138
 12.1.2.2 Enabling Or Disabling Guest Access ... 139
 12.1.2.3 Specifying A Virtual Guest Network 139
 12.1.3 Virtual Wireless Networks ... 140
 12.1.4 Internal Interface Settings .. 140
 12.1.5 Guest Interface Settings ... 143
 12.1.6 Updating Settings ... 143

Chapter 13: Setting The Wireless Interface

13.1 Navigating To Wireless Settings ... 147
13.2 Configuring 802.11d Regulatory Domain Support 148
13.3 802.11h Regulatory Domain Control ... 148
13.4 Configuring The Radio Interface ... 149
13.5 Configuring “Internal” Wireless LAN Settings .. 150
13.6 Configuring “Guest” Network Wireless Settings 151
13.7 Updating Wireless Settings .. 152
Chapter 14: Setting Up Guest Access

14.1 Understanding The Guest Interface .. 155
14.2 Configuring The Guest Interface ... 155
 14.2.1 Configuring A Guest Network On A Virtual LAN 156
 14.2.2 Configuring The Welcome Screen (Captive Portal) 156
14.3 Using The Guest Network As A Client ... 157
14.4 Deployment Example .. 158

Chapter 15: Configuring VLANs

15.1 Navigating To Virtual Wireless Network Settings 161
15.2 Configuring VLANs .. 161
15.3 Updating Settings .. 163

Chapter 16: Configuring 802.11 Radio Settings

16.1 Understanding Radio Settings .. 167
16.2 Navigating To Radio Settings .. 167
16.3 Configuring Radio Settings ... 169
16.4 Updating Settings .. 173

Chapter 17: MAC Address Filtering

17.1 Navigating To MAC Filtering Settings ... 177
17.2 Using MAC Filtering .. 178
17.3 Updating Settings .. 178

Chapter 18: Load Balancing

18.1 Understanding Load Balancing ... 181
 18.1.1 Identifying Imbalance: Overworked Or Under-utilized Access Points 181
 18.1.2 Specifying Limits For Utilization And Client Associations 181
 18.1.3 Load Balancing And QoS ... 181
18.2 Navigating To Load Balancing Settings ... 182
18.3 Configuring Load Balancing ... 182
18.4 Updating Settings .. 184

Chapter 19: Quality Of Service (QoS)

19.1 Understanding QoS .. 187
19.1.1 QoS And Load Balancing ... 187
19.1.2 802.11e And WMM Standards Support .. 187
19.1.3 QoS Queues And Parameters To Coordinate Traffic Flow 188
 19.1.3.1 QoS Queues And Type Of Service (ToS) On Packets 188
 19.1.3.2 EDCF Control Of Data Frames And Arbitration Interframe Spaces .190
 19.1.3.3 Random Backoff And Minimum/Maximum Contention Windows .191
 19.1.3.4 Packet Bursting For Better Performance 191
 19.1.3.5 Transmission Opportunity (TXOP) Interval For Client Stations192
19.1.4 802.1p And DSCP Tags ... 192
 19.1.4.1 VLAN Priority ... 193
 19.1.4.2 DSCP Priority ... 194
19.2 Configuring QoS Queues ... 194
 19.2.1 Configuring AP EDCA Parameters .. 196
 19.2.2 Enabling/Disabling Wi-Fi Multimedia 198
 19.2.3 Configuring Station EDCA Parameters 198
19.3 Updating Settings .. 200

Chapter 20: Wireless Distribution System
20.1 Understanding The Wireless Distribution System 203
 20.1.1 Using WDS To Bridge Distant Wired LANs 203
 20.1.2 Using WDS To Extend Network Beyond The Wired Coverage Area .204
 20.1.3 Using WDS To Create Backup Links 205
20.2 Security Considerations Related To WDS Links 205
 20.2.1 Understanding Static WEP Data Encryption 205
 20.2.2 Understanding WPA (PSK) Data Encryption 206
20.3 Configuring WDS Settings ... 206
 20.3.1 Example Of Configuring A WDS Link 209
20.4 Updating Settings .. 210

Chapter 21: Configuring SNMP
21.1 Understanding SNMP Settings ... 213
21.2 Navigating To SNMP Settings ... 214
21.3 Configuring SNMP Settings ... 215
 21.3.1 Configuring SNMP Traps ... 217
 21.3.2 Updating SNMP Settings .. 218
Chapter 22: The 9160 G2 As Base Station

22.1 Overview .. 221
22.2 Radio Protocols ... 222
 22.2.1 Adaptive Polling/Contention Protocol .. 222
22.3 Narrow Band Menus ... 222
 22.3.1 Narrow Band Radio Configuration Settings .. 222
 22.3.1.1 RA1001A Radio Parameters ... 224
 22.3.2 Connectivity Options .. 225
 22.3.3 Connectivity Options: Base Station Mode ... 225
 22.3.3.1 Polling Protocol Parameters ... 227
 22.3.3.2 Radio Parameters .. 230
 22.3.4 Connectivity Options: RRM Mode .. 231
22.4 Connectivity Menus .. 231
 22.4.1 Base Station Configuration Settings ... 232
 22.4.2 RRM Groups Configuration Settings ... 234
 22.4.2.1 RRM Groups ... 236
 22.4.2.2 Polling Protocol Parameters ... 237
 22.4.2.3 Radio Parameters .. 239
 22.4.2.4 Group Parameters .. 240
 22.4.2.5 Remote Radio Modules .. 241
 22.4.3 Radio Link Features Configuration Settings .. 241
 22.4.3.1 Radio Link Features ... 243
 22.4.3.2 Automatic Radio Address .. 244
 22.4.3.3 Automatic Terminal Number ... 245
 22.4.4 Hosts Menu ... 246
 22.4.4.1 9010 Configuration .. 249

Chapter 23: Mini-Controller Configuration

23.1 Overview .. 253
23.2 Mini-Controller Configuration Menu .. 254
23.3 Hosts Menu ... 254
23.4 Host Menu Options ... 258
 23.4.1 3274 Emulation ... 258
 23.4.1.1 Emulation Options ... 258
 23.4.1.2 TESS Options .. 259
Contents

23.4.1.3 Telnet Protocol Options ...269
23.4.1.4 Function Key Mappings ...273
23.4.2 5250 Emulation ..274
 23.4.2.1 Emulation Options ...274
 23.4.2.2 TESS Options ..275
 23.4.2.3 Telnet Protocol Options ...285
 23.4.2.4 Function Key Mappings ...288
23.4.3 ANSI Emulation ..289
 23.4.3.1 Emulation Options ...289
 23.4.3.2 Telnet Protocol Options ...293
 23.4.3.3 Auto-Telnet/Auto-login ...295
 23.4.3.4 Function Key Mappings ...299

Chapter 24: 802.IQ Settings

 24.1 802.IQ Features ..303
 24.1.1 802.IQ v1/v2 Common Features ...303
 24.1.2 802.IQ v1 Features ...306
 24.1.3 802.IQ v2 Features Menu ...307
 24.2 Updating 802.IQ Settings ..307

Chapter 25: Network Time Protocol Server

 25.1 Navigating To Time Settings ...311
 25.2 Enabling Or Disabling A Network Time Protocol (NTP) Server ..312
 25.3 Updating Settings ..312

Chapter 26: Back Up & Restore Configuration

 26.1 Navigating To The AP’s Configuration Settings315
 26.2 Resetting Factory Default Configuration ...316
 26.3 Saving The Current Configuration To A Backup File316
 26.4 Restoring The Configuration From A Previously Saved File316
 26.5 Rebooting The Access Point ..317
 26.6 Upgrading The Firmware ...317
 26.6.1 Update ...318
 26.6.2 Verifying The Firmware Upgrade ...319
Chapter 27: Specifications

27.1 Physical Description ... 323
27.2 Environmental Requirements ... 323
27.3 AC Power Requirements ... 323
27.4 Power Over Ethernet Requirements ... 323
27.5 Processor And Memory .. 324
27.6 Network Interfaces ... 324
27.7 Radios ... 324

Appendix A: Port Pinouts And Cable Diagrams

A.1 Console Port ... A-1
A.2 Serial Cable Descriptions .. A-1
A.3 RJ-45 Connector Pinouts (10BaseT/100BaseT Ethernet) A-3

Appendix B: Security Settings on Wireless Clients/RADIUS Server

B.1 Network Infrastructure; Choosing Between Built-in Or External Authentication Server . B-7
 B.1.1 Using The Built-in Authentication Server (EAP-PEAP) B-8
 B.1.2 Using An External RADIUS Server With EAP-TLS Certificates Or EAP-PEAP B-8
B.2 Make Sure The Wireless Client Software Is Up-to-Date B-8
B.3 Accessing The Microsoft Windows Wireless Client Security Settings B-9
B.4 Configuring A Client To Access An Unsecure Network (No Security) B-11
B.5 Configuring Static WEP Security On A Client B-12
B.6 Configuring IEEE 802.1x Security On A Client B-15
 B.6.1 IEEE 802.1x Client Using EAP/PEAP ... B-15
 B.6.2 IEEE 802.1x Client Using EAP/TLS Certificate B-18
B.7 Configuring WPA/WPA2 Enterprise (RADIUS) Security On A Client B-22
 B.7.1 WPA/WPA2 Enterprise (RADIUS) Client Using EAP/PEAP B-22
 B.7.2 WPA/WPA2 Enterprise (RADIUS) Client Using EAP-TLS Certificate B-26
B.8 Configuring WPA/WPA2 Personal (PSK) Security On A Client B-29
B.9 Configuring An External RADIUS Server To Recognize The 9160 G2 B-31
B.10 Obtaining A TLS-EAP Certificate For A Client B-35
B.11 Configuring RADIUS Server For VLAN tags B-40
 B.11.1 Configuring A RADIUS Server .. B-40
Contents

Appendix C: Troubleshooting
C.1 Wireless Distribution System (WDS) Problems And Solutions.......................... C-43
C.2 Cluster Recovery... C-44
 C.2.1 Reboot Or Reset Access Point.. C-44

Appendix D: Glossary

Index... 1
APPROVALS AND SAFETY SUMMARY

DECLARATION OF CONFORMITY

<table>
<thead>
<tr>
<th>Product:</th>
<th>9160 G2 Wireless Gateway - RA2050, RA2060 & RA1001A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of Council Directives:</td>
<td></td>
</tr>
<tr>
<td>Low Voltage Directive:</td>
<td>2006/95/EC</td>
</tr>
<tr>
<td>RoHS Directive:</td>
<td>2002/95/EC</td>
</tr>
</tbody>
</table>

Conformity Declared to Standards:
- EN 55022: Class B
- EN 61000-3-2; EN 61000-3-3
- EN 55024
- ETSI EN 300 113-1: V1.6.1 (2006-08)
- EN 301 893: 2003-08 V1.2.3
- EN 300 328: 2004-11 V1.6.1
- EN 301 489-1/17: 2004-11 V1.5.1/2002-08 V1.2.1
- ETSI EN 301 489-5 V1.3.1 (2002-08)
- EN 60950-1

Manufacturer: PSION TEKLOGIX INC.
2100 Meadowvale Blvd.
Mississauga, Ontario; Canada L5N 7J9

Year of Manufacture: 2006

Manufacturer’s Address in the European Community: PSION TEKLOGIX
Bourne End Business Centre
Cores End Road, Bourne End, SL8 5AR
United Kingdom

Type of Equipment: Information Technology Equipment
Equipment Class: Commercial and Light Industrial
Chapter: Approvals and Safety Summary

FCC Statement

| **Applicant’s Name & Address:** | PSION TEKLOGIX
| 2100 Meadowvale Blvd.
| Mississauga, Ontario, Canada L5N 7J9
| Telephone No.: (905) 813-9900 |
| **US Representative’s Name & Address:** | Psion Teklogix Corp.
| 1810 Airport Exchange Blvd., Suite 500
| Erlanger, Kentucky, 41018, USA
| Telephone No.: (859) 372-4329 |
Equipment Type/ Environment Use:	Computing Devices
Trade Name / Model No.:	9160 G2 Wireless Gateway
Year of Manufacture:	2005

The 9160 G2 Wireless Gateway has been tested and found to comply with the specifications for a Class B digital device, pursuant to Part 15 of the FCC Rules. Operation is subject to the following two conditions:

1. This device may not cause harmful interference, and
2. This device must accept any interference received, including interference that may cause undesired operation.

These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used according to the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not
occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which is found by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment or devices.
- Connect the equipment to an outlet other than the receiver's.
- Consult a dealer or an experienced radio/TV technician for assistance.

Important: Any change or modification to the product not expressly approved by Psion Teklogix could void the user's authority to operate the device.

RF Radiation Exposure Statement

To comply with the FCC and ANSI C95.1 RF exposure limits, the antenna(s) for this device must comply with the following:

- All Access Point antennas must operate with a separation distance of at least 25 cm (9.8 in.) from all persons using the cable provided, and must not be co-located or operating in conjunction with any other antenna or transmitter.
- The Gabriel dish antenna (P/N 9002006) requires a minimum separation distance of 63.2 cm (24.9 in.).

Note: Dual antennas used for diversity operation are not considered co-located.

Industry Canada (IC) Department Of Communications Notice

This Class B digital apparatus complies with Canadian ICES-003 and RSS-210. “To prevent radio interference to the licensed service, this device is intended to be operated indoors and away from windows to provide maximum shielding. Equipment (or its transmit antenna) that is installed outdoors is subject to licensing.”

Cet appareil numérique de la classe B est conforme à la norme NMB-003 et CNR-210 du Canada. “Pour empêcher que cet appareil cause du brouillage au service faisant l'objet d'une licence, il doit être utilisé à l'intérieur et devrait être placé loin des fenêtres afin de fournir un écran de blindage maximal. Si le matériel (ou son antenne d'émission) est installé à l'extérieur, il doit faire l'objet d'une licence.”

Safety Approvals

CSA, NRTL/C and CB.
CE Marking
When used in a residential, commercial or light industrial environment, the product and its approved UK and European peripherals fulfill all requirements for CE marking.

R&TTE Directive 1999/5/EC
This equipment complies with the essential requirements of EU Directive 1999/5/EC (Declaration available: www.psionteklogix.com).

Ο εξοπλισμός αυτός πληροί τις βασικές απαιτήσεις της κοινοτικής οδηγίας EU R&TTE 1999/5/ΕK. (Η δήλωση συμμόρφωσης διατίθεται στη διεύθυνση: www.psionteklogix.com)

Utrustningen uppfyller kraven för EU-direktivet 1999/5/EC om ansluten teleutrustning och ömsesidigt erkännande av utrustningens överensstämmelse (R&TTE). (Förklaringen finns att läsa på: www.psionteklogix.com).

Important Safety Instructions

This safety information is for the protection of both operating and service personnel.

- The 9160 G2 must be installed by a qualified Psion Teklogix installer. Failure to have the 9160 G2 properly installed will void the Manufacturer’s warranty.
- The mains power cord (if sold separately) shall comply with National safety regulations of the country where the equipment is to be used.
- Use of an attachment not recommended or sold by manufacturer may result in fire, electric shock, or personal injury.
- To reduce risk of damage to the electric plug and cord when unplugging the 9160 G2, pull the plug rather than the cord.
- Make sure the cord is positioned so that it is not stepped on, tripped over, or otherwise subjected to damage or stress.
- Do not operate the 9160 G2 with a damaged cord or plug. Replace immediately.
- Do not operate the 9160 G2 if it has received a sharp blow, been dropped, or otherwise damaged in any way; it should be inspected by qualified service personnel.
- Do not disassemble the 9160 G2; it should be repaired by qualified service personnel. Incorrect reassembly may result in electric shock or fire.
- To reduce risk of electric shock, unplug the 9160 G2 from the outlet before attempting any maintenance or cleaning.
- An extension cord should not be used unless absolutely necessary. Use of an improper extension cord could result in fire or electric shock. If an extension cord must be used, make sure:
 - The plug pins on the extension cord are the same number, size, and shape as those on the adaptor.
- The extension cord is properly wired, in good electrical condition, and that the wire size is larger than 16 AWG.

- The 9160 G2 is designed for indoor use only; do not expose the 9160 G2 to rain or snow.

The 9160 G2 Wireless Gateway Fiber Optic Option is:

CLASS 1 LED PRODUCT

APPAREIL À LED DE CLASSE 1

Do Not Operate In An Explosive Atmosphere

Operating Psion Teklogix equipment where explosive gas is present may result in an explosion.

Do Not Remove Covers Or Open Enclosures

To avoid injury, the equipment covers and enclosures should only be removed by qualified service personnel. Do not operate the equipment without the covers and enclosures properly installed.

Do Not Hold Antenna

To avoid discomfort due to the local heating effect of radio frequency energy, do not touch the antenna when a 9160 G2 is transmitting.

Connection to Outdoor Antenna

The outdoor antenna shall only be installed by Psion Teklogix service professionals.

Power Over Ethernet and Outdoor Antenna Installation

Earth Grounding

Warning: An Earth Conductor Connection is essential before making an outdoor antenna connection or a POE connection.

1. A supplementary equipment earthing conductor is to be installed between the 9160 and earth, that is, in addition to the equipment earthing conductor in the power supply cord.

2. The supplementary equipment earthing conductor may be not smaller in size than the unearthed branch-circuit supply conductors (min. 0.75sq. mm nominal cross-sectional area or 18AWG). The supplementary equipment earthing conductor is to be connected to the 9160 at the terminal provided, and connected to earth in a manner that will retain the earth connection when the 9160 is powered over Ethernet (POE) or uses the outdoor antennas. The connection to earth of the supplementary earthing conductor shall be in compliance with the appropriate rules.
for terminating bonding jumpers in the country of use. Termination of the supplementary equipment earthing conductor may be made to building steel, to a metal electrical raceway system, or to any earthed item that is permanently and reliably connected to the electrical service equipment earthed.

3. Bare, covered or insulated earthing conductors are acceptable. A covered or insulated earthing conductor shall have a continuous outer finish that is either green, or green with one or more yellow stripes.

4. Avoid servicing during an electrical storm. There may be a remote risk of electrical shock from lightning.
1.1 About This Manual

This manual describes the setup, configuration, administration, and maintenance of one or more 9160 G2 Wireless Gateways on a wireless network.

Chapter 1: Introduction

provides an overview of this manual and 9160 G2 Wireless Gateway features.

Chapter 2: “Installation Requirements”

explains the physical installation of the 9160 G2 Wireless Gateway, and how to connect to the 9160 G2 for diagnostics.

Chapter 3: “PreLaunch Checklist”

provides a quick check of required hardware components, software, client configurations, and compatibility issues.

Chapter 4: “Quick Steps For Setup And Launch”

is a step-by-step guide to setting up your 9160 G2 Wireless Gateways and the resulting wireless network.

Chapter 5: “Configuring Basic Settings”

provides instructions on configuring administrator access settings and new access point settings.

Chapter 6: “Managing Access Points & Clusters”

describes access point clusters and how to navigate to specific access points within clusters.

Chapter 7: “Managing User Accounts”

illustrates the user management capabilities for controlling client access to access points.

Chapter 8: “Channel Management”

describes how the 9160 G2 Wireless Gateway automatically assigns radio channels used by clustered access points to reduce mutual interference or interference with other access points outside of its cluster.

Chapter 9: “Wireless Neighborhood”

provides a detailed view of neighborhood access points, including identifying information, cluster status, and statistical information.

Chapter 10: “Configuring Security”

provides a number of authentication and encryption schemes to ensure that your wireless infrastructure is accessed only by the intended users. The details of each security mode are described.
Chapter 1: Introduction

About This Manual

Chapter 11: “Maintenance And Monitoring”
describes the maintenance and monitoring tasks for individual access points (not for cluster configurations).

Chapter 12: “The Ethernet (Wired) Interface”
describes how to configure the wired interface settings on the 9160 G2 Wireless Gateway.

Chapter 13: “Setting The Wireless Interface”
describes how to configure the wireless address and related settings on the 9160 G2 Wireless Gateway.

Chapter 14: “Setting Up Guest Access”
allows you to configure the 9160 G2 Wireless Gateway for controlled guest access to an isolated network.

Chapter 15: “Configuring VLANs”
describes how to configure multiple wireless networks on Virtual LANs (VLANs).

Chapter 16: “Configuring 802.11 Radio Settings”
describes how to configure Radio Settings on the 9160 G2 Wireless Gateway.

Chapter 17: “MAC Address Filtering”
instructs how you can use MAC address filtering to control client access to your wireless network.

Chapter 18: “Load Balancing”
describes how to configure Load Balancing on your wireless network, to allow you to balance the distribution of wireless client connections across multiple access points.

Chapter 19: “Quality Of Service (QoS)”
provides instructions on configuring the parameters on multiple queues to improve the throughput and performance of differentiated wireless traffic.

Chapter 20: “Wireless Distribution System”
describes how to configure the Wireless Distribution System (WDS) on the 9160 G2 Wireless Gateway, enabling you to connect multiple access points which can then communicate with one another wirelessly in a standardized way.

Chapter 21: “Configuring SNMP”
describes how to configure SNMP and related settings on the 9160 G2 Wireless Gateway Enterprise-Manager API.
Chapter 22: “The 9160 G2 As Base Station”
describes how to configure the 9160 G2 Wireless Gateway as either a wired or wireless Base Station, or as a Remote Radio Module (RRM). This chapter also describes narrow band radio configuration settings.

Chapter 23: “Mini-Controller Configuration”
describes the configuration of the 9160 G2 Wireless Gateway when used as a mini-controller.

Chapter 24: “802.IQ Settings”
describes the settings for the 802.IQ proprietary wireless protocol for 9160 G2 base stations and mini-controllers.

Chapter 25: “Network Time Protocol Server”
describes how to configure the 9160 G2 Wireless Gateway to use a specified Network Time Protocol (NTP) server to synchronize computer clock times on your network.

Chapter 26: “Back Up & Restore Configuration”
shows how to backup a configuration file that can be used at a later date to restore the access point to the previously saved configuration.

Chapter 27: “Specifications”
details the physical, environmental, and various operating specifications for the 9160 G2 Wireless Gateway and its radios.

Appendix A: Port Pinouts And Cable Diagrams
includes pinouts and diagrams of the ports and cables for the 9160 G2.

Appendix B: Security Settings on Wireless Clients/RADIUS Server
details how to configure security settings on the client to match the security mode being used by each network (AP) connection.

Appendix C: Troubleshooting
describes how to solve common problems possibly encountered while updating network configurations on networks served by multiple, clustered access points.

Appendix D: Glossary
provides definitions and further details on terms featured in bold italics throughout the manual.
1.2 **Online Help Features, Supported Browsers, And Limitations**

Online Help for the 9160 G2 Wireless Gateway provides information about all fields and features available on the user interface. The information in the Online Help is a subset of the information available in the full User Manual.

Online Help information corresponds to each tab on the 9160 G2 Wireless Gateway Administration user interface. Click the **Help** button on a tab or the “More...” link at the bottom of the online help panel on the UI for help information for the settings on the current tab.

![Figure 1.1 Online Help Screen](image)
1.3 Text Conventions

Note: Notes highlight additional helpful information.

Important: These statements provide particularly important instructions or additional information that is critical to the operation of the computer and other equipment.

Warning: These statements provide important information that may prevent injury, damage to the equipment, or loss of data.

An arrow next to field description information (usually in tables) indicates a recommended or suggested configuration setting for an option on the Access Point (AP).

Bold Italics: When you see a term written in bold italics, there is an entry for it in Appendix D: “Glossary”, providing a definition and further details. Not all terms are highlighted in the manual, but the Glossary is extensive, therefore please check there for any unfamiliar words or expressions.

1.4 Overview Of The 9160 G2 Wireless Gateway

The 9160 G2 Wireless Gateway provides continuous, high-speed access between your wireless and Ethernet devices. It is an advanced, standards-based solution for wireless networking in small and medium-sized businesses. The 9160 G2 Wireless Gateway enables zero-administration wireless local area network (WLAN) deployment while providing state-of-the-art wireless networking features.

The 9160 G2 Wireless Gateway provides best-of-breed security, ease-of-administration and industry standards—providing a standalone and fully-secured wireless network without the need for additional management and security server software.

The 9160 G2 Wireless Gateway is designed to support a wide variety of system configurations. Using the IEEE 802.11 Wireless LAN Standards, the 9160 G2 is capable of operating as a transparent bridge (access point) between wireless and wired networks. This allows wireless clients to access the network and also move seamlessly between the 9160 G2s in the network. The 9160 G2 can operate as a mini-controller, base station, a remote radio module (RRM), and become part of a mapRF system.

1.4.1 Radios

The 9160 G2 is capable of supporting single or dual radio operation. Available radio modules are the 802.11a/g radio, the 802.11g radio, and the RA1001A Narrow Band radio. For detailed specifications on these radios please see “Radios” on page 324.
Depending on the installed radio(s), the access point is capable of operating in the following modes:

- IEEE 802.11b mode.
- IEEE 802.11g mode.
- IEEE 802.11a mode.
- Atheros Turbo 5 GHz.
- Atheros Dynamic Turbo 5 GHz.
- Atheros Turbo 2.4 GHz.
- Atheros Dynamic Turbo 2.4 GHz.
- Extended Range.
- Psion Teklogix Narrow Band Polling Protocol.

Important: Psion Teklogix mobile computers do not support Atheros Turbo modes and to prevent unnecessary radio overhead the use of Turbo mode is not recommended.

The 9160 G2 Wireless Gateway supports four different radio configurations: 802.11g, 802.11g + 802.11ag, NB (narrow band), and NB + 802.11ag.

These different variants are identified by the “Model” value, which is shown on the Maintenance > Upgrade web page (see Figure 1.2 on page 9). The models are defined as follows:

- 9160 Wireless Gateway = 802.11g.
- 9160 Wireless Gateway (Dual Radio) = 802.11g + 802.11ag.
- 9160 Wireless Gateway NB = NB.
- 9160 Wireless Gateway NB (Dual Radio) = NB + 802.11ag.

Note: For the ‘NB only’ case, the web page may show the configuration page for a single 802.11 radio. You can disregard it, however, if you should attempt to configure this non-existent radio, this will not cause problems in the 9160 G2.
1.4.2 Access Point Functions

As an access point connected to a wired network, the 9160 G2 Wireless Gateway forms a communication link between Psion Teklogix RF mobile computers or wireless access point clients and a Psion Teklogix Network Controller or a host computer. It communicates over an IEEE 802.11 RF data link with mobile computers, and over a cable with the network controller or a host computer. The 9160 G2 can be connected to the network through an Ethernet connection.

1.4.3 Base Station Functions

As a base station or Remote Radio Module (RRM), the 9160 G2 provides a link between the local area network and wireless mobile computers using proprietary Psion Teklogix radio protocols. On the local area network the 9160 G2 base station (or RRM) communicates with a 9500 Communications Server (or host using a Psion Teklogix Software Development Kit) using the proprietary 9010 protocol over TCP/IP.

For information on configuring the 9160 G2 as a base station or RRM, see Chapter 22: “The 9160 G2 As Base Station”.

1.4.4 Mini-Controller Functions

The 9160 G2 is equipped with some emulation capabilities, allowing it to act as a mini-controller. When a 9160 G2 is configured as a mini-controller, Psion Teklogix mobile computers can emulate an ANSI, 5250 or 3274 mobile computer through the 9160 G2 rather than through a 9500 Communications Server.

To configure the 9160 G2 Wireless Gateway as a mini-controller, see Chapter 23: “Mini-Controller Configuration”.

Figure 1.2 Upgrade Firmware Web Page
Chapter 1: Introduction

Features and Benefits

1.5 Features and Benefits

1.5.1 IEEE Standards Support And Wi-Fi Compliance

- Support for IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11i, and IEEE 802.3af wireless networking standards.
- Provides bandwidth of up to 54 Mbps for IEEE 802.11a or IEEE 802.11g (11 Mbps for IEEE 802.11b, 108 Mbps for Atheros 802.11a Turbo).
- Wi-Fi compliance required for certification.

1.5.2 Wireless Features

- Auto channel selection at startup.
- Transmit power adjustment.
- Wireless Distribution System (WDS) for connecting multiple access points wirelessly. Extends your network with less cabling.
- Quality of Service (QoS) for enhanced throughput and better performance of time-sensitive wireless traffic like Video, Audio, Voice over IP (VoIP) and streaming media. Our QoS is Wi-Fi Multimedia (WMM) compliant.
- Load Balancing.
- Built-in support for multiple SSIDs (network names) and multiple BSSIDs (basic service set IDs) on the same access point. Two special-purpose BSSIDs are supported, one for the Internal (primary and management) network, and the other for the guest network. Six additional general-purpose BSSIDs (called Virtual Wireless Networks or VWNs) are supported using VLANs.
- Channel management for automatic coordination of radio channel assignments to reduce AP-to-AP interference on the network and maximize Wi-Fi bandwidth.
- Neighboring access point detection (also known as “rogue” AP detection).
- Support for IEEE 802.11d Regulatory Domain selection (country codes for global operation).
- Support for IEEE 802.11h, incorporating TPC and DFS. IEEE 802.11h is a standard that provides two services required to satisfy certain regulatory domains for the 5 GHz band. These two services are Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS).
- Support for Extended Range (XR).
Chapter 1: Introduction

Security Features

1.5.2.1 The Psion Teklogix 802.IQ Protocol

802.IQ is a Psion Teklogix proprietary protocol that enables mobile computers to operate in a wireless LAN in a network that supports both TCP/IP and 802.IQ protocols simultaneously. 802.IQ protocol is available in two versions: 802.IQ v1 and 802.IQ v2. The 9160 G2 Wireless Gateway can support both versions of the protocol at the same time (mobile computers must use only one).

802.IQ v1 protocol is a wireless LAN routing scheme that provides greater performance in an 802.11 wireless network than is possible with TCP/IP routing. A mobile computer can communicate with the 9160 G2 access point using either TCP/IP or 802.IQ v1 protocol, which makes possible a system with dual operability.

802.IQ v2 protocol is an enhanced version of the 802.IQ v1 protocol that transports packets over the UDP layer. It provides all the 802.IQ v1 functionality, with the added features of software upgrade capability over RF, the ability to add third-party access points between controllers and mobile computers, and integration into the MapRF system if desired.

For further information and configuration menus for 802.IQ, see Chapter 24: “802.IQ Settings”.

1.5.3 Security Features

- Inhibit SSID Broadcast.
- Ignore SSID Broadcast.
- Weak IV avoidance.
- Wireless Equivalent Privacy (WEP).
- Wi-Fi Certified for the following standards:
 - IEEE Standards: 802.11b, 802.11g, 802.11d
 - Security:
 - WPA™ - Personal
 - WPA™ - Enterprise
 - WPA2™ - Personal
 - WPA2™ - Enterprise
- EAP Types:
 - EAP-TLS
 - EAP-TTLS/MSCHAPv2
 - PEAPv0/EAP-MSCHAPv2
 - PEAPv1/EAP-GTC
 - EAP-SIM

- Advanced Encryption Standard (AES).
- User-based access control with local authentication server.
- Local user database and user life cycle management.
- MAC address filtering.
- WPA/WPA2 over WDS.
- Secure Sockets Shell (SSH).
- Secure Sockets Layer (SSL).

1.5.4 Out-of-the-Box Guest Interface

- Unique network name (SSID) for the Guest interface.
- Captive portal to guide guests to customizable, guest-only Web page.
- VLAN and Ethernet options.

1.5.5 Clustering And Auto-Management

- Provisioning and auto-configuration of APs through clustering and cluster rendezvous.

 The administrator can specify how new access points should be configured before they are added to the network. When new access points are added, they can automatically rendezvous with the cluster, and securely download the correct configuration. The process does not require manual intervention, but is under the control of the administrator.

- Single universal view of clustered access points and cluster configuration settings.

Configuration for all access points in a cluster can be managed from a single interface. Changes to common parameters are automatically reflected in all members of the cluster.
• Self-managed access points with automatic configuration synchronization.

The access points in a cluster periodically check that the cluster configuration is consistent, and check for the presence and availability of the other members of the cluster. The administrator can monitor this information through the user interface.

• Enhanced local authentication using 802.1x without additional IT setup.

A cluster can maintain a user authentication server and database stored on the access points. This eliminates the need to install, configure, and maintain a RADIUS infrastructure, and simplifies the administrative task of deploying a secure wireless network.

1.5.6 Networking

• Dynamic Host Configuration Protocol (DHCP) support for dynamically obtaining network configuration information.

• Virtual Local Area Network (VLAN) support.

• Virtual Wireless Networks (Dynamic VLANs).

• Spanning Tree Protocol (STP).

• 802.1p.

• 100Base-FX fiber optic support.

1.5.7 SNMP Support

The 9160 G2 Wireless Gateway includes the following standard Simple Network Management Protocol (SNMP) Management Information Bases (MIBs):

• Bridge MIB 802.1d (RFC 1493).

• SNMPv2 MIB (RFC 3418).

• IEEE Std 802.11 MIB (base).

• Interfaces Group MIB (RFC 2233).

• Two proprietary MIBs (Wireless MIB and System MIB), based on the upcoming IEEE 802.11k MIB. They provide information about the 9160 G2 Wireless Gateway client association list and AP detection table, respectively. The proprietary System MIB provides maintenance functionality such as system reboot or firmware upgrade.
1.5.8 Maintainability

- Status, monitoring, and tracking views of the network including session monitoring, client associations, transmit/receive statistics, and event log.
- Link integrity monitoring to continually verify connection to the client, regardless of network traffic activity levels.
- Reset configuration option.
- Firmware upgrade.
- Backup and restore of access point configuration.
- Backup and restore of user database for built-in RADIUS server (applicable with IEEE 802.1x and WPA/WPA2 Enterprise (RADIUS) security modes.

1.6 What’s Next?

Ready to get started with wireless networking? Once your 9160 G2 Wireless Gateway is installed (see Chapter 2: “Installation Requirements”), read through Chapter 3: “PreLaunch Checklist” and then follow the steps in Chapter 4: “Quick Steps For Setup And Launch”.

INSTALLATION REQUIREMENTS

2.1 Choosing The Right Location

2.1.1 Environment

2.1.2 Maintenance

2.1.3 Radios

2.1.4 Power And Antenna Cables
 2.1.4.1 Power
 2.1.4.2 Antennas

2.2 Connecting To External Devices

2.2.1 Ports

2.2.2 LAN Installation: Overview

2.2.3 LAN Installation: Ethernet
 2.2.3.1 Ethernet Cabling
 2.2.3.2 100Base-FX Fiber Optic Ethernet Port

2.2.4 Status Indicators (LEDs)

2.2.5 Connecting A Video Display Terminal

2.3 Changing The Configuration With A Web Browser
Choosing The Right Location

Typically, Psion Teklogix conducts a site survey and then recommends the preferred locations for the 9160 G2s. These locations provide good radio coverage, minimize the distance to the host computer or network controller, and meet the environmental requirements.

2.1.1 Environment

The 9160 G2 should be located in a well-ventilated area and should be protected from extreme temperature fluctuations (i.e. direct heater output, shipping doors or direct sunlight). If a protective cover is required, it must have enough ventilation to maintain regular unit operation.

Refer to Chapter 27: “Specifications” for a more detailed description of environmental requirements. Keep in mind that the long term stability of this equipment will be enhanced if the environmental conditions are less severe than those listed in this manual.

The 9160 G2 should be situated away from the path of vehicles and free from water or dust spray. The 9160 G2 should only be mounted in the upright position, as shown in Figure 2.1 on page 18. This orientation minimizes the risk of water entering the 9160 G2, should the unit accidentally be sprayed.

The 9160 G2 is attached to a vertical surface using four fasteners on the rear plate (type of fasteners are dependent on mounting surface). The top two holes in the rear plate are slots, allowing the unit to be hung in position before the remaining bolts are installed, thus easing installation. The bolts used for installation are SAE 1/4-20.
2.1.2 Maintenance

The 9160 G2 has no internal option switches and does not require physical access; all configuration settings are done remotely (see “Navigating To Basic Settings” on page 47). Environmental and radio communication considerations do still apply.

2.1.3 Radios

- 802.11g radio without integrated antenna (standard).
- 802.11a/g radio without integrated antenna (optional second radio).
- RA1001A - Narrow Band (NB) Radio.

2.1.4 Power And Antenna Cables

2.1.4.1 Power

To prevent accidental disconnection and stress on the 9160 G2, antenna and power cables should be secured within 30 cm of the unit. Secure the cables with ties to the cable tie mounts on the 9160 G2 (see Figure 2.1). A single phase power outlet (range 100 to 240 VAC rated 1.0A minimum) should be installed within one metre (3.1 feet) of the 9160 G2. The 9160 G2 automatically adjusts to input within that power range. The power cable is removable and is available in the power type specific to your location. The 9160 G2 AC power supply has a universal input via a standard IEC320 connector.
Chapter 2: Installation Requirements

Power And Antenna Cables

To eliminate the need for AC wiring, the 9160 G2 Wireless Gateway is compliant with IEEE 802.3af and can be powered over its Ethernet connection. For detailed information, please see “Power Over Ethernet Requirements” on page 323.

Warning: To avoid electric shock, the power cord protective grounding conductor must always be connected to ground.

2.1.4.2 Antennas

The type of antenna required for each installation depends on the coverage requirements and the frequencies used. A maximum of four antenna elements can be used. These antennas can be a combination of reverse thread SMA “screw-on” diversity or high-gain WDS antennas. There are several omnidirectional antennas and special, directional antennas available from Psion Teklogix. Generally, a site survey determines the appropriate antenna. Consult Psion Teklogix service personnel for more information.

Warning: Never operate the 9160 G2 without a suitable antenna or a dummy load.

Connection To Outdoor Antenna (Kit P/N 1916641)

The antenna must be installed by a qualified service person and installed according to local electrical installation codes. The antenna should be located such that it is always at least 15 ft (4.6 m) high and 10 ft (3 m) from the user and other people working in the area.

For a 9160 G2 connecting to an outdoor antenna, all the following notes are applicable:

1. The shield of the outdoor antenna coaxial cable is to be connected to earth (independent of the 9160 G2) in the building installation, provided the installation is acceptable to the authorities in the country of usage.

2. A supplementary equipment earthing conductor is to be installed between the 9160 G2 and earth—that is, in addition to the equipment earthing conductor in the power supply cord.

3. The supplementary equipment earthing conductor may not be smaller in size than the unearthed branch-circuit supply conductors (min 0.75 sq. mm nominal cross-sectional area or 18AWG). The supplementary equipment earthing conductor is to be connected to the 9160 G2 at the terminal provided, and connected to earth in a manner that will retain the earth connection when the power supply cord is unplugged. The connection to earth of the supplementary earthing conductor shall be in compliance with the appropriate rules for terminating bonding jumpers in the country of usage. Termination of the supplementary equipment earthing conductor...
is permitted to be made to building steel, to a metal electrical raceway system, or to any earthed item that is permanently and reliably connected to the electrical service equipment earthed.

4. Bare, covered, or insulated earthing conductors are acceptable. A covered or insulated earthing conductor shall have a continuous outer finish that is either green (Canada and USA only), or green-and-yellow (all countries).

5. Avoid servicing during an electrical storm. There may be a remote risk of electrical shock from lightning.

6. For Finland, Norway, and Sweden, the equipment is to be used in a RESTRICTED ACCESS LOCATION where equipotential bonding has been applied. The permanently connected PROTECTIVE EARTHING CONDUCTOR is to be installed by a SERVICE PERSON.

Warning: For RF safety considerations, users are not allowed to approach close to the antenna.

Psion Teklogix supplies the coaxial cable required to connect the 9160 G2 to the antenna. When determining the location of the antenna, coverage requirements of the antenna are considered in conjunction with the environmental requirements of the 9160 G2.

The coaxial cable must be routed and secured using wire anchors and/or coaxial nail clips. A few extra inches of cable are required near the antenna and the 9160 G2 to make disconnection easier.

2.2 Connecting To External Devices

This section contains general guidelines for connecting the 9160 G2 to external devices such as network controllers, base stations, host computers, PCs, and video display terminals.

2.2.1 Ports

Figure 2.2 on page 21 shows the locations of the port and power connectors on the base of the 9160 G2. The port pinouts are described in Appendix A: “Port Pinouts And Cable Diagrams”.
2.2.2 LAN Installation: Overview

Because the 9160 G2 provides Ethernet connectivity, it can be added to an existing LAN. Generally, LAN installations are handled with the help of the network administrators, as they are familiar with their network and its configuration. Once the 9160 G2 is installed, connected and powered on, the system administrator can access the unit to check the configuration and to assign the 9160 G2 its unique IP address. This may be done through the network (see “Changing The Configuration With A Web Browser” on page 23). Subsequent changes in the network, such as the addition of stations or users, would also require that the 9160 G2 configuration be changed.

Important: Once the 9160 G2 is configured and rebooted the first time, the DHCP should be disabled unless the 9160 G2 obtains its IP address from a server.

2.2.3 LAN Installation: Ethernet

The 9160 G2 is a high-performance Access Point that supports 100Mb/s Fast Ethernet LANs, as well as 10Mb/s, with both full and half duplex operation. It comes equipped with:

- A 10BaseT/100BaseT card (using a category-5 twisted pair cable, an RJ-45 connector, running at a rate of 10 or 100Mb/s). For port pinouts, please refer to Appendix A: “Port Pinouts And Cable Diagrams”.
- A 100Base-FX fiber optic port (for details see Section 2.2.3.2).

Note: The 9160 G2 does not support any connection type other than Ethernet 10BaseT, 100BaseT, and 100Base-FX.
Chapter 2: Installation Requirements

Status Indicators (LEDs)

2.2.3.1 Ethernet Cabling

The maximum cable segment length allowed between repeaters for the 9160 G2 (10BaseT/100BaseT Ethernet cabling) is 100 m.

2.2.3.2 100Base-FX Fiber Optic Ethernet Port

The 9160 G2 Wireless Gateway provides 100Base-FX fiber optic networking support. To use the fiber optic Ethernet port, the user must install a small form pluggable (SFP) 100Base-FX module in the 9160 G2 fiber expansion slot. SFPs are compact optical modular transceivers that allow high speed transmissions.

When the hardware is installed, the feature is activated: there is no configuration required for the port—the 9160 G2 software automatically detects the presence of the SFP module at start up and uses it instead of the standard 10/100BaseT port.

The module is inserted electrical interface first, under finger pressure. The SFP module is not hot-swappable. Only insert or remove it when the 9160 G2 is powered off.

At startup, the 9160 G2 will print one of the two following messages at the serial console port, depending on whether or not the SFP module is installed:

```
ixp425_eth: 100BASE-FX SFP fiber module detected
ixp425_eth: 100BASE-FX SFP fiber module not detected
```

When using the fiber optic interface, the 9160 G2 only supports 100Mb/s operation. Regardless of which Ethernet port is used, the 9160 G2 uses the same wired MAC address.

Simultaneous operation of both Ethernet ports is not supported. Use of PoE (via the 10/100BaseT port) and the fiber optic interface is supported. In this configuration, the 10/100BaseT port is only used for power.

2.2.4 Status Indicators (LEDs)

The high-performance 9160 G2 has six status indicators on the front of the enclosure, as shown in Figure 2.2 on page 21. The numbered and coloured LEDs on the front of the unit indicate the operating status for each port, as described in Table 2.1 on page 23.
2.2.5 Connecting A Video Display Terminal

An ANSI compatible video display terminal (e.g., DEC VT220 or higher), or a PC running terminal emulation, is used for diagnostic purposes.

The terminal is connected to the RS-232 port on the 9160 G2 (see Figure 2.2.2 on page 21). This port is normally set to operate at 115,200 baud, 8 bits, 1 stop bit, no parity. To comply with Part 15 of the FCC rules for a Class B computing device, only the cable supplied (P/N 19387) should be used.

2.3 Changing The Configuration With A Web Browser

The 9160 G2 Flash memory can be reconfigured remotely via the network using a standard HTML Web Browser such as MS Internet Explorer (version 4.0 or later) or Firefox. See Chapter 4: “Quick Steps For Setup And Launch” for instructions on changing the parameters and general configuration settings.
3.1 The 9160 G2 Wireless Gateway .. 27
 3.1.1 Default Settings For The 9160 G2 Wireless Gateway 27
 3.1.2 What The Access Point Does Not Provide 30
3.2 Administrator’s Computer .. 30
3.3 Wireless Client Computers ... 31
3.4 Understanding Dynamic & Static IP Addressing On The 9160 G2 Wireless Gateway 32
 3.4.1 How Does The Access Point Obtain An IP Address At Startup? 32
 3.4.2 Dynamic IP Addressing .. 33
 3.4.3 Static IP Addressing ... 33
 3.4.4 Recovering An IP Address ... 34
Chapter 3: PreLaunch Checklist
The 9160 G2 Wireless Gateway

Before you plug in and boot a new Access Point, review the following sections for a quick check of required hardware components, software, client configurations, and compatibility issues. Make sure you have everything you need ready to go for a successful launch and test of your new (or extended) wireless network.

3.1 The 9160 G2 Wireless Gateway

The 9160 G2 Wireless Gateway is a wireless communications hub for devices on your network. It provides continuous, high-speed access between your wireless and Ethernet devices in IEEE 802.11a, 802.11b, 802.11g, and 802.11a Turbo modes.

The 9160 G2 Wireless Gateway offers an out-of-the-box Guest Interface feature that allows you to configure access points for controlled guest access of the wireless network using Virtual LANs.

For more information on the Guest interface, see Chapter 14: “Setting Up Guest Access” and “A Note About Setting Up Connections For A Guest Network” on page 40.

3.1.1 Default Settings For The 9160 G2 Wireless Gateway

Table 3.1 9160 G2 Default Settings

<table>
<thead>
<tr>
<th>Option</th>
<th>Default Settings</th>
<th>Related Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Name</td>
<td>PTX9160-Wireless-AP</td>
<td>“DNS Hostname” on page 138 in “The Ethernet (Wired) Interface” on page 135</td>
</tr>
<tr>
<td>User Name</td>
<td>admin</td>
<td>The user name is read-only. It cannot be modified.</td>
</tr>
<tr>
<td>Password</td>
<td>admin</td>
<td>“Provide Network Settings” on page 49 in “Configuring Basic Settings” on page 45</td>
</tr>
</tbody>
</table>
Chapter 3: PreLaunch Checklist

Default Settings For The 9160 G2 Wireless Gateway

Table 3.1 9160 G2 Default Settings

<table>
<thead>
<tr>
<th>Option</th>
<th>Default Settings</th>
<th>Related Information</th>
</tr>
</thead>
</table>
| **Network Name (SSID)** | “TEKLOGIX” for the Internal interface
“TEKLOGIX Guest” for the Guest interface | “Review / Describe The Access Point” on page 48 in “Configuring Basic Settings” on page 45
“Configuring “Internal” Wireless LAN Settings” on page 150 in “Setting The Wireless Interface” on page 145
“Configuring “Guest” Network Wireless Settings” on page 151 in “Setting The Wireless Interface” on page 145 |
| **Network Time Protocol (NTP)** | None | “Network Time Protocol Server” on page 309 |
| **IP Address** | 192.168.1.10 | “Understanding Dynamic & Static IP Addressing On The 9160 G2 Wireless Gateway” on page 32 |
| | The default IP address is used if you do not use a Dynamic Host Configuration Protocol (DHCP) server. You can assign a new static IP address through the Administration Web pages. If you have a DHCP server on the network, then an IP address will be dynamically assigned by the server at AP startup. | |
| **Connection Type** | Dynamic Host Configuration Protocol (DHCP) | “Understanding Dynamic & Static IP Addressing On The 9160 G2 Wireless Gateway” on page 32
For information on how to re-configure the Connection Type, see “Internal Interface Settings” on page 140. |
| | If you do not have a DHCP server on the Internal network and do not plan to use one, the first thing you must do after bringing up the access point is to change the Connection Type from “DHCP” to “Static IP”.
The Guest network must have a DHCP server. | |
| **Subnet Mask** | None | “The Ethernet (Wired) Interface” on page 135 |
| | This is determined by your network setup and DHCP server configuration. | |
Table 3.1 9160 G2 Default Settings

<table>
<thead>
<tr>
<th>Option</th>
<th>Default Settings</th>
<th>Related Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio</td>
<td>On</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td>IEEE 802.11 Mode</td>
<td>802.11g or 802.11a+g</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td>802.11g Channel</td>
<td>Auto</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td>Beacon Interval</td>
<td>100</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td>DTIM Period</td>
<td>2</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td>Fragmentation Threshold</td>
<td>2346</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td>Regulatory Domain</td>
<td>FCC</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td>RTS Threshold</td>
<td>2347</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td>MAX Stations</td>
<td>2007</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td>Transmit Power</td>
<td>100 percent</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td>Rate Sets Supported (Mbps)</td>
<td>• IEEE 802.1a: 54, 48, 36, 24, 18, 12, 9, 6</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td></td>
<td>• IEEE 802.1g: 54, 48, 36, 24, 18, 12, 11, 9, 6, 5.5, 2, 1</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td></td>
<td>• IEEE 802.1b: 11, 5.5, 2, 1</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td>Rate Sets (Mbps) (Basic/Advertised)</td>
<td>• IEEE 802.1a: 24, 12, 6</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td></td>
<td>• IEEE 802.1g: 11, 5.5, 2, 1</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td></td>
<td>• IEEE 802.1b: 2, 1</td>
<td>“Configuring 802.11 Radio Settings” on page 165</td>
</tr>
<tr>
<td>Broadcast SSID</td>
<td>Allow</td>
<td>“Configuring Security Settings” on page 100.</td>
</tr>
<tr>
<td>Security Mode</td>
<td>None (plain-text)</td>
<td>“Configuring Security Settings” on page 100.</td>
</tr>
<tr>
<td>Authentication Type</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>MAC Filtering</td>
<td>Allow any station unless in list</td>
<td>“MAC Address Filtering” on page 175</td>
</tr>
</tbody>
</table>
Chapter 3: PreLaunch Checklist
What The Access Point Does Not Provide

3.1.2 What The Access Point Does Not Provide
The 9160 G2 Wireless Gateway is not designed to function as a Gateway to the Internet. To connect your Wireless LAN (WLAN) to other LANs or the Internet, you need a gateway device.

3.2 Administrator’s Computer
Configuration and administration of the 9160 G2 Wireless Gateway is accomplished through a Web-based user interface (UI). The Table 3.2 describes the minimum requirements for the administrator’s computer.

Table 3.2 Required AP Administrator Software And Hardware

<table>
<thead>
<tr>
<th>Required Components</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Ethernet Connection to the First Access Point** | The computer used to configure the first access point must be connected to the access point (either directly or through a hub) by an Ethernet cable.
For more information, see “Connect The Access Point To Network And Power” on page 38 in “Quick Steps For Setup And Launch”. |
Chapter 3: PreLaunch Checklist

Wireless Client Computers

3.3 Wireless Client Computers

The 9160 G2 Wireless Gateway provides wireless access to any client with a properly configured Wi-Fi client adaptor for the 802.11 mode in which the access point is running.

Multiple client operating systems are supported. Clients can be laptops or desktops, personal digital assistants (PDAs), or any other hand-held, portable or stationary device equipped with a Wi-Fi adaptor and supporting drivers.

In order to connect to the access point, wireless clients need the software and hardware described in Table 3.3.

Table 3.2 Required AP Administrator Software And Hardware

<table>
<thead>
<tr>
<th>Required Components</th>
<th>Description</th>
</tr>
</thead>
</table>
| Wireless Connection to the Network | After initial configuration and launch of the first access points on your new wireless network, you can make subsequent configuration changes through the Administration Web pages using a wireless connection to the “Internal” network. For wireless connection to the access point, your administration device will need Wi-Fi capability similar to that of any wireless client:
 • Portable or built-in Wi-Fi client adaptor that supports one or more of the IEEE 802.11 modes in which you plan to run the access point. (IEEE 802.11a, 802.11b, 802.11g, 802.11a Turbo modes are supported.)
 • Wireless client software such as Microsoft® Windows® XP or Funk Odyssey wireless client configured to associate with the 9160 G2 Wireless Gateway. For more details on Wi-Fi client setup, see “Wireless Client Computers” on page 31. |
| Web Browser / Operating System | Configuration and administration of the 9160 G2 Wireless Gateway is provided through a Web-based user interface hosted on the access point. We recommend using one of the following supported Web browsers to access the access point Administration Web pages:
 • Microsoft Internet Explorer version 5.5 or 6.x (with up-to-date patch level for either major version) on Microsoft Windows XP or Microsoft Windows 2000
 • Netscape® Mozilla 1.7.x on Redhat Linux version 2.4
 The administration Web browser must have JavaScript enabled to support the interactive features of the administration interface. It must also support HTTP uploads to use the firmware upgrade feature. |
| Security Settings | Ensure that security is disabled on the wireless client used to initially configure the access point. |
Chapter 3: PreLaunch Checklist
Understanding Dynamic & Static IP Addressing On The 9160 G2 Wireless Gateway

Table 3.3 Required AP Client Software And Hardware

<table>
<thead>
<tr>
<th>Required Components</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wi-Fi Client Adaptor</td>
<td>Portable or built-in Wi-Fi client adaptor that supports one or more of the IEEE 802.11 modes in which you plan to run the access point. (IEEE 802.11a, 802.11b, and 802.11g are supported.) Wi-Fi client adaptors vary considerably. The adaptor can be a PC card built in to the client device, a portable PCMCIA or PCI card (types of NICs), or an external device such as a USB or Ethernet adaptor that you connect to the client by means of a cable. The access point supports 802.11a/b/g modes, but you will probably make a decision during network design phase as to which mode to use. The fundamental requirement for clients is that they all have configured adaptors that match the 802.11 mode for which your access point(s) is configured.</td>
</tr>
<tr>
<td>Wireless Client Software</td>
<td>Client software such as Microsoft Windows Supplicant or Funk Odyssey wireless client configured to associate with the 9160 G2 Wireless Gateway.</td>
</tr>
<tr>
<td>Client Security Settings</td>
<td>Security should be disabled on the client used to do initial configuration of the access point. If the Security mode on the access point is set to anything other than plain-text, wireless clients will need to set a profile to the authentication mode used by the access point and provide a valid username and password, certificate, or similar user identity proof. Security modes are Static WEP, IEEE 802.1x, WPA with RADIUS server, and WPA2PSK. For information on configuring security on the access point, see “Configuring Security” on page 91.</td>
</tr>
</tbody>
</table>

3.4 Understanding Dynamic & Static IP Addressing On The 9160 G2 Wireless Gateway

9160 G2 Wireless Gateways are designed to auto-configure, with very little setup required for the first access point and no configuration required for additional access points subsequently joining a pre-configured cluster.

3.4.1 How Does The Access Point Obtain An IP Address At Startup?

When you deploy the access point, it looks for a network DHCP server and, if it finds one, obtains an IP Address from the DHCP server. If no DHCP server is found on the network, the AP will continue to use its default Static IP Address (192.168.1.10) until you re-assign it a new static IP address (and specify a static IP addressing policy) or until a DHCP server is brought online.
Notes: If you configure both an Internal and Guest network and plan to use a dynamic addressing policy for both, separate DHCP servers must be running on each network.

A DHCP server is a requirement for the Guest network.

3.4.2 Dynamic IP Addressing

The 9160 G2 Wireless Gateway generally expects that a DHCP server is running on the network where the AP is deployed. Most home and small business networks already have DHCP service provided either via a gateway device or a centralized server. However, if no DHCP server is present on the Internal network, the AP will use the default Static IP Address for first time startup.

Similarly, wireless clients and other network devices (such as printers) will receive their IP addresses from the DHCP server, if there is one. If no DHCP server exists on the network, you must manually assign static IP addresses to your wireless clients and other network devices.

The Guest network must have a DHCP server.

3.4.3 Static IP Addressing

The 9160 G2 Wireless Gateway ships with a default Static IP Address of 192.168.1.10. (See “Default Settings For The 9160 G2 Wireless Gateway” on page 27.) If no DHCP server is found on the network, the AP retains this static IP address at first-time startup.

After AP startup, you have the option of specifying a static IP addressing policy on 9160 G2 Wireless Gateways and assigning static IP addresses to APs on the Internal network via the access point Administration Web pages. (See information about the ‘Connection Type’ field and related fields in “Internal Interface Settings” on page 140.)

Important: If you do not have a DHCP server on the Internal network and do not plan to use one, the first thing you must do after bringing up the access point is change the Connection Type from DHCP to Static IP. You can either assign a new Static IP address to the AP or continue using the default address. We recommend assigning a new Static IP address so that if later you bring up another 9160 G2 Wireless Gateway on the same network, the IP address for each AP will be unique.
3.4.4 Recovering An IP Address

If you experience trouble communicating with the access point, you can recover a Static IP Address by resetting the AP configuration to the factory defaults (see “Resetting Factory Default Configuration” on page 316), or you can get a dynamically assigned address by connecting the AP to a network that has DHCP.
4.1 Unpack The 9160 G2 Wireless Gateway .. 37
 4.1.1 9160 G2 Wireless Gateway Hardware And Ports 37
 4.1.2 What’s Inside The 9160 G2 Wireless Gateway? 37
4.2 Connect The Access Point To Network And Power 38
 4.2.1 A Note About Setting Up Connections For A Guest Network 40
 4.2.1.1 Hardware Connections For A Guest VLAN 40
4.3 Power On The Access Point .. 40
4.4 Log On To The Administration Web Pages 40
 4.4.1 Viewing Basic Settings For Access Points 41
4.5 Configure ‘Basic Settings’ And Start The Wireless Network 42
 4.5.1 Default Configuration .. 42
4.6 What’s Next? ... 42
 4.6.1 Make Sure The Access Point Is Connected To The LAN 42
 4.6.2 Test LAN Connectivity With Wireless Clients 43
 4.6.3 Secure And Fine-tune The Access Point Using Advanced Features 43
Setting up and deploying one or more 9160 G2 Wireless Gateways is in effect creating and launching a wireless network. The Basic Settings Administration Web page simplifies this process. Here is a step-by-step guide to setting up your 9160 G2 Wireless Gateways and the resulting wireless network. Familiarize yourself with the Chapter 3: “PreLaunch Checklist” if you haven’t already.

The topics covered here are:

- Step 1: **Unpack The 9160 G2 Wireless Gateway**.
- Step 2: **Connect The Access Point To Network And Power**.
- Step 3: **Power On The Access Point**.
- Step 5: **Log On To The Administration Web Pages**.
- Step 6: **Configure ‘Basic Settings’ And Start The Wireless Network**.
- **What’s Next?**

4.1 Unpack The 9160 G2 Wireless Gateway

Unpack the 9160 G2 Wireless Gateway and familiarize yourself with its hardware ports, associated cables, and accessories.

4.1.1 9160 G2 Wireless Gateway Hardware And Ports

The 9160 G2 Wireless Gateway includes:

- Ethernet port for connection to the Local Area Network (LAN) via Ethernet network cable.
- Power port and power adaptor.
- Power on/off switch.
- Either one or two radios depending on which model of the product you have.

4.1.2 What’s Inside The 9160 G2 Wireless Gateway?

The 9160 G2 Wireless Gateway, as an **Access Point** (AP), is a single-purpose computer designed to function as a wireless hub. Inside the access point is a Wi-Fi radio system and a microprocessor. The access point boots from FlashROM using powered firmware with the configurable, runtime features summarized in “Overview Of The 9160 G2 Wireless Gateway” on page 7.

As new features and enhancements become available, you can upgrade the firmware to add new functionality and performance improvements to the access points that make up your wireless network. (See “Upgrading The Firmware” on page 317.)
4.2 Connect The Access Point To Network And Power

The next step is to set up the network and power connections.

1. Do one of the following to create an Ethernet connection between the access point and the computer:

 Connect one end of an Ethernet cable to the network port on the access point and the other end to the same hub where your PC is connected. (See Figure 4.2 on page 39.)

 Or

 Connect one end of a crossover\(^1\) cable to the network port on the access point and the other end of the cable to the Ethernet port on the PC. (See Figure 2 on page 39.)

Notes: If you use a hub, the device you use must permit broadcast signals from the access point to reach all other devices on the network. A standard hub should work fine. Some switches, however, do not allow directed or subnet broadcasts through. You may have to configure the switch to allow directed broadcasts.

For initial configuration with a direct Ethernet connection and no DHCP server, be sure to set your PC to a static IP address in the same subnet as the default IP address on the access point. (The default IP address for the access point is 192.168.1.10.)

If for initial configuration you use a direct Ethernet (wired) connection (via crossover cable) between the access point and the computer, you will need to reconfigure the cabling for subsequent startup and deployment of the access point so that the access point is no longer connected directly to the PC but instead is connected to the LAN (either via a Hub as shown in Figure 4.2, or directly).

\(^1\)If the access point hardware supports MDI and MDI-X auto functions, you can use a regular Ethernet cable for a direct connection from PC to AP. A crossover cable will work also, but is not necessary if you have MDI and MDI-X auto sensing ports.
Chapter 4: Quick Steps For Setup And Launch
Connect The Access Point To Network And Power

2. Connect the power adaptor to the power port on the back of the access point, and then plug the other end of the power cord into a power outlet (preferably, via a surge protector).
4.2.1 A Note About Setting Up Connections For A Guest Network

The 9160 G2 Wireless Gateway offers an out-of-the-box Guest Interface that allows you to configure an access point for controlled guest access to the network. The same access point can function as a bridge for two different wireless networks: a secure “Internal” LAN and a public “Guest” network. This can be done virtually, by defining two different Virtual LANs via the Administration UI.

For information on configuring Guest interface settings on the Administration UI, see Chapter 14: “Setting Up Guest Access”.

4.2.1.1 Hardware Connections For A Guest VLAN

If you plan to configure a guest network using VLANs, do the following:

- Connect a network port on the access point to a VLAN-capable switch.
- Define VLANs on that switch.

4.3 Power On The Access Point

The 9160 G2 Wireless Gateway powers on and initializes when you plug it in.

4.4 Log On To The Administration Web Pages

When you go to the IP address of the 9160 G2 Wireless Gateway Administration Web pages, you are prompted for a user name and password.

The defaults for user name and password are as follows.
Chapter 4: Quick Steps For Setup And Launch

Viewing Basic Settings For Access Points

Enter the user name and password and click OK.

4.4.1 Viewing Basic Settings For Access Points

When you first log in, the Basic Settings page for 9160 G2 Wireless Gateway administration is displayed. These are global settings for all access points that are members of the cluster and, if automatic configuration is specified, for any new access points that are added later.

Figure 4.3 Access Point Basic Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>User name</td>
<td>admin</td>
</tr>
<tr>
<td>Password</td>
<td>admin (The user name is read-only. It cannot be modified.)</td>
</tr>
</tbody>
</table>

Table 4.1 Username And Password
Chapter 4: Quick Steps For Setup And Launch

Configure ‘Basic Settings’ And Start The Wireless Network

4.5 Configure ‘Basic Settings’ And Start The Wireless Network

Provide a minimal set of configuration information by defining the basic settings for your wireless network. These settings are all available on the Basic Settings page of the Administration Web interface, and are categorized into steps 1-3 on the Web page.

For a detailed description of these “Basic Settings” and how to properly configure them, please see Chapter 5: “Configuring Basic Settings”. Summarized briefly here, the steps are:

1. Review Description of this Access Point.
 Provide IP addressing information. For more information, see “Review / Describe The Access Point” on page 48.
2. Provide Network Settings.
 Provide a new administrator password for clustered access points. For more information, see “Provide Network Settings” on page 49.
 Click the Update button to activate the wireless network with these new settings. For more information, see “Update Basic Settings” on page 50.

4.5.1 Default Configuration

If you follow the steps above and accept all the defaults, the access point will have the default configuration described in “Default Settings For The 9160 G2 Wireless Gateway” on page 27.

4.6 What’s Next?

Next, make sure the access point is connected to the LAN, bring up some wireless clients, and connect the clients to the network. Once you have tested the basics of your wireless network, you can enable more security and fine-tune by modifying advanced configuration features on the access point.

4.6.1 Make Sure The Access Point Is Connected To The LAN

If you configured the access point and administrator PC by connecting both into a network hub, then your access point is already connected to the LAN. That’s it—you’re up and running! The next step is to test some wireless clients.

If you configured the access point using a direct wired connection via crossover cable from your computer to the access point, do the following:

1. Disconnect the crossover cable from the computer and the access point.
2. Connect a regular Ethernet cable from the access point to the LAN.
3. Connect your computer to the LAN either via Ethernet cable or wireless client card.

4.6.2 Test LAN Connectivity With Wireless Clients
Test the 9160 G2 Wireless Gateway by trying to detect it and associate with it from some wireless client devices. (See “Wireless Client Computers” on page 31 in the PreLaunch Checklist for information on requirements for these clients.)

4.6.3 Secure And Fine-tune The Access Point Using Advanced Features
Once you have the wireless network up and running and have tested against the access point with some wireless clients, you can add in more layers of security, add users, configure a Guest interface, and fine-tune performance settings.
CONFIGURING BASIC SETTINGS

5.1 Navigating To Basic Settings .. 47
5.2 Review / Describe The Access Point 48
5.3 Provide Network Settings .. 49
5.4 Update Basic Settings .. 50
5.5 Basic Settings For A Standalone Access Point 50
5.6 Your Network At A Glance: Understanding Indicator Icons 50
5.1 Navigating To Basic Settings

To configure initial settings, click *Basic Settings*.

If you type the IP address of the access point into your browser, the *Basic Settings* page is the default page that is displayed.

Figure 5.1 Basic Settings

Fill in the fields on the *Basic Settings* page as described in “Review / Describe The Access Point” on page 48.
5.2 Review / Describe The Access Point

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Shows IP address assigned to this access point. This field is not editable because the IP address is already assigned (either via DHCP, or statically through the Ethernet (wired) settings as described in “Guest Interface Settings” on page 143).</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Shows the MAC address of the access point.</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>Version information about the firmware currently installed on the access point. As new versions of the 9160 G2 Wireless Gateway firmware become available, you can upgrade the firmware on your access points to take advantages of new features and enhancements. For instructions on how to upgrade the firmware, see “Upgrading The Firmware” on page 317.</td>
</tr>
</tbody>
</table>
5.3 Provide Network Settings

Table 5.2 Administrator Password And Wireless Network

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Password</td>
<td>Enter the current administrator password. You must correctly enter the current password before you are able to change it.</td>
</tr>
<tr>
<td>New Password</td>
<td>Enter a new administrator password. The characters you enter will be displayed as "*" characters to prevent others from seeing your password as you type. The Administrator password must be an alphanumeric string of up to 8 characters. Do not use special characters or spaces. As an immediate first step in securing your wireless network, we recommend that you change the administrator password from the default.</td>
</tr>
<tr>
<td>Confirm New Password</td>
<td>Re-enter the new administrator password to confirm that you typed it as intended.</td>
</tr>
<tr>
<td>Network Name (SSID)</td>
<td>Enter a name for the wireless network as a character string. This name will apply to all access points on this network. As you add more access points, they will share this SSID. The Service Set Identifier (SSID) is an alphanumeric string of up to 32 characters. Note: If you are connected as a wireless client to the same AP that you are administering, resetting the SSID will cause you to lose connectivity to the AP. You will need to reconnect to the new SSID after you save this new setting.</td>
</tr>
</tbody>
</table>

Note: The 9160 G2 Wireless Gateway is not designed for multiple, simultaneous configuration changes. If you have a network that includes multiple access points, and more than one administrator is logged on to the Administration Web pages and making changes to the configuration, all access points in the cluster will stay in sync, but there is no guarantee that all configuration changes specified by multiple users will be applied.
5.4 Update Basic Settings

When you have reviewed the new configuration, click **Update** to apply the settings and deploy the access points as a wireless network.

5.5 Basic Settings For A Standalone Access Point

The *Basic Settings* tab for a standalone access point indicates only that the current mode is standalone. If you want to add the current access point to an existing cluster, navigate to the *Cluster > Access Point* tab.

For more information see “Starting Clustering” on page 60.

5.6 Your Network At A Glance: Understanding Indicator Icons

All the Cluster settings tabs on the Administration Web pages include visual indicator icons showing current network activity.

5.7 Viewing the User Interface with Different Colours and Style

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When one or more APs on your network are available for service, the “Wireless Network Available” icon is shown. The clustering icon indicates whether the current access point is “Clustered” or “Not Clustered” (that is, standalone or when a state of change is in progress). For information about clustering, see “Understanding Clustering” on page 55.</td>
</tr>
</tbody>
</table>
Table 5.3 Indicator Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The number of access points available for service on this network is indicated by the “Access Points” icon. For information about managing access points, see Chapter 6: “Managing Access Points & Clusters”.</td>
</tr>
<tr>
<td></td>
<td>The number of client user accounts created and enabled on this network is indicated by the “User Accounts” icon. For information about setting up user accounts on the access point for use with the built-in authentication server, see Chapter 7: “Managing User Accounts”. See also “IEEE 802.1x” on page 108 and “WPA Enterprise” on page 113, which are the two security modes that offer the option of using the built-in authentication server.</td>
</tr>
</tbody>
</table>

The Administration Web pages for the 9160 G2 Wireless Gateway are provided in two different color themes and styles: (1) Corporate style and (2) Home style.

You can change the style of the UI you are viewing to suit your preference.

To switch styles, find the “Style: Corporate, Home” buttons at the bottom of any of the Administration Web pages, and click on either Corporate or Home.
MANAGING ACCESS POINTS & CLUSTERS

6.1 Overview ... 55
6.2 Navigating To Access Points Management 55
6.3 Understanding Clustering .. 55
 6.3.1 What Is A Cluster? 56
 6.3.2 How Many APs Can A Cluster Support? 56
 6.3.3 What Kinds Of APs Can Cluster Together? 56
 6.3.4 What is the Relationship of the Coordinator AP to Other Cluster Members? 56
 6.3.5 Which Settings Are/Are Not Shared As Part Of The Cluster Configuration? 57
 6.3.5.1 Settings Shared In The Cluster Configuration 57
 6.3.5.2 Settings Not Shared By The Cluster 57
 6.3.6 Cluster Formation 58
 6.3.7 Cluster Size And Membership 58
 6.3.8 Intra-Cluster Security 58
6.4 Understanding Access Point Settings 58
 6.4.1 Modifying The Location Description 60
 6.4.2 Setting The Cluster Name 60
6.5 Starting Clustering ... 60
6.6 Stopping Clustering ... 61
6.7 Configuration Information For A Specific AP And Managing Standalone APs ... 61
 6.7.1 Navigating To An AP By Using Its IP Address In A URL 61
6.8 Session Monitoring .. 62
 6.8.1 Navigating to Session Monitoring 62
 6.8.2 Understanding Session Monitoring Information 62
 6.8.3 Viewing Session Information for Access Points 64
 6.8.4 Sorting Session Information 64
 6.8.5 Refreshing Session Information 64
6.1 Overview

The 9160 G2 Wireless Gateway shows current basic configuration settings for clustered access points (location, IP address, MAC address, status, and availability) and provides a way of navigating to the full configuration for specific APs if they are cluster members. Standalone access points or those which are not members of this cluster do not show up in this listing. To configure standalone access points, you must know the IP address of the access point and use it in a URL (http://IPAddressOfAccessPoint).

Note: The 9160 G2 Wireless Gateway is not designed for multiple, simultaneous configuration changes. If you have a network that includes multiple access points, and more than one administrator is logged on to the Administration Web pages and making changes to the configuration, all access points in the cluster will stay in sync but there is no guarantee that all configuration changes specified by multiple users will be applied.

6.2 Navigating To Access Points Management

To view or edit information on access points in a cluster, click the Cluster > Access Points tab.

Figure 6.1 Cluster Settings For Access Points

6.3 Understanding Clustering

A key feature of the 9160 G2 Wireless Gateway is the ability to form a dynamic, configuration-aware group (called a cluster) with other 9160 G2 Wireless Gateways in a network in the same subnet. Access points can participate in a self-organizing cluster which makes it easier for you to deploy, administer, and secure your wireless network. The cluster provides
6.3.1 What Is A Cluster?

A cluster is a group of access points which are coordinated as a single group via 9160 G2 Wireless Gateway administration. You can have multiple clusters on the same subnet if they have different cluster “names”.

6.3.2 How Many APs Can A Cluster Support?

Currently, there is no hard limit on the number of access points in a cluster. Validation testing has verified a dozen or more supported on the same subnet. You can include as many APs as needed in a cluster at any one time.

6.3.3 What Kinds Of APs Can Cluster Together?

A single 9160 G2 Wireless Gateway can form a cluster with itself (a “cluster of one”) and with other 9160 G2 Wireless Gateways. In order to be members of the same cluster, access points must be:

- Compatible devices as designated by the manufacturer (access points must have compatible design features).
- Of the same radio configuration (all one-radio APs or all two-radio APs).
- Of the same band configuration (all single-band APs or all dual-band APs).
- On the same LAN.

Having a mix of APs on the network does not adversely affect 9160 G2 Wireless Gateway clustering in any way. However, it is helpful to understand the clustering behaviour for administration purposes:

- Access points joining the cluster must be named the same. For more information on setting the cluster name, see page 60.
- Access points of other brands will not join the cluster. These APs should be administered with their own associated Administration tools.

6.3.4 What is the Relationship of the Coordinator AP to Other Cluster Members?

Cluster configuration, sharing of configuration updates, and tracking of new APs joining or leaving the group is managed by a coordinator AP which is chosen from among the cluster members. If a coordinator AP becomes unavailable, a new cluster member is assigned coordinator responsibilities. This process is fully automated based on a ruleset that takes into
account seniority, cluster size, and other factors to determine which AP is best suited to the task at any given time.

There is no need to track or attend to which AP is the coordinator because this status is subject to change at any time depending on the needs of the cluster. We mention the concept here only because you may notice slight differences between configuration information displayed on Administration Web pages for a coordinator AP versus other cluster members.

6.3.5 **Which Settings Are/Are Not Shared As Part Of The Cluster Configuration?**

Most configuration settings defined via the 9160 G2 Wireless Gateway Administration Web pages will be propagated to cluster members as a part of the *cluster configuration*.

6.3.5.1 **Settings Shared In The Cluster Configuration**

The cluster configuration includes:

- Network name (SSID).
- Administrator password.
- User accounts and authentication.
- Wireless interface settings.
- Guest Welcome screen settings.
- Network Time Protocol (NTP) settings.
- Radio settings. Only Mode, Channel, Fragmentation Threshold, RTS Threshold, and Rate Sets are synchronized across the cluster. Beacon Interval, DTIM Period, Maximum Stations, and Transmit Power do not cluster.
- Security settings.
- QoS queue parameters.
- MAC address filtering.

6.3.5.2 **Settings Not Shared By The Cluster**

The few exceptions (settings *not* shared among clustered access points) are the following, most of which by nature must be unique:

- IP addresses.
- MAC addresses.
- Location descriptions.
6.3.6 Cluster Formation

A cluster is formed when the first AP is deployed with clustering enabled. The AP attempts to rendezvous with an existing cluster. If it is unable to locate any other APs on the subnet with the same cluster name, then it establishes a new cluster on its own.

6.3.7 Cluster Size And Membership

Currently, there is no hard limit on the number of APs in a cluster. Validation testing has verified a dozen or more supported on the same subnet. You can include as many APs as needed in a cluster at any one time.

Cluster membership is determined by:

- Cluster Name - APs with the same name will join the same cluster (see “Setting The Cluster Name” on page 60).
- Whether clustering is enabled - Only APs for which clustering is enabled will join a cluster (see “Starting Clustering” on page 60 and “Stopping Clustering” on page 61).

6.3.8 Intra-Cluster Security

For purposes of ease-of-use, the clustering component is designed to let new devices join a cluster without strong authentication. However, communications of all data between access points in a cluster is protected against casual eavesdropping using Secure Sockets Layer (SSL). The assumption is that the private wired network to which the devices are connected is secure. Both the cluster configuration file and the user database are transmitted among access points using SSL.

6.4 Understanding Access Point Settings

The Access Points tab provides information about all access points in the cluster. From this tab, you can view location descriptions, MAC addresses, IP addresses, enable (activate) or
disable (deactivate) clustered access points, and remove access points from the cluster. You can also modify the location description for an access point. The IP address links provide a way to navigate to configuration settings and data on an access point. Standalone access points (those which are not members of the cluster) are not shown on this page.

Table 6.1 describes the access point settings and information display in detail.

Table 6.1 Access Point Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Description of where the access point is physically located.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Media Access Control (MAC) address of the access point.</td>
</tr>
<tr>
<td></td>
<td>A MAC address is a permanent, unique hardware address for any device that</td>
</tr>
<tr>
<td></td>
<td>represents an interface to the network. The MAC address is assigned by the</td>
</tr>
<tr>
<td></td>
<td>manufacturer. You cannot change the MAC address. It is provided here for</td>
</tr>
<tr>
<td></td>
<td>informational purposes as a unique identifier for the access point.</td>
</tr>
<tr>
<td></td>
<td>The address shown here is the MAC address for the bridge (br0). This is the</td>
</tr>
<tr>
<td></td>
<td>address by which the AP is known externally to other networks.</td>
</tr>
<tr>
<td></td>
<td>To see MAC addresses for Guest and Internal interfaces on the AP, see the</td>
</tr>
<tr>
<td></td>
<td>Status > interfaces tab.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Specifies the IP address for the access point. Each IP address is a link to</td>
</tr>
<tr>
<td></td>
<td>the Administration Web pages for that access point. You can use the links</td>
</tr>
<tr>
<td></td>
<td>to navigate to the Administration Web pages for a specific access point.</td>
</tr>
<tr>
<td></td>
<td>This is useful for viewing data on a specific access point to make sure a</td>
</tr>
<tr>
<td></td>
<td>cluster member is picking up cluster configuration changes, to configure</td>
</tr>
<tr>
<td></td>
<td>advanced settings on a particular access point, or to switch a standalone</td>
</tr>
<tr>
<td></td>
<td>access point to cluster mode.</td>
</tr>
</tbody>
</table>
6.4.1 **Modifying The Location Description**

To make modifications to the location description:

1. Navigate to the Cluster > Access Points tab.
2. Under the Clustering Options section, type the new location of the AP in the Location field.
3. Click the Update button to apply the changes.

6.4.2 **Setting The Cluster Name**

To set the name of the cluster you want your AP to join, do the following:

1. Navigate to the Cluster > Access Points tab.
2. Under the Clustering Options section, type the new cluster name in the Cluster Name field.
3. Click the Update button to apply the changes.

Note: If you want multiple APs to join a particular cluster, all these APs should have the same Cluster Name specified in the Cluster Name field. If the cluster name is different, the AP will not be able to join the cluster.

6.5 **Starting Clustering**

To start clustering and add a particular access point to a cluster, do the following.

1. Go to the Administration Web pages for the standalone access point. (See “Navigating To An AP By Using Its IP Address In A URL” on page 61.) The Administration Web pages for the standalone access point are displayed.
2. Click the Cluster > Access Points tab for the standalone access point.
3. Click the Start Clustering button. The access point is now a cluster member. It appears in the list of clustered access points on the Cluster > Access Points tabbed page.

Note: In some situations it is possible for the cluster to become out of sync. If after adding an access point to the cluster, the AP list does not reflect the added AP or shows an incomplete display; refer to the information on Cluster Recovery in Appendix C: “Troubleshooting”.
6.6 Stopping Clustering

To stop clustering and remove a particular access point from a cluster, do the following.

1. Go to the Administration Web pages for the access point you want to remove from the cluster.
2. Click the Cluster > Access Points tab.
3. Click the Stop Clustering button to remove the access point from the Cluster.

The change will be reflected under Status for that access point; the access point will now show as standalone (instead of cluster).

Note: In some situations it is possible for the cluster to become out of sync. If after removing an access point from the cluster, the AP list still reflects the deleted AP or shows an incomplete display, refresh your browser. If you still experience problems, refer to the information on Cluster Recovery in Appendix C: “Troubleshooting”.

6.7 Configuration Information For A Specific AP And Managing Standalone APs

In general, the 9160 G2 Wireless Gateway is designed for central management of clustered access points. For access points in a cluster, all access points in the cluster reflect the same configuration. In this case, it does not matter which access point you actually connect to for administration.

There may be situations, however, when you want to view or manage information on a particular access point. For example, you might want to check status information such as client associations or events for an access point. Or you might want to configure and manage features on an access point that is running in standalone mode. In these cases, you can navigate to the Administration Web interface for individual access points by clicking the IP address links on the Access Point’s tab.

All clustered access points are shown on the Cluster > Access Points page. To navigate to clustered access points, you can simply click on the IP address for a specific cluster member shown in the list.

6.7.1 Navigating To An AP By Using Its IP Address In A URL

You can also link to the Administration Web pages of a specific access point by entering the IP address for that access point as a URL directly into a Web browser address bar in the following form:

http://IPAddressOfAccessPoint
where IP\text{AddressOfAccessPoint} is the address of the particular access point you want to monitor or configure. For standalone access points, this is the only way to navigate to their configuration information.

6.8 Session Monitoring

The 9160 G2 Wireless Gateway provides real-time session monitoring information including which clients are associated with a particular access point, data rates, transmit/receive statistics, signal strength, and idle time.

6.8.1 Navigating to Session Monitoring

To view session monitoring information, click the **Cluster > Sessions** tab.

![Session Monitoring Information](image)

6.8.2 Understanding Session Monitoring Information

The **Sessions** page shows information on client stations associated with access points in the cluster. Each client is identified by user name and user MAC address, along with the AP (location) to which it is currently connected.

To view a particular statistic for client sessions, select an item from the Display drop-down list and click **Go**. You can view information on Idle Time, Data Rate, Signal, Utilization, and so on; all of which are described in detail in the Table 6.2 on page 63.

A “session” in this context is the period of time in which a user on a client device (station) with a unique MAC address maintains a connection with the wireless network. The session begins when the client logs on to the network, and the session ends when the client either logs off intentionally or loses the connection for some other reason.
Understanding Session Monitoring Information

Note: A session is not the same as an association, which describes a client connection to a particular access point. A client network connection can shift from one clustered AP to another within the context of the same session. A client station can roam between APs and maintain the session.

For information about monitoring associations and link integrity monitoring, see “Associated Wireless Clients” on page 128.

Table 6.2 Session Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name</td>
<td>Indicates the client user name of IEEE 802.1x clients.</td>
</tr>
<tr>
<td></td>
<td>Note: This field is relevant only for clients that are connected to APs using IEEE 802.1x security mode and local authentication server. (For more information about this mode, see “IEEE 802.1x” on page 108.) For clients of APs using IEEE 802.1x with RADIUS server or other security modes, no user name will be shown here.</td>
</tr>
<tr>
<td>AP Location</td>
<td>Indicates the location of the access point.</td>
</tr>
<tr>
<td></td>
<td>This is derived from the location description specified on the Basic Settings tab.</td>
</tr>
<tr>
<td>User MAC Address</td>
<td>Indicates the MAC address of the user’s client device (station).</td>
</tr>
<tr>
<td></td>
<td>A MAC address is a hardware address that uniquely identifies each node of a network.</td>
</tr>
<tr>
<td>Idle Time</td>
<td>Indicates the amount of time this station has remained inactive.</td>
</tr>
<tr>
<td></td>
<td>A station is considered to be “idle” when it is not receiving or transmitting data.</td>
</tr>
<tr>
<td>Data Rate</td>
<td>The speed at which this access point is transferring data to the specified client.</td>
</tr>
<tr>
<td></td>
<td>The data transmission rate is measured in megabits per second (Mbps).</td>
</tr>
<tr>
<td></td>
<td>This value should fall within the range of the advertised rate set for the IEEE 802.1x mode in use on the access point. For example, 6 to 54Mbps for 802.11a.</td>
</tr>
<tr>
<td>Signal</td>
<td>Indicates the strength of the radio frequency (RF) signal the client receives from the access point.</td>
</tr>
<tr>
<td></td>
<td>The measure used for this is an IEEE 802.1x value known as Received Signal Strength Indication (RSSI), and will be a value between 0 and 100.</td>
</tr>
<tr>
<td></td>
<td>RSSI is determined by a an IEEE 802.1x mechanism implemented on the network interface card (NIC) of the client station.</td>
</tr>
<tr>
<td>Utilization</td>
<td>Utilization rate for this station.</td>
</tr>
<tr>
<td></td>
<td>For example, if the station is “active” (transmitting and receiving data) 90% of the time and inactive 10% of the time, its “utilization rate” is 90%.</td>
</tr>
</tbody>
</table>
6.8.3 Viewing Session Information for Access Points

You can view session information for all access points on the network at the same time, or set the display to show session information for a specified access point chosen from the drop-down menu at the top of the screen.

To view information on all access points, select the Show all access points radio button at the top of the page.

To view session information on a particular access point, select the Show only this access point radio button and choose the access point name from the drop-down menu.

6.8.4 Sorting Session Information

To order (sort) the information shown in the tables by a particular indicator, click on the column label by which you want to order things. For example, if you want to see the table rows ordered by Utilization rate, click on the Utilization column label. The entries will be sorted by Utilization rate.

6.8.5 Refreshing Session Information

You can force an update of the information displayed on the Session Monitoring page by clicking the Refresh button.
MANAGING USER ACCOUNTS

7.1 Overview .. 67

7.2 Navigating To User Management 67
 7.2.1 Viewing User Accounts ... 68
 7.2.2 Adding A User .. 68
 7.2.3 Editing A User Account ... 69
 7.2.4 Enabling And Disabling User Accounts 70
 7.2.5 Enabling A User Account ... 70
 7.2.6 Disabling A User Account .. 70
 7.2.7 Removing A User Account .. 70

7.3 Backing Up And Restoring A User Database 70
 7.3.1 Backing Up The User Database 70
 7.3.2 Restoring A User Database From A Backup File 71
7.1 Overview
The 9160 G2 Wireless Gateway includes user management capabilities for controlling client access to access points.

User management and authentication must always be used in conjunction with the following two security modes, which require use of a RADIUS server for user authentication and management.

- IEEE 802.1x mode (see “IEEE 802.1x” on page 108 in Chapter 10: “Configuring Security”).
- WPA with RADIUS mode (see “WPA Enterprise” on page 113 in Chapter 10: “Configuring Security”).

You have the option of using either the internal RADIUS server embedded in the 9160 G2 Wireless Gateway or an external RADIUS server that you provide. If you use the embedded RADIUS server, use the Administration Web page on the access point to set up and manage user accounts. If you are using an external RADIUS server, you will need to set up and manage user accounts on the Administrative interface for that server.

On the User Management page, you can create, edit, remove, and view client user accounts. Each user account consists of a user name and password. The set of users specified here represent approved clients that can log in and use one or more access points to access local, and possibly external, networks via your wireless network.

Note: Users specified here are clients of the access point(s) who use the APs as a connectivity hub, not administrators of the wireless network. Only those with the administrator username and password and knowledge of the administration URL can log in as an administrator and view or modify configuration settings.

7.2 Navigating To User Management
To set up or modify user accounts, click the User Management tab.
Chapter 7: Managing User Accounts

7.2.1 Viewing User Accounts

User accounts are shown at the top of the screen under User Accounts... The Username, Real name, and Status (enabled or disabled) of the user are shown. You make modifications to an existing user account by first selecting the checkbox next to a user name and then choosing an action. (See “Editing A User Account” on page 69.)

7.2.2 Adding A User

To create a new user, do the following:

1. Under Add a User..., provide information in the following fields.
Table 7.1 New User Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>Provide a username. Usernames are alphanumeric strings of up to 237 characters. Do not use special characters or spaces.</td>
</tr>
<tr>
<td>Real name</td>
<td>For information purposes, provide the user’s full name. There is a 256 character limit on real names.</td>
</tr>
<tr>
<td>Password</td>
<td>Specify a password for this user. Passwords are alphanumeric strings of up to 256 characters. Do not use special characters or spaces.</td>
</tr>
</tbody>
</table>

2. When you have filled in the fields, click **Add Account** to add the account. The new user is then displayed in **User Accounts**... The user account is **enabled** by default when you first create it.

Note: A limit of 100 user accounts per access point is imposed by the Administration user interface. Network usage may impose a more practical limit, depending upon the demand from each user.

7.2.3 Editing A User Account

Once you have created a user account, it is displayed under **User Accounts**... at the top of the **User Management** Administration Web page. To make modifications to an existing user account, first click the checkbox next to the username so that the box is checked.

User Accounts...

To enable or disable a user, click the "Enable" or "Disable" button. Likewise, to remove a user, click the "Remove" button. Ensure that you have selected at least one user prior to any of these actions.

Note: These user accounts apply only when the security mode is set to "IEEE 802.11a" or "WPA with RADIUS" and the built-in authentication server is chosen. See the Help panel for more information.

<table>
<thead>
<tr>
<th>Edit</th>
<th>Username</th>
<th>Real name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Engineer</td>
<td>Mary Smith</td>
<td>enabled</td>
</tr>
<tr>
<td></td>
<td>Manager</td>
<td>Tom Jones</td>
<td>enabled</td>
</tr>
<tr>
<td></td>
<td>Tester</td>
<td>Joe Blogs</td>
<td>enabled</td>
</tr>
</tbody>
</table>

Selected users: Enable Disable Remove

[backup or restore the user database]
Then, choose an action such as **Edit**, **Enable**, **Disable**, or **Remove**.

7.2.4 Enabling And Disabling User Accounts

A user account must be enabled for the user to log on as a client and use the access point.

You can **Enable** or **Disable** any user account. With this feature, you can maintain a set of user accounts and authorize or prevent users from accessing the network without having to remove or re-create accounts. This can come in handy in situations where users have an occasional need to access the network. For example, contractors who do work for your company on an intermittent but regular basis might need network access for 3 months at a time, then be off for 3 months, and back on for another assignment. You can enable and disable these user accounts as needed, and control access as appropriate.

7.2.5 Enabling A User Account

To enable a user account, click the checkbox next to the username and click **Enable**. A user with an account that is **enabled** can log on to the wireless access points in your network as a client.

7.2.6 Disabling A User Account

To disable a user account, click the checkbox next to the username and click **Disable**. A user with an account that is **disabled** cannot log on to the wireless access points in your network as a client. However, the user remains in the database and can be enabled later as needed.

7.2.7 Removing A User Account

To remove a user account, click the checkbox next to the username and click **Remove**. If you think you might want to add this user back in at a later date, you might consider disabling the user rather than removing the account altogether.

7.3 Backing Up And Restoring A User Database

You can save a copy of the current set of user accounts to a backup configuration file. The backup file can be used at a later date to restore the user accounts on the AP to the previously saved configuration.

7.3.1 Backing Up The User Database

To create a backup copy of the user accounts for this access point:
Chapter 7: Managing User Accounts

Restoring A User Database From A Backup File

1. Click the [backup or restore the user database] link.

 A File Download or Open dialog is displayed.

2. Choose the Save option on this first dialog.

 This brings up a file browser.

 Use the file browser to navigate to the directory where you want to save the file, and click OK to save the file.

 You can keep the default file name (wirelessUsers.ubk) or rename the backup file, but be sure to save the file with a .ubk extension.

7.3.2 Restoring A User Database From A Backup File

To restore a user database from a backup file:

1. Select the backup configuration file you want to use, either by typing the full path and file name in the Restore field or click Browse and select the file.

 (Only those files that were created with the User Database Backup function and saved as .ubk backup configuration files are valid to use with Restore; for example, wirelessUsers.ubk.)

2. Click the Restore button.

 When the backup restore process is complete, a message is shown to indicate that the user database has been successfully restored. (This process is not time-consuming; the restore should complete almost immediately.)

 Click the User Management tab to see the restored user accounts.
8 CHANNEL MANAGEMENT

8.1 Navigating To Channel Management .. 75
8.2 Understanding Channel Management 75
 8.2.1 How It Works In A Nutshell .. 75
 8.2.2 For The Curious: More About Overlapping Channels 76
 8.2.3 Example: A Network Before And After Channel Management 76
8.3 Configuring And Viewing Channel Management Settings 77
 8.3.1 Stopping/Starting Automatic Channel Assignment 78
 8.3.2 Viewing Current Channel Assignments And Setting Locks 78
 8.3.3 Viewing Last Proposed Set Of Changes 79
 8.3.4 Configuring Advanced Settings (Customizing/Scheduling Channel Plans) 79
8.1 Navigating To Channel Management

To view session monitoring information, click the Cluster > Channel Management tab.

Figure 8.1 Managing Channel Assignments

8.2 Understanding Channel Management

When Channel Management is enabled, the 9160 G2 Wireless Gateway automatically assigns radio channels used by clustered access points to reduce mutual interference (or interference with other access points outside of its cluster). This maximizes Wi-Fi bandwidth and helps maintain the efficiency of communication over your wireless network.

(You must start channel management to get automatic channel assignments; it is disabled by default on a new AP. See “Stopping/Starting Automatic Channel Assignment” on page 78.)

8.2.1 How It Works In A Nutshell

At a specified interval (the default is 1 hour) or on demand (click Update), the Channel Manager maps APs to channel use and measures interference levels in the cluster. If significant channel interference is detected, the Channel Manager automatically re-assigns some or all of the APs to new channels per an efficiency algorithm (or automated channel plan).
8.2.2 For The Curious: More About Overlapping Channels

The radio frequency (RF) broadcast Channel defines the portion of the radio spectrum that the radio on the access point uses for transmitting and receiving. The range of available channels for an access point is determined by the IEEE 802.11 mode (also referred to as band) of the access point.

IEEE 802.11b/802.11g modes (802.11 b/g) support use of channels 1 through 11 inclusive, while IEEE 802.11a mode supports a larger set of non-consecutive channels (36, 40, 44, 48, 52, 56, 60, 64, 149, 153, 157, 161, 165).

Interference can occur when multiple access points within range of each other are broadcasting on the same or overlapping channels. The impact of this interference on network performance can intensify during busy times when a large amount of data and media traffic are competing for bandwidth.

The Channel Manager detects which bands (b/g or a) clustered APs are on, and uses a predetermined collection of channels that will not mutually interfere. For the “b/g” radio band, the classical set of non-interfering channels is 1, 6, 11. Channels 1, 4, 8, 11 produce minimal overlap. A similar set of non-interfering channels is used for the “a” radio band, which includes all channels for that mode since they are not overlapping.

8.2.3 Example: A Network Before And After Channel Management

Without automated channel management, channel assignments to clustered APs might be made on consecutive channels, which would overlap and cause interference. For example, AP1 could be assigned to channel 6, AP2 to channel 6, and AP3 to channel 5 as shown in Figure 8.2.

Figure 8.2 Without Automatic Channel Management
With automated channel management, APs in the cluster are automatically re-assigned to non-interfering channels as shown in 8.3.

Figure 8.3 With Channel Management Enabled

8.3 Configuring And Viewing Channel Management Settings

The Channel Management page shows previous, current, and planned channel assignments for clustered access points. By default, automatic channel assignment is disabled. You can start channel management to optimize channel usage across the cluster on a scheduled interval.

From this page, you can view channel assignments for all APs in the cluster, stop/start automatic channel management, and manually “update” the current channel map (APs to channels). On a manual update, the Channel Manager will assess channel usage and, if necessary, re-assign APs to new channels to reduce interference based on the current Advanced Settings.

By using the Advanced settings you can modify the interference reduction potential that triggers channel re-assignment, change the schedule for automatic updates, and re-configure the channel set used for assignments.

The following sections describe how to configure and use channel management on your network:

- “Stopping/Starting Automatic Channel Assignment” on page 78.
- “Viewing Current Channel Assignments And Setting Locks” on page 78.
- “Update Current Channel Settings (Manual)” on page 79.
8.3.1 Stopping/Starting Automatic Channel Assignment

By default, automatic channel assignment is disabled (off).

- Click **Start** to resume automatic channel assignment. When automatic channel assignment is enabled, the Channel Manager periodically maps radio channels used by clustered access points and, if necessary, re-assigns channels on clustered APs to reduce interference (with cluster members or other APs outside the cluster).

Note: Channel Management overrides the default cluster behaviour, which is to synchronize radio channels of all APs across a cluster. When Channel Management is enabled, the radio Channel is not sync’ed across the cluster to other APs. See the note under Radio Settings in “Settings Shared In The Cluster Configuration” on page 57.

- Click **Stop** to stop automatic channel assignment. (No channel usage maps or channel re-assignments will be made. Only manual updates will affect the channel assignment.)

8.3.2 Viewing Current Channel Assignments And Setting Locks

The *Current Channel Settings* shows a list of all access points in the cluster by IP Address. The display shows the band on which each AP is broadcasting, the current channel used by each AP, and an option to “lock” an AP on its current radio channel so that it cannot be re-assigned to another. Details about Current Channel Settings are provided below.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Specifies the IP Address for the access point.</td>
</tr>
<tr>
<td>Radio</td>
<td>Indicates the MAC address of the access point.</td>
</tr>
<tr>
<td>Band</td>
<td>Indicates the band (b/g or a) on which the access point is broadcasting.</td>
</tr>
<tr>
<td>Channel</td>
<td>Indicates the radio Channel on which this access point is currently broadcasting.</td>
</tr>
</tbody>
</table>
8.3.2.1 Update Current Channel Settings (Manual)

You can run a manual channel management update at any time by clicking **Update** under the **Current Channel Settings** display.

8.3.3 Viewing Last Proposed Set Of Changes

The **Last Proposed Set of Channel Changes** shows the last channel plan. The plan lists all access points in the cluster by IP Address, and shows the current and proposed channels for each AP. Locked channels will not be re-assigned and the optimization of channel distribution among APs will take into account the fact that locked APs must remain on their current channels. APs that are not “Locked” may be assigned to different channels than they were previously using, depending on the results of the plan.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Specifies the IP Address for the access point.</td>
</tr>
<tr>
<td>Current</td>
<td>Indicates the radio channel on which this access point is currently broadcasting.</td>
</tr>
<tr>
<td>Proposed</td>
<td>Indicates the radio channel to which this access point would be re-assigned if the Channel Plan is executed.</td>
</tr>
</tbody>
</table>

8.3.4 Configuring Advanced Settings (Customizing/Scheduling Channel Plans)

If you use **Channel Management** as provided (without updating **Advanced Settings**), channels are automatically fine-tuned once every hour if interference can be reduced by 25% or more. Channels will be re-assigned even if the network is busy. The appropriate channel sets will be used (‘b/g’ for APs using IEEE 802.11b/g and ‘a’ for APs using IEEE 802.11a).
These defaults are designed to satisfy most scenarios where you would need to implement channel management.

You can use Advanced Settings to modify the interference reduction potential that triggers channel re-assignment, change the schedule for automatic updates, and re-configure the channel set used for assignments.

Table 8.3 Advanced Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced</td>
<td>Click the “Advanced” toggle to show / hide display settings that modify timing and details of the channel planning algorithm. By default, these settings are hidden.</td>
</tr>
<tr>
<td>Change channels if interference is reduced by at least__</td>
<td>Specify the minimum percentage of interference reduction a proposed plan must achieve in order to be applied. The default is 25 percent. Use the drop-down menu to choose percentages ranging from 25% to 75%. This setting lets you set a gating factor for channel re-assignment so that the network is not continually disrupted for minimal gains in efficiency. For example, if channel interference must be reduced by 75%, and the proposed channel assignments will only reduce interference by 30%, then channels will not be re-assigned. However; if you re-set the minimal channel interference benefit to 25% and click Update, the proposed channel plan will be implemented and channels re-assigned as needed.</td>
</tr>
<tr>
<td>Determine if there is better set of channel settings every__</td>
<td>Use the drop-down menu to specify the schedule for automated updates. A range of intervals is provided, from “1 Minute” to “6 Months”. The default is “1 Hour” (channel usage re-assessed and the resulting channel plan applied every hour).</td>
</tr>
<tr>
<td>Use these channels when applying channel assignments</td>
<td>Choose a set of non-interfering channels on a particular band (“b/g” or “a”). The choices are: • b/g channels 1-6-11 • b/g channels 1-4-8-11 • a IEEE 802.11b/802.11g modes (802.11 b/g) support use of channels 1 through 11. For the “b/g” radio band, the classic set of non-interfering channels is 1, 6, 11. Channels 1, 4, 8, 11 produce minimal overlap. IEEE 802.11a mode supports a larger set of non-consecutive channels (36, 40, 44, 48, 52, 56, 60, 64, 149, 153, 157, 161, 165). All “a” band channels are non-interfering.</td>
</tr>
</tbody>
</table>
8.3.4.1 Update Advanced Settings

Click **Update** under *Advanced Settings* to apply these settings.

Advanced Settings will take effect when they are applied, and influence how automatic channel management is performed. (The new interference reduction minimum, scheduled tuning interval, channel set, and network busy settings will be taken into account for automated and manual updates.)

Table 8.3 Advanced Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Apply channel modifications even when the network is busy | Click to enable or disable this setting.
A checkmark indicates it is enabled and channel modifications will be applied even when the network is busy. If this is not checked, channel modifications will not be applied on a busy network.
This setting (along with the interference reduction setting) is designed to help weigh the cost/benefit impact on network performance of re-assigning channels against the inherent disruption it can cause to clients during a busy time. |

9 WIRELESS NEIGHBORHOOD

9.1 Navigating To Wireless Neighborhood 85
9.2 Understanding Wireless Neighborhood Information. 85
9.3 Viewing Wireless Neighborhood. ... 86
9.4 Viewing Details For A Cluster Member 88
The *Wireless Neighborhood* screen shows those access points within range of any access point in the cluster. This page provides a detailed view of neighboring access points, including identifying information (SSIDs and MAC addresses) for each, cluster status (which are members and non-members), and statistical information such as the channel each AP is broadcasting on, signal strength, and so forth.

9.1 Navigating To Wireless Neighborhood

To view the *Wireless Neighborhood*, click the **Cluster > Wireless Neighborhood** tab.

Figure 9.1 Neighbor APs Both In Cluster And Not In Cluster

View neighboring access points

<table>
<thead>
<tr>
<th>Neighbors (11)</th>
<th>10.10.100.245</th>
<th>Cluster</th>
<th>10.10.100.238</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vicky's AP-2</td>
<td>Cluster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(WIP-160-46s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEGLOGIE...</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nooksbe</td>
<td>46</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Proehrmann 2.8.2</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>19</td>
<td>79</td>
<td>79</td>
<td>79</td>
</tr>
<tr>
<td>TEGLOGIE...</td>
<td>46</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Ray's C6 2.8.3</td>
<td>54</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cluster Status</th>
<th>In cluster</th>
<th>Not in cluster</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Vicky's Office</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Cluster</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Wireless Neighborhood shows those access points within range of any access point in the cluster.

This page provides a detailed view of neighboring access points including identifying information (SSIDs and MAC addresses) for each, cluster status (which are members and non-members), and statistical information such as the channel each AP is broadcasting on, signal strength, and so forth.

Note:

9.2 Understanding Wireless Neighborhood Information

The *Wireless Neighborhood* view shows all access points within range of every member of the cluster, shows which access points are within range of which cluster members, and distinguishes between cluster members and non-members.

For each neighbor access point, the Wireless Neighborhood view shows identifying information (SSID or Network Name, IP Address, MAC address) along with radio statistics...
(signal strength, channel, beacon interval). You can click on an AP to get additional statistics about the APs in radio range of the currently selected AP.

The Wireless Neighborhood view can help you:

- Detect and locate unexpected (or rogue) access points in a wireless domain so that you can take action to limit associated risks.
- Verify coverage expectations. By assessing which APs are visible at what signal strength from other APs, you can verify that the deployment meets your planning goals.
- Detect faults. Unexpected changes in the coverage pattern are evident at a glance in the colour-coded table.

9.3 Viewing Wireless Neighborhood

Details about Wireless Neighborhood information shown is described below.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Neighboring APs</td>
<td>Click one of the following radio buttons to change the view:</td>
</tr>
<tr>
<td></td>
<td>• In cluster - Shows only neighbor APs that are members of the cluster.</td>
</tr>
<tr>
<td></td>
<td>• Not in cluster - Shows only neighbor APs that are not cluster members.</td>
</tr>
<tr>
<td></td>
<td>• Both - Shows all neighbor APs (cluster members and non-members).</td>
</tr>
<tr>
<td>Cluster</td>
<td>The “Cluster” list at the top of the table shows IP addresses for all access</td>
</tr>
<tr>
<td></td>
<td>points in the cluster. (This is the same list of cluster members shown on the</td>
</tr>
<tr>
<td></td>
<td>Cluster > Access Points tab described in “Navigating To Access Points</td>
</tr>
<tr>
<td></td>
<td>Management” on page 55.)</td>
</tr>
<tr>
<td></td>
<td>If there is only one AP in the cluster, only a single IP address column will</td>
</tr>
<tr>
<td></td>
<td>be displayed here; indicating that the AP is “clustered with itself”.</td>
</tr>
<tr>
<td></td>
<td>You can click on an IP address to view more details on a particular AP as</td>
</tr>
<tr>
<td></td>
<td>shown in Figure 9.2 on page 88.</td>
</tr>
</tbody>
</table>
Table 9.1 Wireless Neighborhood Statistics

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbors</td>
<td>Access points which are neighbors of one or more of the clustered APs are listed in the left column by SSID (Network Name). An access point which is detected as a neighbor of a cluster member can also be a cluster member itself. Neighbors who are also cluster members are always shown at the top of the list with a heavy bar above and include a location indicator. The coloured bars to the right of each AP in the Neighbors list shows the signal strength for each of the neighbor APs as detected by the cluster member whose IP address is shown at the top of the column:</td>
</tr>
<tr>
<td></td>
<td>This AP (a cluster member) can be seen by the AP whose IP address is 10.10.100.246 (at a signal strength of 54) . . . but not by the AP whose address is 10.10.100.223</td>
</tr>
</tbody>
</table>

- **Dark Blue Bar** - A dark blue bar and a high signal strength number (for example 50) indicates good signal strength detected from the Neighbor seen by the AP whose IP address is listed above that column.

- **Lighter Blue Bar** - A lighter blue bar and a lower signal strength number (for example 20 or lower) indicates medium or weak signal strength from the Neighbor seen by the AP whose IP address is listed above that column.

- **White Bar** - A white bar and the number 0 indicates that a neighboring AP that was detected by one of the cluster members cannot be detected by the AP whose IP address is listed above that column.

- **Light Gray Bar** - A light gray bar and no signal strength number indicates a Neighbor that is detected by other cluster members but not by the AP whose IP address is listed above that column.

- **Dark Gray Bar** - A dark gray bar and no signal strength number indicates this is the AP whose IP address is listed above that column (since it is not applicable to show how
9.4 Viewing Details For A Cluster Member

To view details on a cluster member AP, click on the IP address of a cluster member at the top of the page.

Figure 9.2 Details For A Cluster Member AP

<table>
<thead>
<tr>
<th>Neighbors (10)</th>
<th>10.10.100.245</th>
<th>10.10.100.230</th>
</tr>
</thead>
<tbody>
<tr>
<td>(WIP-bid-48B)</td>
<td>(Willy's Office - inner shelf)</td>
<td>(Willy's Office - top shelf)</td>
</tr>
<tr>
<td>Iomega_NAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEROLOGIX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>novatec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dnorgham 2.8.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iomega</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iomega</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BradLabNetwork</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ray's GW 2881</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.8.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following table explains the details shown about the selected AP.
Table 9.2 Access Point Statistics

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSID</td>
<td>The Service Set Identifier (SSID) for the access point. The SSID is an alphanumeric string of up to 32 characters that uniquely identifies a wireless local area network. It is also referred to as the Network Name. The SSID is set in Basic Settings (Chapter 5: “Configuring Basic Settings”) or in Manage > 802.11 Settings (Chapter 13: “Setting The Wireless Interface”). A Guest network and an Internal network running on the same access point must always have two different network names.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Shows the MAC address of the neighboring access point. A MAC address is a hardware address that uniquely identifies each node of a network.</td>
</tr>
<tr>
<td>Channel</td>
<td>Shows the channel on which the access point is currently broadcasting. The Channel defines the portion of the radio spectrum that the radio uses for transmitting and receiving. The channel is set in Manage > 802.11 Advanced Settings. (See Chapter 16: “Configuring 802.11 Radio Settings”.)</td>
</tr>
<tr>
<td>Rate</td>
<td>Shows the rate (in megabits per second) at which this access point is currently transmitting. The current rate will always be one of the rates shown in Supported Rates.</td>
</tr>
<tr>
<td>Signal</td>
<td>Indicates the strength of the radio signal emitting from this access point as measured in decibels (Db).</td>
</tr>
<tr>
<td>Beacon Interval</td>
<td>Shows the Beacon interval being used by this access point. Beacon frames are transmitted by an access point at regular intervals to announce the existence of the wireless network. The default behaviour is to send a beacon frame once every 100 milliseconds (or 10 per second). The Beacon Interval is set on Manage > 802.11 Advanced Settings. (See Chapter 16: “Configuring 802.11 Radio Settings”.)</td>
</tr>
<tr>
<td>Capability</td>
<td>A hexadecimal number which, when converted to binary, indicates each IEEE 802.11 feature or functionality and whether it is “on” or “off” on this access point.</td>
</tr>
<tr>
<td>Beacon Age</td>
<td>Shows the date and time of the most recent beacon was transmitted from the access point.</td>
</tr>
</tbody>
</table>
10 Configuration Security

10.1 Understanding Security Issues On Wireless Networks

10.1.1 How Do I Know Which Security Mode To Use? 93
10.1.2 Comparison Of Security Modes For Key Management, Authentication And Encryption Algorithms .. 94
10.1.2.1 When To Use Unencrypted (No Security) .. 94
10.1.2.2 When To Use Static WEP ... 95
10.1.2.3 When To Use IEEE 802.1x .. 95
10.1.2.4 When To Use WPA Personal ... 96
10.1.2.5 When To Use WPA Enterprise .. 97
10.1.3 Does Prohibiting The Broadcast SSID Enhance Security? 99
10.1.4 How Does Station Isolation Protect The Network? 99

10.2 Configuring Security Settings

10.2.1 Broadcast SSID, Station Isolation, And Security Mode 100
10.2.2 Security Modes ... 102
10.2.2.1 None (Plain-text) ... 102
10.2.2.2 Static WEP ... 103
10.2.2.3 IEEE 802.1x ... 108
10.2.2.4 WPA Personal ... 111
10.2.2.5 WPA Enterprise .. 113

10.3 Updating Settings ... 118
The following sections describe how to configure Security settings on the 9160 G2 Wireless Gateway.

10.1 Understanding Security Issues On Wireless Networks

Wireless mediums are inherently less secure than wired mediums. For example, an Ethernet NIC transmits its packets over a physical medium such as coaxial cable or twisted pair. A wireless NIC broadcasts radio signals over the air allowing a wireless LAN to be easily tapped without physical access or sophisticated equipment. A hacker equipped with a laptop, a wireless NIC, and a bit of knowledge can easily attempt to compromise your wireless network. One does not even need to be within normal range of the access point. By using a sophisticated antenna on the client, a hacker may be able to connect to the network from many miles away.

The 9160 G2 Wireless Gateway provides a number of authentication and encryption schemes to ensure that your wireless infrastructure is accessed only by the intended users. The details of each security mode are described in the sections below.

See also the related topic, Appendix B: “Security Settings on Wireless Clients/RADIUS Server”.

10.1.1 How Do I Know Which Security Mode To Use?

In general, we recommend that on your Internal network you use the most robust security mode that is feasible in your environment. When configuring security on the access point, you first must choose the security mode, then in some modes an authentication algorithm, and whether to allow clients not using the specified security mode to associate.

Wi-Fi Protected Access (WPA) with *Remote Authentication Dial-In User Service (RADIUS)* using the CCMP (AES) encryption algorithm provides the best data protection available and is clearly the best choice if all client stations are equipped with WPA supplicants. However, backward compatibility or interoperability issues with clients or even with other access points may require that you configure WPA with RADIUS with a different encryption algorithm or choose one of the other security modes.

That said, however, security may not be as much of a priority on some types of networks. If you are simply providing internet and printer access, as on a guest network, setting the security mode to *None (Plain-text)* may be the appropriate choice. To prevent clients from accidentally discovering and connecting to your network, you can disable the broadcast SSID so that your network name is not advertised. If the network is sufficiently isolated from access to sensitive information, this may offer enough protection in some situations. This level of protection is the only one offered for guest networks, and also may be the right...
convenience trade-off for other scenarios where the priority is making it as easy as possible for clients to connect. (See “Does Prohibiting The Broadcast SSID Enhance Security?” on page 99)

Following is a brief discussion of what factors make one mode more secure than another, a description of each mode offered, and when to use each mode.

10.1.2 Comparison Of Security Modes For Key Management, Authentication And Encryption Algorithms

Three major factors that determine the effectiveness of a security protocol are:

• How the protocol manages keys.
• Presence or absence of integrated user authentication in the protocol.
• Encryption algorithm or formula the protocol uses to encode/decode the data.

Following is a list of the security modes available on the 9160 G2 Wireless Gateway, along with a description of the key management, authentication, and encryption algorithms used in each mode. We include some suggestions as to when one mode might be more appropriate than another.

• “When To Use Unencrypted (No Security)” on page 94.
• “When To Use Static WEP” on page 95.
• “When To Use IEEE 802.1x” on page 95.
• “When To Use WPA Personal” on page 96.
• “When To Use WPA Enterprise” on page 97.

10.1.2.1 When To Use Unencrypted (No Security)

Setting the security mode to None (Plain-text) by definition provides no security. In this mode, the data is not encrypted but rather sent as “plain-text” across the network. No key management, data encryption or user authentication is used.

Recommendations

Unencrypted mode, i.e. None (Plain-text), is not recommended for regular use on the Internal network because it is not secure. This is the only mode in which you can run the Guest network, which is by definition an unsecure LAN, always virtually or physically separated from any sensitive information on the Internal LAN.

Therefore, only set the security mode to None (Plain-text) on the Guest network, and on the Internal network for initial setup, testing, or problem solving only.
10.1.2.2 When To Use Static WEP

Static Wired Equivalent Privacy (WEP) is a data encryption protocol for 802.11 wireless networks. All wireless stations and access points on the network are configured with a static 64-bit (40-bit secret key + 24-bit initialization vector (IV)) or 128-bit (104-bit secret key + 24-bit IV) Shared Key for data encryption.

<table>
<thead>
<tr>
<th>Key Management</th>
<th>Encryption Algorithm</th>
<th>User Authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static WEP uses a fixed key that is provided by the administrator. WEP keys are indexed in different slots (up to four on the 9160 G2 Wireless Gateway). The client stations must have the same key indexed in the same slot to access data on the access point.</td>
<td>An RC4 stream cipher is used to encrypt the frame body and cyclic redundancy checking (CRC) of each 802.11 frame.</td>
<td>If you set the Authentication Algorithm to “Shared Key”, this protocol provides a rudimentary form of user authentication. However, if the Authentication Algorithm is set to “Open System”, no authentication is performed. If the algorithm is set to “Both”, only WEP clients are authenticated.</td>
</tr>
</tbody>
</table>

Recommendations

Static WEP was designed to provide security equivalent of sending unencrypted data through an Ethernet connection, however it has major flaws and it does not provide even this intended level of security.

Therefore, **Static WEP is not recommended** as a secure mode. The only time to use Static WEP is when interoperability issues make it the only option available to you and you are not concerned with the potential of exposing the data on your network.

See Also

For information on how to configure Static WEP security mode, see “Static WEP” on page 103.

10.1.2.3 When To Use IEEE 802.1x

IEEE 802.1x is the standard for passing the Extensible Authentication Protocol (EAP) over an 802.11 wireless network using a protocol called EAP Encapsulation Over LANs (EAPOL). This is a newer, more secure standard than Static WEP.
Chapter 10: Configuring Security

Comparison Of Security Modes For Key Management, Authentication And Encryption Algorithms

Recommendations
IEEE 802.1x mode is a better choice than Static WEP because keys are dynamically generated and changed periodically. However, the encryption algorithm used is the same as that of Static WEP and is therefore not as reliable as the more advanced encryption methods such as TKIP and CCMP (AES) used in Wi-Fi Protected Access (WPA) or WPA2.

Additionally, compatibility issues may be cumbersome because of the variety of authentication methods supported and the lack of a standard implementation method.

Therefore, IEEE 802.1x mode is not as secure a solution as Wi-Fi Protected Access (WPA) or WPA2. If you cannot use WPA because some of your client stations do not have WPA, then a better solution than using IEEE 802.1x mode is to use WPA Enterprise mode.

If you have an external RADIUS server on your network, we recommend using it rather than the using the embedded RADIUS server on the AP. An external RADIUS server will provide better security than the local authentication server.

See Also
For information on how to configure IEEE 802.1x security mode, see “IEEE 802.1x” on page 108.

10.1.2.4 When To Use WPA Personal
Wi-Fi Protected Access Personal Pre-Shared Key (PSK) is an implementation of the Wi-Fi Alliance IEEE 802.11h standard, which includes Advanced Encryption Algorithm (AES), Counter mode/CBC-MAC Protocol (CCMP), and Temporal Key Integrity Protocol (TKIP) mechanisms. This mode offers the same encryption algorithms as WPA 2 with RADIUS but without the ability to integrate a RADIUS server for user authentication.
This security mode is backwards-compatible for wireless clients that support only the original WPA.

Recommendations

WPA Personal is not recommended for use with the 9160 G2 Wireless Gateway when WPA Enterprise is an option.

We recommend that you use WPA Enterprise mode instead, unless you have interoperability issues that prevent you from using this mode.

For example, some devices on your network may not support WPA or WPA2 with EAP talking to a RADIUS server. Embedded printer servers or other small client devices with very limited space for implementation may not support RADIUS. For such cases, we recommend that you use WPA Personal.

See Also

For information on how to configure this security mode, see “WPA Personal” on page 111.

10.1.2.5 When To Use WPA Enterprise

Wi-Fi Protected Access Enterprise with Remote Authentication Dial-In User Service (RADIUS) is an implementation of the Wi-Fi Alliance IEEE 802.11h standard, which includes Advanced Encryption Standard (AES), Counter mode/CBC-MAC Protocol (CCMP), and Temporal Key Integrity Protocol (TKIP) mechanisms. This mode requires the use of a RADIUS server to authenticate users. WPA Enterprise provides the best security available for wireless networks.

This security mode also provides backwards-compatibility for wireless clients that support only the original WPA.
Chapter 10: Configuring Security
Comparison Of Security Modes For Key Management, Authentication And Encryption Algorithms

Recommendations
WPA Enterprise mode is the recommended mode. The CCMP (AES) and TKIP encryption algorithms used with WPA modes are far superior to the RC4 algorithm used for Static WEP or IEEE 802.1x modes. Therefore, CCMP (AES) or TKIP should be used whenever possible. All WPA modes allow you to use these encryption schemes, so WPA security modes are recommended above the others when using WPA is an option. Additionally, this mode incorporates a RADIUS server for user authentication which gives it an edge over WPA Personal mode.

If you have an external RADIUS server on your network, we recommend using it rather than the using the embedded RADIUS server on the AP. An external RADIUS server will provide better security than the local authentication server.

Use the following guidelines for choosing options within the WPA Enterprise mode security mode:

1. The best security you can have to date on a wireless network is WPA Enterprise mode using CCMP (AES) encryption algorithm. AES is a symmetric 128-bit block data encryption technique that works on multiple layers of the network. It is the most effective encryption system currently available for wireless networks. If all clients or other APs on the network are WPA/CCMP compatible, use this encryption algorithm. (If all clients are WPA2 compatible, choose to support only WPA2 clients.)

2. The second best choice is WPA Enterprise with the encryption algorithm set to both TKIP and CCMP. This lets WPA client stations without CCMP associate, uses TKIP for encrypting Multicast and Broadcast frames, and allows clients to select whether to use CCMP or TKIP for Unicast (AP-to-single-station) frames. This WPA configuration allows more interoperability, at the expense of some security.

Table 10.4 WPA Enterprise Security Mode

<table>
<thead>
<tr>
<th>Key Management</th>
<th>Encryption Algorithms</th>
<th>User Authentication</th>
</tr>
</thead>
</table>
| WPA Enterprise mode provides dynamically-generated keys that are periodically refreshed. There are different Unicast keys for each station. | • Temporal Key Integrity Protocol (TKIP).
• Counter mode/CBC-MAC Protocol (CCMP) Advanced Encryption Standard (AES). | Remote Authentication Dial-In User Service (RADIUS)
You have a choice of using the 9160 G2 Wireless Gateway embedded RADIUS server or an external RADIUS server. The embedded RADIUS server supports Protected EAP (PEAP) and MSCHAP V2. |

Chapter 10: Configuring Security

10.1.3 Does Prohibiting The Broadcast SSID Enhance Security?

You can suppress (prohibit) this broadcast to discourage stations from automatically discovering your access point. When the AP’s broadcast SSID is suppressed, the network name will not be displayed in the List of Available Networks on a client station. Instead, the client must have the exact network name configured in the supplicant before it will be able to connect.

Disabling the broadcast SSID is sufficient to prevent clients from accidentally connecting to your network, but it will not prevent even the simplest of attempts by a hacker to connect, or monitor unencrypted traffic.

This offers a very minimal level of protection on an otherwise exposed network (such as a guest network) where the priority is making it easy for clients to get a connection and where no sensitive information is available.

(See also “Guest Network” on page 102.)

10.1.4 How Does Station Isolation Protect The Network?

When Station Isolation is enabled, the access point blocks communication between wireless clients. The access point still allows data traffic between its wireless clients and wired devices on the network, but not among wireless clients.

The traffic blocking extends to wireless clients connected to the network via WDS links; these clients cannot communicate with each other when Station Isolation is on.

See Chapter 20: “Wireless Distribution System” for more information about WDS.
10.2 Configuring Security Settings

To set the security mode, navigate to the Security tab, and update the fields as described below.

Figure 10.1 Security Settings Page

The following configuration information explains how to configure security modes on the access point. Keep in mind that each wireless client that wants to exchange data with the access point must be configured with the same security mode and encryption key settings consistent with access point security.

On a two-radio AP, these Security Settings apply to both radios.

Note: Security modes other than Plain-text apply only to configuration of the “Internal” network. On the “Guest” network, you can use only Plain-text mode. (For more information about guest networks, see Chapter 14: “Setting Up Guest Access”.)

10.2.1 Broadcast SSID, Station Isolation, And Security Mode

To configure security on the access point, select a security mode and fill in the related fields as described in Table 10.5.

Note: You can also allow or prohibit the Broadcast SSID and enable/disable Station Isolation as extra precautions, as described in Table 10.5 on page 101.
Table 10.5 Security Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Broadcast SSID** | To enable the Broadcast SSID, select the checkbox directly beside it. By default, the access point broadcasts (allows) the *Service Set Identifier* (*SSID*) in its beacon frames.
You can suppress (prohibit) this broadcast to discourage stations from automatically discovering your access point. When the AP's broadcast SSID is suppressed, the network name will not be displayed in the List of Available Networks on a client station. Instead, the client must have the exact network name configured in the supplicant before it will be able to connect. |
| **Station Isolation** | To enable station isolation, select the checkbox directly beside it.
• When Station Isolation is disabled, wireless clients can communicate with one another normally by sending traffic through the access point.
• When Station Isolation is enabled, the access point blocks communication between wireless clients. The access point still allows data traffic between its wireless clients and wired devices on the network, but not among wireless clients. The traffic blocking extends to wireless clients connected to the network via WDS links; these clients cannot communicate with each other when Station Isolation is on. See Chapter 20: “Wireless Distribution System” for more information about WDS. |
| **Security Mode** | Select the Security Mode. Select one of the following:
• “None (Plain-text)” on page 102.
• “Static WEP” on page 103.
• “IEEE 802.1x” on page 108.
• “WPA Personal” on page 111.
• “WPA Enterprise” on page 113.
For a Guest network, the only security mode that can be applied is “None (Plain-text)” (For more information, see Chapter 14: “Setting Up Guest Access”).
Security modes other than “None (Plain-text)” apply only to configuration of the “Internal” network. |
10.2.2 Security Modes

10.2.2.1 None (Plain-text)

None (or plain-text security) means any data transferred to and from the 9160 G2 Wireless Gateway is not encrypted.

If you select None (Plain-text) as your Security Mode, no further options are configurable on the AP. This security mode can be useful during initial network configuration or for problem solving, but it is not recommended for regular use on the Internal network because it is not secure.

Guest Network

Setting security to “None (Plain-text)” is the only mode in which you can run the Guest network, which is by definition an easily accessible, unsecure LAN always virtually or physically separated from any sensitive information on the Internal LAN. For example, the guest network might simply provide internet and printer access for day visitors.

The absence of security on the Guest AP is designed to make it as easy as possible for guests to get a connection without having to program any security settings in their clients.

For a minimum level of protection on a guest network, you can choose to suppress (prohibit) the broadcast of the SSID (network name) to discourage client stations from automatically discovering your access point. (See also “Does Prohibiting The Broadcast SSID Enhance Security?” on page 99.)

For more about the Guest network, see Chapter 14: “Setting Up Guest Access”.
10.2.2.2 Static WEP

Wired Equivalent Privacy (WEP) is a data encryption protocol for 802.11 wireless networks. All wireless stations and access points on the network are configured with a static 64-bit (40-bit secret key + 24-bit initialization vector (IV)) or 128-bit (104-bit secret key + 24-bit IV) Shared Key for data encryption. You cannot mix 64-bit and 128-bit WEP keys between the access point and its client stations.

Static WEP is not the most secure mode available, but it offers more protection than setting security to “None (Plain-text)”, as it does prevent an outsider from easily sniffing out unencrypted wireless traffic. (For more secure modes, see the sections on “IEEE 802.1x” on page 108, “WPA Personal” on page 111., or “WPA Enterprise” on page 113.

WEP encrypts data moving across the wireless network based on a static key. (The encryption algorithm is a “stream” cipher called RC4.) The access point uses a key to transmit data to the client stations. Each client station must use that same key to decrypt data it receives from the access point.

Client stations can use different keys to transmit data to the access point. (Or they can all use the same key, but this is less secure because it means one station can decrypt the data being sent by another.) If you selected Static WEP Security Mode, provide the information on the access point settings, as shown in the following figure and described in Table 10.6 on page 104.
Table 10.6 Static WEP Security Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer Key Index</td>
<td>Select a key index from the drop-down menu. Key indexes 1 through 4 are available. The default is 1. The Transfer Key Index indicates which WEP key the access point will use to encrypt the data it transmits.</td>
</tr>
</tbody>
</table>
| Key Length | Specify the length of the key by clicking one of the radio buttons:
| | • 64 bits
| | • 128 bits |
| Key Type | Select the key type by clicking one of the radio buttons:
| | • ASCII
| | • Hex |
| Characters Required | Indicates the number of characters required in the WEP key. The number of characters required updates automatically based on how you set Key Length and Key Type. |
| WEP Keys | You can specify up to four WEP keys. In each textbox, enter a string of characters for each key.
| | If you selected “ASCII”, enter any combination of integers and letters 0-9, a-z, and A-Z. If you selected “HEX”, enter hexadecimal digits (any combination of 0-9 and a-f or A-F).
| | Use the same number of characters for each key as specified in the “Characters Required” field. These are the RC4 WEP keys shared with the stations using the access point.
| | Each client station must be configured to use one of these same WEP keys in the same slot as specified here on the AP. (See “Rules To Remember For Static WEP” on page 105.) |
Chapter 10: Configuring Security

Security Modes

Rules To Remember For Static WEP

- All client stations must have the Wireless LAN (WLAN) security set to WEP and all clients must have one of the WEP keys specified on the AP in order to de-code AP-to-station data transmissions.
- The AP must have all keys used by clients for station-to-AP transmit so that it can de-code the station transmissions.
- The same key must occupy the same slot on all nodes (AP and clients). For example if the AP defines abc123 key as WEP key 3, then the client stations must define that same string as WEP key 3.

Authentication Algorithm

The authentication algorithm defines the method used to determine whether a client station is allowed to associate with an access point when static WEP is the security mode. Specify the authentication algorithm you want to use by choosing one of the following from the drop-down menu:

- Open System
- Shared Key
- Both

Open System authentication allows any client station to associate with the access point whether that client station has the correct WEP key or not. This is algorithm is also used in plaintext, IEEE 802.1x, and WPA modes. When the authentication algorithm is set to “Open System”, any client can associate with the access point.

Note that just because a client station is allowed to associate does not ensure it can exchange traffic with an access point. A station must have the correct WEP key to be able to successfully access and decrypt data from an access point, and to transmit readable data to the access point.

Shared Key authentication requires the client station to have the correct WEP key in order to associate with the access point. When the authentication algorithm is set to “Shared Key”, a station with an incorrect WEP key will not be able to associate with the access point.

Both is the default. When the authentication algorithm is set to “Both”:

- Client stations configured to use WEP in shared key mode must have a valid WEP key in order to associate with the access point.
- Client stations configured to use WEP as an open system (shared key mode not enabled) will be able to associate with the access point even if they do not have the correct WEP key.

Table 10.6 Static WEP Security Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Algorithm</td>
<td>The authentication algorithm defines the method used to determine whether a client station is allowed to associate with an access point when static WEP is the security mode. Specify the authentication algorithm you want to use by choosing one of the following from the drop-down menu:</td>
</tr>
<tr>
<td>• Open System</td>
<td></td>
</tr>
<tr>
<td>• Shared Key</td>
<td></td>
</tr>
<tr>
<td>• Both</td>
<td></td>
</tr>
<tr>
<td>Open System</td>
<td>authentication allows any client station to associate with the access point whether that client station has the correct WEP key or not. This is algorithm is also used in plaintext, IEEE 802.1x, and WPA modes. When the authentication algorithm is set to “Open System”, any client can associate with the access point. Note that just because a client station is allowed to associate does not ensure it can exchange traffic with an access point. A station must have the correct WEP key to be able to successfully access and decrypt data from an access point, and to transmit readable data to the access point.</td>
</tr>
<tr>
<td>Shared Key</td>
<td>authentication requires the client station to have the correct WEP key in order to associate with the access point. When the authentication algorithm is set to “Shared Key”, a station with an incorrect WEP key will not be able to associate with the access point.</td>
</tr>
</tbody>
</table>
| Both | is the default. When the authentication algorithm is set to “Both”:
| • Client stations configured to use WEP in shared key mode must have a valid WEP key in order to associate with the access point.
| • Client stations configured to use WEP as an open system (shared key mode not enabled) will be able to associate with the access point even if they do not have the correct WEP key. |
On some wireless client software (like Funk Odyssey), you can configure multiple WEP keys and define a client station “transfer key index”, and then set the stations to encrypt the data they transmit using different keys. This ensures that neighboring APs cannot decode each other’s transmissions.

Example Of Using Static WEP
For a simple example, suppose you configure three WEP keys on the access point. In our example, the Transfer Key Index for the AP is set to 3. This means that the WEP key in slot “3” is the key the access point will use to encrypt the data it sends.

Figure 10.2 Setting The AP Transfer Key On The Access Point

You must then set all client stations to use WEP and provide each client with one of the slot/key combinations you defined on the AP.

For this example, we’ll set WEP key 1 on a Windows client.
If you have a second client station, that station also needs to have one of the WEP keys defined on the AP. You could give it the same WEP key you gave to the first station. Or for a more secure solution, you could give the second station a different WEP key (key 2, for example) so that the two stations cannot decrypt each other’s transmissions.

Static WEP With Transfer Key Indexes On Client Stations

Some Wireless client software (like Funk Odyssey) lets you configure multiple WEP keys and set a transfer index on the client station, then you can specify different keys to be used for station-to-AP transmissions. (The standard Windows wireless client software does not allow you to do this.)

To build on our example, using Funk Odyssey client software you could give each of the clients WEP key 3 so that they can decode the AP transmissions with that key and also give client 1 WEP key 1 and set this as its transfer key. You could then give client 2 WEP key 2 and set this as its transfer key index.

Figure 10.2.2.3 illustrates the dynamics of the AP and two client stations using multiple WEP keys and a transfer key index.
10.2.2.3 IEEE 802.1x

IEEE 802.1x is the standard defining port-based authentication and infrastructure for doing key management. Extensible Authentication Protocol (EAP) messages sent over an IEEE 802.11 wireless network using a protocol called EAP Encapsulation Over LANs (EAPOL). IEEE 802.1x provides dynamically-generated keys that are periodically refreshed. An RC4 stream cipher is used to encrypt the frame body and cyclic redundancy checking (CRC) of each 802.11 frame.

This mode requires the use of a RADIUS server to authenticate users. If the option for the internal RADIUS server is enabled, configure user accounts on the AP via the Cluster > User Management tab. Otherwise configure user accounts on the external RADIUS server.

The access point requires a RADIUS server capable of EAP, such as the Microsoft Internet Authentication Server or the 9160 G2 Wireless Gateway internal authentication server. To work with Windows clients, the authentication server must support Protected EAP (PEAP) and MSCHAP V2.

When configuring IEEE 802.1x mode, you have a choice of whether to use the embedded RADIUS server or an external RADIUS server that you provide. The 9160 G2 Wireless Gateway embedded RADIUS server supports Protected EAP (PEAP) and MSCHAP V2.

If you use your own RADIUS server, you have the option of using any of a variety of authentication methods that the IEEE 802.1x mode supports, including certificates, Kerberos, and public key authentication. Keep in mind, however, that the client stations must be configured to use the same authentication method being used by the access point.

If you selected IEEE 802.1x Security Mode, provide the following:
Chapter 10: Configuring Security

Security Modes

- **Security Mode**: IEEE 802.1x
- **Authentication Server**: Dell
- **Radius IP**: 127.0.0.1
- **Radius Key**: ********
- **Enable radius accounting**

- **Mode**: IEEE802.1x
- **Use internal radius server**
 - **Radius IP**: 10.128.14.14
 - **Radius Key**: ********
- **Enable radius accounting**
Table 10.7 IEEE 802.1x Security Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use internal radius server</td>
<td>Select one of the following from the drop-down menu:</td>
</tr>
<tr>
<td></td>
<td>• To use the authentication server provided with the 9160 G2 Wireless Gateway, ensure the checkbox beside the Use internal radius server field is selected. If this option is selected, you do not have to provide the Radius IP and Radius Key; they are automatically provided. If the option for the internal RADIUS server is enabled, configure user accounts on the AP via the Cluster > User Management tab. For more information, see Chapter 7: “Managing User Accounts”.</td>
</tr>
<tr>
<td></td>
<td>• To use an external authentication server, ensue the checkbox beside the Use internal radius server field is deselected. If you deselect this checkbox, you must supply a Radius IP and Radius Key of the server you want to use.</td>
</tr>
<tr>
<td></td>
<td>Note: The RADIUS server is identified by its IP address and UDP port numbers for the different services it provides. On the current release of the 9160 G2 Wireless Gateway, the RADIUS server User Datagram Protocol (UDP) ports used by the access point are not configurable.</td>
</tr>
<tr>
<td></td>
<td>(The 9160 G2 Wireless Gateway is hard-coded to use RADIUS server UDP port 1812 for authentication and port 1813 for accounting.)</td>
</tr>
<tr>
<td>Radius IP</td>
<td>Enter the Radius IP in the textbox.</td>
</tr>
<tr>
<td></td>
<td>The Radius IP is the IP address of the RADIUS server.</td>
</tr>
<tr>
<td></td>
<td>(The 9160 G2 Wireless Gateway internal authentication server is 127.0.0.1.)</td>
</tr>
<tr>
<td></td>
<td>If you have an external RADIUS server on your network, we recommend using it rather than the using the embedded RADIUS server on the AP. An external RADIUS server will provide better security than the local authentication server.</td>
</tr>
<tr>
<td></td>
<td>For information on setting up user accounts, see Chapter 7: “Managing User Accounts”.</td>
</tr>
<tr>
<td>Radius Key</td>
<td>Enter the Radius Key in the textbox.</td>
</tr>
<tr>
<td></td>
<td>The Radius Key is the shared secret key for the RADIUS server. The text you enter will be displayed as “* * *” characters to prevent others from seeing the RADIUS key as you type.</td>
</tr>
<tr>
<td></td>
<td>(The 9160 G2 Wireless Gateway internal authentication server key is secret.)</td>
</tr>
<tr>
<td></td>
<td>This value is never sent over the network.</td>
</tr>
<tr>
<td>Enable radius accounting</td>
<td>Click the checkbox beside “Enable radius accounting” if you want to track and measure the resources a particular user has consumed such system time, amount of data transmitted and received, and so on.</td>
</tr>
</tbody>
</table>
10.2.2.4 WPA Personal

Wi-Fi Protected Access Personal is a Wi-Fi Alliance IEEE 802.11i standard, which includes Counter mode/CBC-MAC Protocol-Advanced Encryption Algorithm (CCMP-AES), and Temporal Key Integrity Protocol (TKIP) mechanisms.

The Personal version of WPA employs a pre-shared key (instead of using IEEE 802.1x and EAP as is used in the Enterprise WPA security mode). The PSK is used for an initial check of credentials only. This security mode is backwards-compatible for wireless clients that support the original WPA.

If you selected WPA Personal Security Mode, complete the settings as described in Table 10.8 on page 112.
Table 10.8 WPA Personal Security Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPA Versions</td>
<td>Select the types of client stations you want to support:</td>
</tr>
<tr>
<td></td>
<td>• WPA</td>
</tr>
<tr>
<td></td>
<td>• WPA2</td>
</tr>
<tr>
<td></td>
<td>• Both</td>
</tr>
<tr>
<td>WPA, If all client stations on the network support the original WPA but none support the newer WPA2, then select WPA.</td>
<td></td>
</tr>
<tr>
<td>WPA2, If all client stations on the network support WPA2, we suggest using WPA2 which provides the best security per the IEEE 802.11i standard.</td>
<td></td>
</tr>
<tr>
<td>Both, If you have a mix of clients, some of which support WPA2 and others which support only the original WPA, select both. This lets both WPA and WPA2 client stations associate and authenticate, but uses the more robust WPA2 for clients who support it. This WPA configuration allows more interoperability, at the expense of some security.</td>
<td></td>
</tr>
</tbody>
</table>
Wi-Fi Protected Access Enterprise with Remote Authentication Dial-In User Service (RADIUS) is an implementation of the Wi-Fi Alliance IEEE 802.11i standard, which includes Advanced Encryption Standard (AES), Counter mode/CBC-MAC Protocol (CCMP), and Temporal Key Integrity Protocol (TKIP) mechanisms. The Enterprise mode requires the use of a RADIUS server to authenticate users, and configuration of user accounts via the Cluster, User Management tab.

Table 10.8 WPA Personal Security Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipher Suites</td>
<td>Select the cipher suite you want to use:</td>
</tr>
<tr>
<td></td>
<td>• TKIP</td>
</tr>
<tr>
<td></td>
<td>• CCMP (AES)</td>
</tr>
<tr>
<td></td>
<td>• Both</td>
</tr>
<tr>
<td>Temporal Key Integrity Protocol (TKIP)</td>
<td>is the default. TKIP provides a more secure encryption solution than WEP keys. The TKIP process more frequently changes the encryption key used and better ensures that the same key will not be re-used to encrypt data (a weakness of WEP). TKIP uses a 128-bit “temporal key” shared by clients and access points. The temporal key is combined with the client’s MAC address and a 16-octet initialization vector to produce the key that will encrypt the data. This ensures that each client station uses a different key to encrypt data. TKIP uses RC4 to perform the encryption, which is the same as WEP. But TKIP changes temporal keys every 10,000 packets and distributes them, thereby greatly improving the security of the network.</td>
</tr>
<tr>
<td>Counter mode/CBC-MAC Protocol (CCMP)</td>
<td>is an encryption method for IEEE 802.11i that uses the Advanced Encryption Algorithm (AES). It uses a CCM combined with Cipher Block Chaining Counter mode (CBC-CTR) and Cipher Block Chaining Message Authentication Code (CBC-MAC) for encryption and message integrity.</td>
</tr>
<tr>
<td></td>
<td>If you select both TKIP and CCMP(AES), Pairwise cipher is AES and Groupwise cipher is TKIP. Pairwise cipher is used for unicast traffic and Groupwise cipher is used for multicast/broadcast traffic. Both TKIP and AES clients can associate with the access point. WPA clients must have one of the following to be able to associate with the AP:</td>
</tr>
<tr>
<td></td>
<td>• A valid TKIP key</td>
</tr>
<tr>
<td></td>
<td>• A valid CCMP (AES) key</td>
</tr>
<tr>
<td></td>
<td>Clients not configured to use a WPA Personal will not be able to associate with AP.</td>
</tr>
<tr>
<td>Key</td>
<td>The Pre-shared Key is the shared secret key for WPA Personal. Enter a string of at least 8 characters to a maximum of 63 characters.</td>
</tr>
</tbody>
</table>
This security mode is backwards-compatible with wireless clients that support the original WPA.

When configuring WPA Enterprise mode, you have a choice of whether to use the built-in RADIUS server or an external RADIUS server that you provide. The 9160 G2 Wireless Gateway built-in RADIUS server supports Protected EAP (PEAP) and MSCHAP V2.

If you selected “WPA Enterprise” Security Mode, complete the settings as described in Table 10.9 on page 115.
Table 10.9 WPA Enterprise Security Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPA Versions</td>
<td>Select the types of client stations you want to support:</td>
</tr>
<tr>
<td>• WPA</td>
<td>WPA. If all client stations on the network support the original WPA but none support the newer WPA2, then select WPA.</td>
</tr>
<tr>
<td>• WPA2</td>
<td>WPA2. If all client stations on the network support WPA2, we suggest using WPA2 which provides the best security per the IEEE 802.11i standard.</td>
</tr>
<tr>
<td>• Both</td>
<td>Both. If you have a mix of clients, some of which support WPA2 and others which support only the original WPA, select both WPA and WPA2. This lets both WPA and WPA2 client stations associate and authenticate, but uses the more robust WPA2 for clients who support it. This WPA configuration allows more interoperability, at the expense of some security.</td>
</tr>
<tr>
<td>**Enable pre-</td>
<td>If for WPA Versions you select only WPA2 or both WPA and WPA2, you can enable pre-authentication for WPA2 clients.</td>
</tr>
<tr>
<td>authentication**</td>
<td>Click Enable pre-authentication if you want WPA2 wireless clients to send pre-authentication packet. The pre-authentication information will be relayed from the access point the client is currently using to the target access point. Enabling this feature can help speed up authentication for roaming clients who connect to multiple access points.</td>
</tr>
<tr>
<td></td>
<td>This option does not apply if you selected “WPA” for WPA Versions because the original WPA does not support this feature.</td>
</tr>
</tbody>
</table>
Chapter 10: Configuring Security

Security Modes

Cipher Suites
Select the cipher you want to use:

- **TKIP**
- **CCMP (AES)**
- **Both**

Temporal Key Integrity Protocol (TKIP) is the default. TKIP provides a more secure encryption solution than WEP keys. The TKIP process more frequently changes the encryption key used and better ensures that the same key will not be re-used to encrypt data (a weakness of WEP). TKIP uses a 128-bit “temporal key” shared by clients and access points. The temporal key is combined with the client’s MAC address and a 16-octet initialization vector to produce the key that will encrypt the data. This ensures that each client station uses a different key to encrypt data. TKIP uses RC4 to perform the encryption, which is the same as WEP. But TKIP changes temporal keys every 10,000 packets and distributes them, thereby greatly improving the security of the network.

Counter mode/CBC-MAC Protocol (CCMP) is an encryption method for IEEE 802.11i that uses the Advanced Encryption Algorithm (AES). It uses a CCM combined with Cipher Block Chaining Counter mode (CBC-CTR) and Cipher Block Chaining Message Authentication Code (CBC-MAC) for encryption and message integrity.

When both TKIP and CCMP are selected, both TKIP and AES clients can associate with the access point. Client stations configured to use WPA with RADIUS must have one of the following to be able to associate with the AP:

- A valid TKIP RADIUS IP address and valid shared Key.
- A valid CCMP (AES) IP address and valid shared Key.

Clients not configured to use WPA with RADIUS will not be able to associate with AP.

Table 10.9 WPA Enterprise Security Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipher Suites</td>
<td>Select the cipher you want to use:</td>
</tr>
<tr>
<td>• TKIP</td>
<td></td>
</tr>
<tr>
<td>• CCMP (AES)</td>
<td></td>
</tr>
<tr>
<td>• Both</td>
<td></td>
</tr>
<tr>
<td>Temporal Key Integrity Protocol (TKIP) is the default. TKIP provides a more secure encryption solution than WEP keys. The TKIP process more frequently changes the encryption key used and better ensures that the same key will not be re-used to encrypt data (a weakness of WEP). TKIP uses a 128-bit “temporal key” shared by clients and access points. The temporal key is combined with the client's MAC address and a 16-octet initialization vector to produce the key that will encrypt the data. This ensures that each client station uses a different key to encrypt data. TKIP uses RC4 to perform the encryption, which is the same as WEP. But TKIP changes temporal keys every 10,000 packets and distributes them, thereby greatly improving the security of the network.</td>
<td></td>
</tr>
<tr>
<td>Counter mode/CBC-MAC Protocol (CCMP) is an encryption method for IEEE 802.11i that uses the Advanced Encryption Algorithm (AES). It uses a CCM combined with Cipher Block Chaining Counter mode (CBC-CTR) and Cipher Block Chaining Message Authentication Code (CBC-MAC) for encryption and message integrity.</td>
<td></td>
</tr>
<tr>
<td>When both TKIP and CCMP are selected, both TKIP and AES clients can associate with the access point. Client stations configured to use WPA with RADIUS must have one of the following to be able to associate with the AP:</td>
<td></td>
</tr>
<tr>
<td>• A valid TKIP RADIUS IP address and valid shared Key.</td>
<td></td>
</tr>
<tr>
<td>• A valid CCMP (AES) IP address and valid shared Key.</td>
<td></td>
</tr>
<tr>
<td>Clients not configured to use WPA with RADIUS will not be able to associate with AP.</td>
<td></td>
</tr>
<tr>
<td>By default both TKIP and CCMP are selected. When both TKIP and CCMP are selected, client stations configured to use WPA with RADIUS must have one of the following:</td>
<td></td>
</tr>
<tr>
<td>• A valid TKIP RADIUS IP address and RADIUS Key.</td>
<td></td>
</tr>
<tr>
<td>• A valid CCMP (AES) IP address and RADIUS Key.</td>
<td></td>
</tr>
</tbody>
</table>
You can choose whether to use the built-in authentication server provided with the 9160 G2 Wireless Gateway, or you can use an external radius server.

- To use the authentication server provided with the 9160 G2 Wireless Gateway, ensure the checkbox beside the Use internal radius server field is selected. If this option is selected, you do not have to provide the Radius IP and Radius Key; they are automatically provided. If the option for the internal RADIUS server is enabled, configure user accounts on the AP via the Cluster > User Management tab. For more information, see Chapter 7: "Managing User Accounts".

- To use an external authentication server, ensure the checkbox beside the Use internal radius server field is deselected. If you deselect this checkbox you must supply a Radius IP and Radius Key of the server you want to use.

Note: The RADIUS server is identified by its IP address and UDP port numbers for the different services it provides. On the current release of the 9160 G2 Wireless Gateway, the RADIUS server User Datagram Protocol (UDP) ports used by the access point are not configurable. (The 9160 G2 Wireless Gateway is hard-coded to use RADIUS server UDP port 1812 for authentication and port 1813 for accounting.)

Radius IP
Enter the Radius IP in the textbox. The Radius IP is the IP address of the RADIUS server.

(127.0.0.1)

If you have an external RADIUS server on your network, we recommend using it rather than the using the embedded RADIUS server on the AP. An external RADIUS server will provide better security than the local authentication server.

For information on setting up user accounts, see Chapter 7: "Managing User Accounts".

Radius Key
Enter the Radius Key in the textbox.

The Radius Key is the shared secret key for the RADIUS server. The text you enter will be displayed as "***" characters to prevent others from seeing the RADIUS key as you type.

(127.0.0.1)

This value is never sent over the network.

Enable RADIUS Accounting
Click Enable RADIUS Accounting if you want to enforce authentication for WPA client stations with user names and passwords for each station. See also Chapter 7: "Managing User Accounts".

Table 10.9 WPA Enterprise Security Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Use internal radius server** | You can choose whether to use the built-in authentication server provided with the 9160 G2 Wireless Gateway, or you can use an external radius server.
- To use the authentication server provided with the 9160 G2 Wireless Gateway, ensure the checkbox beside the Use internal radius server field is selected. If this option is selected, you do not have to provide the Radius IP and Radius Key; they are automatically provided. If the option for the internal RADIUS server is enabled, configure user accounts on the AP via the Cluster > User Management tab. For more information, see Chapter 7: "Managing User Accounts".
- To use an external authentication server, ensure the checkbox beside the Use internal radius server field is deselected. If you deselect this checkbox you must supply a Radius IP and Radius Key of the server you want to use.
Note: The RADIUS server is identified by its IP address and UDP port numbers for the different services it provides. On the current release of the 9160 G2 Wireless Gateway, the RADIUS server User Datagram Protocol (UDP) ports used by the access point are not configurable. (The 9160 G2 Wireless Gateway is hard-coded to use RADIUS server UDP port 1812 for authentication and port 1813 for accounting.) |
| **Radius IP** | Enter the Radius IP in the textbox. The Radius IP is the IP address of the RADIUS server. (The 9160 G2 Wireless Gateway internal authentication server is 127.0.0.1.)
If you have an external RADIUS server on your network, we recommend using it rather than the using the embedded RADIUS server on the AP. An external RADIUS server will provide better security than the local authentication server.
For information on setting up user accounts, see Chapter 7: "Managing User Accounts". |
| **Radius Key** | Enter the Radius Key in the textbox.
The Radius Key is the shared secret key for the RADIUS server. The text you enter will be displayed as "***" characters to prevent others from seeing the RADIUS key as you type. (The 9160 G2 Wireless Gateway internal authentication server key is secret.)
This value is never sent over the network. |
| **Enable RADIUS Accounting** | Click Enable RADIUS Accounting if you want to enforce authentication for WPA client stations with user names and passwords for each station. See also Chapter 7: "Managing User Accounts". |
10.3 **Updating Settings**

To update Security settings:

1. Navigate to the Security tab page.
2. Configure the security settings as required.
3. Click the **Update** button to apply the changes.
11.1 Interfaces .. 121
 11.1.1 Ethernet (Wired) Settings 122
 11.1.2 Wireless Settings ... 122
11.2 Event Logs .. 122
 11.2.1 Enabling Or Disabling Persistence 123
 11.2.2 Severity .. 123
 11.2.3 Depth ... 124
 11.2.4 Log Relay Host For Kernel Messages 124
 11.2.4.1 Understanding Remote Logging 124
 11.2.4.2 Setting Up The Log Relay Host 125
 11.2.4.3 Enabling/Disabling The Log Relay Host On The Status, Events Page .126
 11.2.5 Events Log ... 127
11.3 Transmit/Receive Statistics 127
11.4 Associated Wireless Clients 128
 11.4.1 Link Integrity Monitoring 129
11.5 Neighboring Access Points 129
Chapter 11: Maintenance And Monitoring

Interfaces

Important: The maintenance and monitoring tasks described here all pertain to viewing and modifying settings on specific access points; not on a cluster configuration that is automatically shared by multiple access points. Therefore, it is important to ensure that you are accessing the Administration Web pages for the particular access point you want to configure. For information on this, see “Configuration Information For A Specific AP And Managing Standalone APs” on page 61.

11.1 Interfaces

To monitor wired LAN and wireless LAN (WLAN) settings, navigate to Status > Interfaces on the access point you want to monitor.

Note: On a two-radio access point, current wireless settings for both Radio One and Radio Two are shown. On a one-radio access point, settings are shown for one radio. The Interfaces page for a two-radio AP is shown in the following figure.

![Network Interfaces Page](image)

This page displays the current settings of the 9160 G2 Wireless Gateway. It displays the Ethernet (Wired) Settings and the Wireless Settings.

This page displays the current settings of the 9160 G2 Wireless Gateway. It displays the Ethernet (Wired) Settings and the Wireless Settings.
11.1.1 Ethernet (Wired) Settings

The Internal interface includes the Ethernet MAC Address, IP Address, Subnet Mask, and Associated Network Wireless Name (SSID).

The Guest interface includes the MAC Address, VLAN ID, and Associated Network Wireless Name (SSID).

If you want to change any of these settings, click the Edit link.

11.1.2 Wireless Settings

The Radio interface includes the radio Mode, and Channel. Also shown here are MAC addresses (read-only) and Network Names for the internal and guest interfaces. (See Chapter 13: “Setting The Wireless Interface” and Chapter 16: “Configuring 802.11 Radio Settings” for more information.)

If you want to change any of these settings, click the Edit link.

11.2 Event Logs

To view system events and kernel log for a particular access point, navigate to Status > Events on the Administration Web pages for the access point you want to monitor.

The Events tabbed page allows you to enable or disable Persistence. This page also gives you the option of enabling a remote “log relay host” to capture all system events and errors in a Kernel Log. (This requires setting up a remote relay host first. See “Log Relay Host For
Kernel Messages” on page 124). The Events tabbed page also lists the most recent events generated by this access point (see “Events Log” on page 127).

Note: The 9160 G2 Wireless Gateway acquires its date and time information using the network time protocol (NTP). This data is reported in UTC format (also known as Greenwich Mean Time). You need to convert the reported time to your local time. For information on setting the network time protocol, see Chapter 25: “Network Time Protocol Server”.

11.2.1 Enabling Or Disabling Persistence

Persistence can be enabled or disabled from the Events tabbed page. The persistent log is saved in NVRAM. Even after a reboot, all persistent logs are still reserved in NVRAM. Non-persistent logs are only kept during the run-time period. If you reboot the 9160 G2, all non-persistent logs will be lost.

Enabling Persistence from the Events tabbed page ensures that all logs are written to NVRAM and even after a reboot, these are recoverable.

Note: It should be remembered that enabling Persistence will result in a continuous write operation. There is a risk that this will wear out the Flash element of the AP—you should decide whether enabling Persistence is right for your needs, given that elevated risk.

Table 11.1 Persistence Configuration Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay Log</td>
<td>Choose to either enable or disable Persistence.</td>
</tr>
<tr>
<td>Relay Host</td>
<td>You can choose a Severity level of between 0 and 7.</td>
</tr>
<tr>
<td></td>
<td>Severity 7 is the least severe level and Severity 0 is the most severe level.</td>
</tr>
<tr>
<td></td>
<td>For more details on Severity Levels, see “Severity” on page 123.</td>
</tr>
<tr>
<td>Relay Port</td>
<td>You can enter a value between 1 and 128.</td>
</tr>
<tr>
<td></td>
<td>For more information on Depth, see “Depth” on page 124.</td>
</tr>
</tbody>
</table>

11.2.2 Severity

The purpose of severity configuration is to filter or limit the security messages that are displayed in the Event log. It is unlikely that you will want to see a list of all messages. Those of less severity or significance can be filtered using the Severity configuration feature.
If you set the *Severity* level to 7, all messages with a severity level between 7 and 0 will appear in the Event log. Alternatively, if you want to filter messages, you can set the *Severity* level to 4. In this instance, all messages with a severity level between 4 and 0 will appear in the Event log. Therefore, less severe messages and notices will be ignored.

Table 11.2 Severity Configuration Settings

<table>
<thead>
<tr>
<th>Severity Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Emergency: system is unusable</td>
</tr>
<tr>
<td>1</td>
<td>Alert: action must be taken immediately</td>
</tr>
<tr>
<td>2</td>
<td>Critical: critical condition</td>
</tr>
<tr>
<td>3</td>
<td>Error: error condition</td>
</tr>
<tr>
<td>4</td>
<td>Warning: warning conditions</td>
</tr>
<tr>
<td>5</td>
<td>Notice: normal but significant condition</td>
</tr>
<tr>
<td>6</td>
<td>Informational: information messages</td>
</tr>
<tr>
<td>7</td>
<td>Debug: debug-level messages</td>
</tr>
</tbody>
</table>

11.2.3 Depth

The value specified in the *Depth* field determines the number of log entries that can be saved to NVRAM. You can save up to a maximum of 128 entries. If you rely on log messages for monitoring the performance of your AP, you should set the *Depth* value to the maximum of 128.

11.2.4 Log Relay Host For Kernel Messages

- “Understanding Remote Logging” on page 124.
- “Setting Up The Log Relay Host” on page 125.
- “Enabling/Disabling The Log Relay Host On The Status, Events Page” on page 126.

11.2.4.1 Understanding Remote Logging

The Kernel Log is a comprehensive list of system events (shown in the System Log) and kernel messages, such as error conditions like dropping frames.
Your cannot view Kernel Log messages directly from the Administration Web UI for an access point. You must first set up a remote server running a syslog process and acting as a syslog “log relay host” on your network. Then, you can configure the 9160 G2 Wireless Gateway to send its syslog messages to the remote server.

Using a remote server to collect access point syslog messages affords you several benefits. You can:

- Aggregate syslog messages from multiple access points.
- Store a longer history of messages than kept on a single access point.
- Trigger scripted management operations and alerts.

11.2.4.2 Setting Up The Log Relay Host

To use Kernel Log relaying, you must configure a remote server to receive the syslog messages. This procedure will vary depending on the type of machine you use as the remote log host. The following is an example of how to configure a remote Linux server using the syslog daemon.

Example Of Using Linux syslogd

The following steps activate the syslog daemon on a Linux server. Make sure you have root user identity for these tasks.

1. Log on as root to the machine you want to use as your syslog relay host.

 The following operations require root user permissions. If you are not already logged on as root, type su at the command line prompt to become root (“super user”).

2. Edit `/etc/init.d/syslogd` and add “-r” to the variable SYSLOGD near the top of the file.

 The line you edit will look like this:
   ```
   SYSLOGD= "-r"
   ```

 Consult the man pages to get more information on syslogd command options. (Type man syslogd at the command line.)

3. If you want to send all the messages to a file, edit `/etc/syslog.conf`.

 For example you can add this line to send all messages to a log file called “AP_syslog”:
   ```
   * . * -/tmp/AP_syslog
   ```

 Consult the man pages to get more information on syslog.conf command options. (Type man syslog.conf at the command line.)

4. Restart the syslog server by typing the following at the command line prompt:
   ```
   /etc/init.d/sysklogd restart
   ```
Note: The syslog process will default to use port 514. We recommend keeping this default port. However, if you choose to reconfigure the log port, make sure that the port number you assign to syslog is not being used by another process.

11.2.4.3 Enabling/Disabling The Log Relay Host On The Status, Events Page

To enable and configure Log Relaying on the Status > Events page, set the Log Relay options as described below and then click Update.

![Update Settings](image)

Table 11.3 Log Relay Host Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay Log</td>
<td>Choose to either enable or disable use of the Log Relay Host: If you select the Relay Log checkbox, the Log Relay Host is enabled and the Relay Host and Relay Port fields are editable.</td>
</tr>
<tr>
<td>Relay Host</td>
<td>Specify the IP Address or DNS name of the Relay Host. Note: If you are using Devicescape Wireless Operations Center, the Repository Server should receive the syslog messages from all access points. In this case, use the IP address of the Operations Center Repository Server as the Relay Host.</td>
</tr>
<tr>
<td>Relay Port</td>
<td>Specify the Port number for the syslog process on the Relay Host. The default port is 514.</td>
</tr>
</tbody>
</table>

Update Settings

To apply your changes, click Update.

If you enabled the Log Relay Host, clicking Update will activate remote logging. The access point will send its kernel messages real-time for display to the remote log server monitor, a specified kernel log file, or other storage, depending on how you configured the Log Relay Host.

If you disabled the Log Relay Host, clicking Update will disable remote logging.
11.2.5 Events Log

The Events Log shows system events on the access point such as stations associating, being authenticated, and other occurrences. The real-time Events Log is always shown on the Status, Events Administration Web UI page for the access point you are monitoring.

11.3 Transmit/Receive Statistics

To view transmit/receive statistics for a particular access point, navigate to Status > Transmit/Receive on the Administration Web pages for the access point you want to monitor.

Note: The Figure 11.3 shows the Transmit/Receive page for a two-radio AP. The Administration Web page for the one-radio AP will look slightly different.

Figure 11.3 Transmit And Receive Statistics Page

This page provides some basic information about the current access point and a real-time display of the transmit and receive statistics for this access point as described in Table 11.4 on page 128. All transmit and receive statistics shown are totals since the access point was last started. If the AP is rebooted, these figures indicate transmit/receive totals since the reboot.
Chapter 11: Maintenance And Monitoring

11.4 Associated Wireless Clients

To view the client stations associated with a particular access point, navigate to Status > Client Associations on the Administration Web pages for the access point you want to monitor.

The associated stations are displayed, along with information about packet traffic transmitted and received for each station (see Figure 11.4 on page 129).

Table 11.4 Transmit/Receive Statistics

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>IP Address for the access point.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Media Access Control (MAC) address for the specified interface.</td>
</tr>
<tr>
<td></td>
<td>A MAC address is a permanent, unique hardware address for any device that represents an interface to the network. The MAC address is assigned by the manufacturer.</td>
</tr>
<tr>
<td></td>
<td>The 9160 G2 Wireless Gateway has a unique MAC address for each interface. A two-radio access point has a different MAC address for each interface on each of its two radios.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Virtual LAN (VLAN) ID.</td>
</tr>
<tr>
<td></td>
<td>A VLAN is a software-based, logical grouping of devices on a network that allow them to act as if they are connected to a single physical network, even though they may not be.</td>
</tr>
<tr>
<td></td>
<td>VLANs can be used to establish internal and guest networks on the same access point.</td>
</tr>
<tr>
<td>Name (SSID)</td>
<td>Wireless network name. Also known as the SSID, this alphanumeric key uniquely identifies a wireless local area network.</td>
</tr>
<tr>
<td></td>
<td>The SSID is set on the Basic Settings tab. (See “Provide Network Settings” on page 49.)</td>
</tr>
</tbody>
</table>

Transmit and Receive Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Packets</td>
<td>Indicates total packets sent (in Transmit table) or received (in Received table) by this access point.</td>
</tr>
<tr>
<td>Total Bytes</td>
<td>Indicates total bytes sent (in Transmit table) or received (in Received table) by this access point.</td>
</tr>
<tr>
<td>Errors</td>
<td>Indicates total errors related to sending and receiving data on this access point.</td>
</tr>
</tbody>
</table>
11.4.1 Link Integrity Monitoring

The 9160 G2 Wireless Gateway provides link integrity monitoring to continually verify its connection to each associated client (even when there is no data exchange occurring). To do this, the AP sends data packets to clients every few seconds when no other traffic is passing. This allows the access point to detect when a client goes out of range, even during periods when no normal traffic is exchanged. The client connection drops off the list of associated clients within 300 seconds of a client disappearing, even if they do not disassociate (but went out of range).

11.5 Neighboring Access Points

The status page for “neighboring access points” provides real-time statistics for all access points within range of the access point on which you are viewing the Administration Web pages. To view information about other access points on the wireless network, navigate to Status > Neighboring Access Points (see Figure 11.5 on page 130).
Figure 11.5 Status Of Neighboring Access Points

Table 11.5 Neighboring Access Point Statistics

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>Shows the MAC address of the neighboring access point. A MAC address is a hardware address that uniquely identifies each node of a network.</td>
</tr>
</tbody>
</table>
| Radio | Two-Radio APs
If the access point that is “doing the detecting” of neighboring APs is a two-radio access point, the Radio field is included.
The Radio field indicates which radio the neighboring AP was detected on:
- wlan0 (Radio One)
- wlan1 (Radio Two)
One-Radio APs
This field is not included on the Neighboring Access Points pages of one-radio access points. |
| Beacon Int.| Shows the Beacon interval being used by this access point.
Beacon frames are transmitted by an access point at regular intervals to announce the existence of the wireless network. The default behaviour is to send a beacon frame once every 100 milliseconds (or 10 per second).
The Beacon Interval is set on the Manage > 802.11 Advanced Settings tab page. (See Chapter 16: “Configuring 802.11 Radio Settings”.) |
| Capability | A hexadecimal number which, when converted to binary, indicates each IEEE 802.11 feature or functionality and whether it is “on” or “off” on this access point. |
Table 11.5 Neighboring Access Point Statistics

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Type | Indicates the type of device:
 - **AP** indicates the neighboring device is an access point that supports the IEEE 802.11 Wireless Networking Framework in Infrastructure Mode.
 - **Ad hoc** indicates a neighboring station running in Ad hoc Mode. Stations set to ad hoc mode communicate with each other directly, without the use of a traditional access point. Ad-hoc mode is an IEEE 802.11 Wireless Networking Framework also referred to as “peer-to-peer” mode or an Independent Basic Service Set (IBSS). |
| SSID | The Service Set Identifier (SSID) for the access point.
 The SSID is an alphanumeric string of up to 32 characters that uniquely identifies a wireless local area network. It is also referred to as the “Network Name”.
 The SSID is set in Basic Settings. (See Chapter 5: “Configuring Basic Settings”) or in Manage > Wireless Settings (see Chapter 13: “Setting The Wireless Interface”).
 A Guest network and an Internal network running on the same access point must always have two different network names. |
| Privacy | Indicates whether there is any security on the neighboring device.
 - **Off** indicates that the Security mode on the neighboring device is set to “None” mode (no security).
 - **On** indicates that the neighboring device has some security in place.
 Security is configured on the AP from the Security tab page. For more information on security settings, see Chapter 10: “Configuring Security”. |
| WPA | Indicates whether WPA security is On or Off on this access point. |
| Band | This indicates the IEEE 802.11 mode being used on this access point. (For example, IEEE 802.11a, IEEE 802.11b, IEEE 802.11g.)
 The number shown indicates the mode according to the following map:
 - **2.4** indicates IEEE 802.11b mode or IEEE 802.11g mode.
 - **5** indicates IEEE 802.11a mode. |
Table 11.5 Neighboring Access Point Statistics

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| **PHY** | This indicates the IEEE 802.11 mode being used on this access point. (For example, IEEE 802.11a, IEEE 802.11b, IEEE 802.11g.) The number shown indicates the mode according to the following map:
 • 4 indicates IEEE 802.11b mode
 • 7 indicates IEEE 802.11g mode
 • 8 indicates IEEE 802.11a mode
 • 256 indicates Atheros Turbo mode |
| **Channel** | Shows the channel on which the access point is currently broadcasting.
The Channel defines the portion of the radio spectrum that the radio uses for transmitting and receiving.
The channel is set in Radio Settings. (See Chapter 16: “Configuring 802.11 Radio Settings”.) |
| **Rate** | Shows the rate (in megabits per second) at which this access point is currently transmitting.
The current rate will always be one of the supported rates shown in Rates. |
| **Signal** | Indicates the strength of the radio signal emitting from this access point as measured in decibels (Db). |
The Extended Rate Protocol (ERP) refers to the protocol used by IEEE 802.11g stations. This field indicates how an IEEE 802.11g client station using this access point should send data when there are IEEE 802.11b (non-ERP) stations or access points present on the same channel as the IEEE 802.11g (ERP) station.

If an IEEE 802.11g station determines that there are one or more IEEE 802.11b nodes on the network using the same channel that it is using, it will enable request-to-send (RTS) and clear-to-send (CTS) protection.

The number shown on the current UI is a hexadecimal number that when converted to binary shows how the ERP flag is set.

Use the following map to determine the current ERP setting for this AP.

- 0x0 indicates “None.” There are no IEEE 802.11b (non-ERP) stations present.
- 0x1 indicates that an IEEE 802.11b (non-ERP) device is present. This AP has an IEEE 802.11b-only station. (This flag should not ever be used alone.)
- 0x2 indicates that IEEE 802.11g stations should use RTS/CTS protection. There is another AP on same channel with IEEE 802.11b-only client stations.
- 0x3 indicates that there is a non-ERP device present and IEEE 802.11g stations should use RTS/CTS protection.
- 0x4 indicates that IEEE 802.11g stations should use the Barker preamble.
- 0x5 indicates that IEEE 802.11g stations should use the same protocol as 0x1 but with the Barker preamble.
- 0x6 indicates that IEEE 802.11g stations should use the same protocol as 0x2 but with the Barker preamble.
- 0x7 indicates that IEEE 802.11g stations should use the same protocol as 0x3 but with Barker preamble.

Beacons
Shows the total number of beacons transmitted by this access point since it was last booted.

Last Beacon
Shows the date and time that the most recent beacon was transmitted from the access point.

Rates
Shows supported and basic (advertised) rate sets for the neighboring access point. Rates are shown in megabits per second (Mbps).

All Supported Rates are listed, with Basic Rates shown in bold.

Rate sets are configured on Radio Settings. (See Chapter 16: “Configuring 802.11 Radio Settings”.) The rates shown for an access point will always be the rates currently specified for that AP in its Radio Settings.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP</td>
<td>The Extended Rate Protocol (ERP) refers to the protocol used by IEEE 802.11g stations. This field indicates how an IEEE 802.11g client station using this access point should send data when there are IEEE 802.11b (non-ERP) stations or access points present on the same channel as the IEEE 802.11g (ERP) station. If an IEEE 802.11g station determines that there are one or more IEEE 802.11b nodes on the network using the same channel that it is using, it will enable request-to-send (RTS) and clear-to-send (CTS) protection. The number shown on the current UI is a hexadecimal number that when converted to binary shows how the ERP flag is set. Use the following map to determine the current ERP setting for this AP: • 0x0 indicates “None.” There are no IEEE 802.11b (non-ERP) stations present. • 0x1 indicates that an IEEE 802.11b (non-ERP) device is present. This AP has an IEEE 802.11b-only station. (This flag should not ever be used alone.) • 0x2 indicates that IEEE 802.11g stations should use RTS/CTS protection. There is another AP on same channel with IEEE 802.11b-only client stations. • 0x3 indicates that there is a non-ERP device present and IEEE 802.11g stations should use RTS/CTS protection. • 0x4 indicates that IEEE 802.11g stations should use the Barker preamble. • 0x5 indicates that IEEE 802.11g stations should use the same protocol as 0x1 but with the Barker preamble. • 0x6 indicates that IEEE 802.11g stations should use the same protocol as 0x2 but with the Barker preamble. • 0x7 indicates that IEEE 802.11g stations should use the same protocol as 0x3 but with Barker preamble.</td>
</tr>
<tr>
<td>Beacons</td>
<td>Shows the total number of beacons transmitted by this access point since it was last booted.</td>
</tr>
<tr>
<td>Last Beacon</td>
<td>Shows the date and time that the most recent beacon was transmitted from the access point.</td>
</tr>
<tr>
<td>Rates</td>
<td>Shows supported and basic (advertised) rate sets for the neighboring access point. Rates are shown in megabits per second (Mbps). All Supported Rates are listed, with Basic Rates shown in bold. Rate sets are configured on Radio Settings. (See Chapter 16: “Configuring 802.11 Radio Settings”.) The rates shown for an access point will always be the rates currently specified for that AP in its Radio Settings.</td>
</tr>
</tbody>
</table>
THE ETHERNET (WIRED) INTERFACE

12.1 Navigating To Ethernet (Wired) Settings .. 137
 12.1.1 DNS Hostname ... 138
 12.1.2 Guest Access .. 138
 12.1.2.1 Configuring An Internal LAN And A Guest Network 138
 12.1.2.2 Enabling Or Disabling Guest Access 139
 12.1.2.3 Specifying A Virtual Guest Network 139
 12.1.3 Virtual Wireless Networks .. 140
 12.1.4 Internal Interface Settings ... 140
 12.1.5 Guest Interface Settings ... 143
 12.1.6 Updating Settings ... 143
Ethernet (Wired) Settings describe the configuration of your Ethernet local area network (LAN).

Note: The Ethernet Settings are not shared across the cluster. These settings must be configured individually on the Administration pages for each access point. To get to the Administration pages for an access point that is a member of the current cluster, click on its IP Address link on the Cluster > Access Points page of the current AP. For more information about which settings are shared by the cluster, see “Which Settings Are/Are Not Shared As Part Of The Cluster Configuration?” on page 57.

12.1 Navigating To Ethernet (Wired) Settings

To configure “Wired” address and related settings on the 9160 G2 Wireless Gateway, navigate to the Manage > Ethernet Settings tab and update the fields as described in the following sections.

Figure 12.1 Overview Of Ethernet Settings
12.1.1 DNS Hostname

Table 12.1 Setting DNS Name

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Hostname</td>
<td>Enter the DNS name for the access point in the textbox. This is the host name. It may be provided by your ISP or network administrator, or you can provide your own. The rules for system names are: • This name can be up to 20 characters long. • Only letters, numbers and dashes are allowed. • The name must start with a letter and end with either a letter or a number.</td>
</tr>
</tbody>
</table>

12.1.2 Guest Access

You can provide controlled guest access over an isolated network and a secure internal LAN on the same 9160 G2 Wireless Gateway.

12.1.2.1 Configuring An Internal LAN And A Guest Network

A Local Area Network (LAN) is a communications network covering a limited area, for example, one floor of a building. A LAN connects multiple computers and other network devices like storage and printers.

Ethernet is the most common technology implementing a LAN. Wi-Fi (IEEE) is another very popular LAN technology.

The 9160 G2 Wireless Gateway allows you to configure two different LANs on the same access point: one for a secure internal LAN and another for a public guest network with no security and little or no access to internal resources. To configure these networks, you need to provide both Wireless and Ethernet (Wired) settings.

Information on how to configure the Ethernet (Wired) settings is provided in the sections below.

(For information on how to configure the Wireless settings, see Chapter 13: “Setting The Wireless Interface”. For an overview of how to set up the Guest interface, see Chapter 14: “Setting Up Guest Access”.)
12.1.2.2 Enabling Or Disabling Guest Access

The 9160 G2 Wireless Gateway ships with the Guest Access feature disabled by default. If you want to provide guest access on your AP, enable Guest access on the Ethernet (Wired) Settings tab.

Table 12.2 Enabling/Disabling Guest Access

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guest Access</td>
<td>By default, the 9160 G2 Wireless Gateway ships with Guest Access disabled.</td>
</tr>
<tr>
<td></td>
<td>• To enable Guest Access, click Enabled.</td>
</tr>
<tr>
<td></td>
<td>• To disable Guest Access, click Disabled.</td>
</tr>
</tbody>
</table>

12.1.2.3 Specifying A Virtual Guest Network

If you enable Guest Access, you must create both an “Internal” and “Guest Network” on this access point virtually, by connecting the LAN port on the access point to a tagged port on a VLAN capable switch, and then defining two different Virtual LANs on this Administration page. (For more information, see Chapter 14: “Setting Up Guest Access”.) Create the virtually separate internal and guest LANs as described in Table 12.3.

Table 12.3 Specifying A Virtual Guest Network

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guest Access</td>
<td>• Select Enabled to enable Guest Access. (If you choose this option, you must select VLANs on the next setting, For Guest access use, and then provide details on VLAN for the Guest Network on the rest of the page.)</td>
</tr>
<tr>
<td></td>
<td>• Select Disabled to disable Guest Access.</td>
</tr>
</tbody>
</table>
Chapter 12: The Ethernet (Wired) Interface

Virtual Wireless Networks

12.1.3 Virtual Wireless Networks

If you want to configure the Internal network as a VLAN (whether or not you have a Guest network configured), you can enable “Virtual Wireless Networks” on the access point.

You must enable this feature if you want to configure additional virtual networks on VLANs on the Manage > VWN tab as described in “Configuring VLANs” on page 161.

Table 12.3 Specifying A Virtual Guest Network

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Guest Access</td>
<td>Specify a virtually separate guest network on this access point:</td>
</tr>
<tr>
<td></td>
<td>- Since the access point is using only one physical connection to your internal LAN, choose VLAN on Ethernet Port 1 from the drop-down menu. This will enable the “VLAN” settings where you must provide a VLAN ID. See “Guest Interface Settings” on page 143.</td>
</tr>
</tbody>
</table>

Important: If you reconfigure the Guest and Internal interfaces to use VLANs, you may lose connectivity to the access point. First, be sure to verify that the switch and DHCP server you are using can support VLANs per the IEEE 802.1Q standard. After configuring the VLAN on the Manage > Ethernet Settings page, physically reconnect the Ethernet cable on the switch to the tagged packet (VLAN) port. Then, re-connect via the Administration Web pages to the new IP address. (If necessary, check with the infrastructure support administrator regarding the VLAN and DHCP configurations.)

Table 12.4 Enabling Virtual Wireless Networks

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Wireless Networks (Using VLANs on Ethernet Port 1)</td>
<td>- Select Enabled to enable VLANs for the Internal network and for additional networks. (If you choose this option, you can run the Internal network on a VLAN whether or not you have Guest Access configured and you can set up additional networks on VLANs using the Manage > VWN tab as described in “Configuring VLANs” on page 161.)</td>
</tr>
<tr>
<td></td>
<td>- Select Disabled to disable the VLAN for the Internal network, and for any additional virtual networks on this access point.</td>
</tr>
</tbody>
</table>

12.1.4 Internal Interface Settings

To configure Ethernet (wired) settings for the Internal LAN, fill in the fields as described in Table 12.5.
Table 12.5 Ethernet Settings For Internal LAN

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>Shows the MAC address for the Internal interface for the Ethernet port on this access point. This is a read-only field that you cannot change.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>If you choose to configure Internal and Guest networks by “VLANs”, this field will be enabled. Provide a number between 1 and 4094 for the Internal VLAN. This will cause the access point to send DHCP requests with the VLAN tag. The switch and the DHCP server must support VLAN IEEE 802.1p frames. The access point must be able to reach the DHCP server. Check with the Administrator regarding the VLAN and DHCP configurations.</td>
</tr>
<tr>
<td>Management VLAN ID</td>
<td>If you have enabled VWNs or Guest access via VLAN, this field will be enabled. Enter a value for the Management VLAN ID. This ID can be any value between 1 and 4094. The Management VLAN ID enables you to specify the VLAN used for managing the AP. You can then manage the AP via the Web User Interface, the Command Line Interface, and SNMP using this VLAN. If the Connection Type is set to DHCP, this will cause the access point to send DHCP requests with the VLAN tag. The switch and the DHCP server must support VLAN IEEE 802.1Q frames. The access point must be able to reach the DHCP server. There are no restrictions on the Management VLAN ID you specify. The Management VLAN ID can be the same as the Internal VLAN ID, the Guest VLAN ID, a VWN VLAN ID, or the Untagged VLAN ID.</td>
</tr>
<tr>
<td>Untagged VLAN</td>
<td>If you have enabled VWNs or Guest access via VLAN, you can enable or disable untagged VLANs. Select Enabled to enable Untagged VLAN. Select Disabled to disable Untagged VLAN. If Untagged VLAN is enabled, then any packets received without a VLAN tag will be treated as if they were received with the specified Untagged VLAN ID. If Untagged VLAN is disabled, then any packets received without a VLAN tag are bridged to WDS links, but not otherwise used by the AP.</td>
</tr>
<tr>
<td>Untagged VLAN ID</td>
<td>If you have enabled Untagged VLAN, this field will be enabled. Enter a value for the Untagged VLAN ID. This can be any value between 1 and 4094. There are no restrictions on the Untagged VLAN ID you specify. The Untagged VLAN ID can be the same as the Internal VLAN ID, the Guest VLAN ID, a VWN VLAN ID, or the Management VLAN ID.</td>
</tr>
</tbody>
</table>
Internal Interface Settings

Connection Type

You can select **DHCP** or **Static IP**.

The *Dynamic Host Configuration Protocol (DHCP)* is a protocol specifying how a centralized server can provide network configuration information to devices on the network. A DHCP server “offers” a “lease” to the client system. The information supplied includes the IP addresses and netmask, plus the address of its DNS servers and gateway.

Static IP indicates that all network settings are provided manually. You must provide the IP address for the 9160 G2 Wireless Gateway, its subnet mask, the IP address of the default gateway, and the IP address of at least one DNS nameserver.

If you select **DHCP**, the 9160 G2 Wireless Gateway will acquire its IP Address, subnet mask, and DNS and gateway information from the DHCP Servers.

Otherwise, if you select **Static IP**, fill in the items described in Static IP Settings.

Important: If you do not have a DHCP server on the Internal network and do not plan to use one, the first thing you must do after bringing up the AP is change the Connection Type from DHCP to Static IP. When you change the Connection Type to Static IP, you can either assign a new Static IP Address to the AP or continue using the default address. We recommend assigning a new address so that if later you bring up another 9160 G2 Wireless Gateway on the same network, the IP addresses for the two APs will be unique.

If you need to recover the default Static IP address, you can do so by resetting the AP to the factory defaults as described in “Resetting Factory Default Configuration” on page 316.

If you chose **Static IP** as the Connection Type, these fields will be enabled.

Enter the Static IP Address in the textboxes.

Subnet Mask

Enter the Subnet Mask in the textboxes. You must obtain this information from your ISP or network administrator.

Default Gateway

Enter the Default Gateway in the textboxes.

DNS Settings via DHCP

The *Domain Name Service (DNS)* is a system that resolves the descriptive name of a network resource to its numeric IP address. You can choose to enable this option, the IP addresses for the DNS servers will be assigned automatically via DHCP. (This option is only available if you specified DHCP for the Connection Type.)

If you choose **Off**, you should assign static IP addresses manually.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Type</td>
<td>You can select DHCP or Static IP. The Dynamic Host Configuration Protocol (DHCP) is a protocol specifying how a centralized server can provide network configuration information to devices on the network. A DHCP server "offers" a "lease" to the client system. The information supplied includes the IP addresses and netmask, plus the address of its DNS servers and gateway. Static IP indicates that all network settings are provided manually. You must provide the IP address for the 9160 G2 Wireless Gateway, its subnet mask, the IP address of the default gateway, and the IP address of at least one DNS nameserver. If you select DHCP, the 9160 G2 Wireless Gateway will acquire its IP Address, subnet mask, and DNS and gateway information from the DHCP Servers. Otherwise, if you select Static IP, fill in the items described in Static IP Settings. Important: If you do not have a DHCP server on the Internal network and do not plan to use one, the first thing you must do after bringing up the AP is change the Connection Type from DHCP to Static IP. When you change the Connection Type to Static IP, you can either assign a new Static IP Address to the AP or continue using the default address. We recommend assigning a new address so that if later you bring up another 9160 G2 Wireless Gateway on the same network, the IP addresses for the two APs will be unique. If you need to recover the default Static IP address, you can do so by resetting the AP to the factory defaults as described in “Resetting Factory Default Configuration” on page 316.</td>
</tr>
<tr>
<td>Static IP Address</td>
<td>If you chose Static IP as the Connection Type, these fields will be enabled. Enter the Static IP Address in the textboxes.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>Enter the Subnet Mask in the textboxes. You must obtain this information from your ISP or network administrator.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>Enter the Default Gateway in the textboxes.</td>
</tr>
<tr>
<td>DNS Settings via DHCP</td>
<td>The Domain Name Service (DNS) is a system that resolves the descriptive name of a network resource to its numeric IP address. You can choose to enable this option, the IP addresses for the DNS servers will be assigned automatically via DHCP. (This option is only available if you specified DHCP for the Connection Type.) If you choose Off, you should assign static IP addresses manually.</td>
</tr>
</tbody>
</table>
12.1.5 Guest Interface Settings

To configure Ethernet (Wired) Settings for the “Guest” interface, fill in the fields as described below.

Table 12.5 Ethernet Settings For Internal LAN

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Nameservers</td>
<td>The Domain Name Service (DNS) is a system that resolves the descriptive name (domainname) of a network resource (for example, www.psionteklogix.com) to its numeric IP address (for example, 66.93.138.219). A DNS server is called a Nameserver. There are usually two Nameservers; a Primary Nameserver and a Secondary Nameserver.</td>
</tr>
<tr>
<td>DNS Domain</td>
<td>Identify the domain of the DNS servers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>

12.1.6 Updating Settings

To update Ethernet settings:
1. Navigate to the Ethernet Settings page.
2. Configure the Ethernet settings as required.
3. Click the Update button to apply the changes.
SETTING THE WIRELESS INTERFACE

13.1 Navigating To Wireless Settings .. 147
13.2 Configuring 802.11d Regulatory Domain Support 148
13.3 802.11h Regulatory Domain Control .. 148
13.4 Configuring The Radio Interface .. 149
13.5 Configuring “Internal” Wireless LAN Settings 150
13.6 Configuring “Guest” Network Wireless Settings 151
13.7 Updating Wireless Settings ... 152
Wireless Settings describes aspects of the local area network (LAN) related specifically to the radio device in the access point (802.11 Mode and Channel) and to the network interface to the access point (MAC address for access point and Wireless Network name, also known as SSID).

The following sections describe how to configure the “Wireless” address and related settings, including 802.1Qv1, on the 9160 G2 Wireless Gateway.

13.1 Navigating To Wireless Settings

To set the wireless address for an access point, navigate to the Manage > 802.11 Settings tab which will open the Wireless Settings page, and update the fields as described below.

Note: Figure 13.1 shows the Wireless Settings page for a two-radio AP. The Administration Web page for the single-radio AP will look slightly different.

Figure 13.1 Wireless Settings Configuration
13.2 Configuring 802.11d Regulatory Domain Support

You can enable or disable IEEE 802.11d Regulatory Domain Support to broadcast the access point country code information as described below.

Table 13.1 Enabling 802.11d Support

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11d Regulatory Domain Support</td>
<td>Enabling support for IEEE 802.11d on the access point causes the AP to broadcast which country it is operating in as a part of its beacons:</td>
</tr>
<tr>
<td></td>
<td>• To enable 802.11d regulatory domain support, click Enabled.</td>
</tr>
<tr>
<td></td>
<td>• To disable 802.11d regulatory domain support, click Disabled.</td>
</tr>
<tr>
<td></td>
<td>For the two-radio AP, two MAC addresses are shown: one for each Radio on the Internal interface.</td>
</tr>
<tr>
<td>Note:</td>
<td>The IEEE 802.11d defines standard rules for the operation of IEEE 802.11 wire-</td>
</tr>
<tr>
<td></td>
<td>less LANs in any country without re-configuration. IEEE 802.11d allows client stations to operate in any country without re-configuration. The Devicescape Reference AP must be configured by the Manufacturer via the command line interface (CLI) country codes for operation in a particular country.</td>
</tr>
</tbody>
</table>

13.3 802.11h Regulatory Domain Control

Table 13.2 IEEE 802.11h Standard

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.11h</td>
<td>The Administration UI will show whether IEEE 802.11h regulatory domain control is in effect on the AP. IEEE 802.11h cannot be disabled by an end user Administrator. The following details are provided for informational purposes only.</td>
</tr>
<tr>
<td></td>
<td>IEEE 802.11h is a standard that provides two services required to satisfy certain regulatory domains for the 5GHz band. These two services are Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS).</td>
</tr>
<tr>
<td></td>
<td>• TPC requires that Radio Local Area Networks (RLANs) operating in the 5 GHz band use transmitter power control. This involves adhering to a regulatory maximum transmit output power and a mitigation requirement for each permitted channel. The result of which is the reduced interference with satellite services.</td>
</tr>
<tr>
<td></td>
<td>• DFS requires that RLANs operating in the 5 GHz band implement a mechanism to avoid co-channel operation with radar systems and ensure uniform utilization of any available channels.</td>
</tr>
<tr>
<td>Note:</td>
<td>802.11h is automatically enabled if the AP is configured to work in any country that requires 802.11h as a minimum standard. This standard is currently only required by those countries which fall into the European Telecommunications Standard Institute (ETSI) category. 802.11h is also enabled for Japan.</td>
</tr>
</tbody>
</table>
There are a number of key points for the AP Developer that should be remembered in relation to the IEEE 802.11h standard:

- 802.11h only works for the 802.11a band. It is not required for 802.11b, nor 802.11g.
- If you are operating in an 802.11h enabled domain, then the channel selection of the BSS will always be “Auto”. Even if another channel has been has been configured, this will be ignored and auto-channel selection will occur.
- When 802.11h is enabled, the initial bootup time will increase by a minimum of sixty seconds. This is the minimum time required to scan the selected channel for radar interference.
- Setting up WDS links may be difficult when 802.11h is operational. This is because the operating channels of the two APs on the WDS link may keep changing depending on channel usage and radar interference. WDS will only work if both the APs operate on the same channel. For more information on WDS, see Chapter 20: “Wireless Distribution System”.

13.4 Configuring The Radio Interface

The radio interface allows you to set the radio *Channel* and 802.11 *mode* as described in Table 13.3.

Note: On a two-radio AP, you must configure these radio interface settings for both Radio Interface One and Radio Interface Two.

Table 13.3 Radio Interface Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Addresses (Shown on two-radio AP only)</td>
<td>Indicates the Media Access Control (MAC) addresses for the interface. On the two-radio AP only, the MAC addresses for Radio Interface One (Internal/Guest) and Radio Interface Two (Internal/Guest) are shown. A MAC address is a permanent, unique hardware address for any device that represents an interface to the network. The MAC address is assigned by the manufacturer. You cannot change the MAC address. It is provided here for informational purposes as a unique identifier for an interface.</td>
</tr>
</tbody>
</table>
Chapter 13: Setting The Wireless Interface

Configuring “Internal” Wireless LAN Settings

The Internal Settings describe the MAC Address (read-only) and Network Name (also known as the SSID) for the internal Wireless LAN (WLAN) as described in Table 13.4.

Table 13.3 Radio Interface Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Mode** | The Mode defines the Physical Layer (PHY) standard being used by the radio. The 9160 G2 Wireless Gateway is available as a single or dual-band access point with one or two radios. The configuration options for Mode differ depending on which product you have.
Single-Band AP:
For the Single-Band AP, select one of these modes:
- IEEE 802.11b
- IEEE 802.11g
Dual-Band AP:
For the dual-band AP, select one of these modes: a mode for each Radio Interface.
- IEEE 802.11b
- IEEE 802.11g
- IEEE 802.11a
One or Two-Radio AP:
If you have a two-radio AP, select an IEEE 802.11 mode for each of the two radio interfaces. (For a one-radio AP there is only one radio interface.) |
| **Channel** | Select the Channel. The range of channels and the default is determined by the Mode of the radio interface.
The Channel defines the portion of the radio spectrum the radio uses for transmitting and receiving. Each mode offers a number of channels, dependent on how the spectrum is licensed by national and transnational authorities such as the Federal Communications Commission (FCC) or the International Telecommunication Union (ITU-R).
The default is Auto, which picks the least busy channel at startup time. |
13.6 Configuring “Guest” Network Wireless Settings

The Guest Settings describe the MAC Address (read-only) and wireless network name (SSID) for the Guest Network as described in Table 13.5. Configuring an access point with two different network names (SSIDs) allows you to leverage the Guest interface feature on the 9160 G2 Wireless Gateway. For more information, see Chapter 14: “Setting Up Guest Access”.
13.7 Updating Wireless Settings

To update wireless settings:

1. Navigate to the 802.11 Settings page.
2. Configure the wireless settings as required.
3. Click the Update button to apply the changes.

Table 13.5 Guest Network Wireless Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>Shows the MAC address for the Guest interface for this access point. This is a read-only field that you cannot change. Although this access point is physically a single device, it can be represented on the network as two or more nodes each with a unique MAC Address. This is accomplished by using multiple Basic Service Set Identifiers (BSSID) for a single access point. The MAC address(es) shown for the “Guest” access point is the BSSID(s) for the “Guest” interface. For the two-radio AP, two MAC addresses are shown: one for each Radio on the Guest interface.</td>
</tr>
<tr>
<td>Wireless Network Name (SSID)</td>
<td>Enter the SSID for the guest network. The Service Set Identifier (SSID) is an alphanumeric string of up to 32 characters that uniquely identifies a wireless local area network. It is also referred to as the Network Name. There are no restrictions on the characters that may be used in an SSID. For the guest network, provide an SSID that is different from the internal SSID and easily identifiable as the “guest” network.</td>
</tr>
</tbody>
</table>
SETTING UP GUEST ACCESS

14.1 Understanding The Guest Interface .. 155
14.2 Configuring The Guest Interface .. 155
 14.2.1 Configuring A Guest Network On A Virtual LAN 156
 14.2.2 Configuring The Welcome Screen (Captive Portal) 156
14.3 Using The Guest Network As A Client 157
14.4 Deployment Example ... 158
Chapter 14: Setting Up Guest Access

Understanding The Guest Interface

Out-of-the-box *Guest Interface* features allow you to configure the 9160 G2 Wireless Gateway for controlled guest access to an isolated network. You can configure the same access point to broadcast and function as two different wireless networks: a secure “Internal” LAN and a public “Guest” network. Guest clients can access the guest network without a username or password. When guests log in, they see a guest *Welcome* screen (also known as a “captive portal”).

14.1 Understanding The Guest Interface

You can define unique parameters for guest connectivity and isolate guest clients from other more sensitive areas of the network.

Important: No security is provided on the guest network; only plain-text security mode is allowed.

Simultaneously, you can configure a secure *internal* network (using the same access point as your guest interface) that provides full access to protected information behind a firewall and requires secure login or certificates for access.

You can configure an 9160 G2 Wireless Gateway for the Guest interface by using a single network with VLANs by setting up the guest interface configuration options on the Administration Web pages for the 9160 G2 Wireless Gateway. (For details on how to set up this type of guest interface, see “Configuring A Guest Network On A Virtual LAN” on page 156.

Notes: This method leverages multiple BSSID and Virtual LAN (VLAN) technologies that are built-in to the 9160 G2 Wireless Gateway. The Internal and Guest networks are implemented as multiple BSSIDs on the same access point, each with different network names (SSIDs) on the Wireless interface and different VLAN IDs on the Wired interface.

On a two-radio access point, the Guest Management and Login settings apply to both Radio One and Radio Two.

14.2 Configuring The Guest Interface

To configure the Guest interface on the 9160 G2 Wireless Gateway, perform these steps:

1. Configure the access point to represent two *virtually* separate networks as described in the section below, “Configuring A Guest Network On A Virtual LAN”.
2. Set up the guest *Welcome* screen for the guest captive portal as described in the section, “Configuring The Welcome Screen (Captive Portal)” on page 156.
Note: Guest Interface settings are not shared among access points across the cluster. These settings must be configured individually on the Administration pages for each access point. To get to the Administration pages for an access point that is a member of the current cluster, click on its IP Address link on the Cluster, Access Points page of the current AP. For more information about which settings are shared by the cluster and which are not, see “Which Settings Are/Are Not Shared As Part Of The Cluster Configuration?” on page 57.

14.2.1 Configuring A Guest Network On A Virtual LAN

Notes: If you want to configure the Guest and Internal networks on Virtual LAN (VLANs), the switch and DHCP server you are using must support VLANs.

As a prerequisite step, configure a port on the switch for handling VLAN tagged packets as described in the IEEE 802.1Q standard.

Guest Welcome Screen settings are shared among access points across the cluster. When you update these settings for one access point, the configuration will be shared with the other access points in the cluster. For more information about which settings are shared by the cluster and which are not, see “Which Settings Are/Are Not Shared As Part Of The Cluster Configuration?” on page 57.

To configure Internal and Guest networks on Virtual LANs, do the following:

1. Use only one wired connection from the network port on the access point to the LAN. (Make sure this port is configured to handle VLAN tagged packets.)

2. Configure Ethernet (wired) Settings for Internal and Guest networks on VLANs as described in the sections in Chapter 12: “The Ethernet (Wired) Interface”. (Start by enabling Guest Access and choosing For Internal and Guest access, use two: VLANs as described in “Specifying A Virtual Guest Network” on page 139.)

3. Provide the radio interface settings and network names (SSIDs) for both Internal and Guest networks as described in Chapter 13: “Setting The Wireless Interface”.

4. Configure the guest splash screen as described in “Configuring The Welcome Screen (Captive Portal)” on page 156.

14.2.2 Configuring The Welcome Screen (Captive Portal)

You can set up or modify the Welcome screen guest clients see when they open a Web browser or try to browse the Web. To set up the captive portal, do the following:

1. Navigate to the Manage > Guest Login tab.
Chapter 14: Setting Up Guest Access
Using The Guest Network As A Client

Figure 14.1 Guest Login Screen Settings

2. Choose Enabled to activate the Welcome screen.
3. In the Welcome Screen Text field, type the text message you would like guest clients to see on the captive portal.
4. Click Update to apply the changes.

14.3 Using The Guest Network As A Client

Once the guest network is configured, a client can access the guest network as follows:

1. A guest client enters an area of coverage and scans for wireless networks.
2. The guest network advertises itself via a Guest SSID or some similar name, depending on how the guest SSID is specified in the Administration Web pages for the Guest interface.
3. The guest client chooses Guest SSID.
4. The guest client starts a Web browser and receives a Guest Welcome screen.
5. The Guest Welcome Screen provides a button for the client to click to continue.
6. The guest client is now enabled to use the “guest” network.

14.4 Deployment Example

In Figure 14.2, the dotted lines indicate dedicated guest connections. All access points and all connections (including guests) are administered from the same 9160 G2 Wireless Gateway Administration Web pages.

Figure 14.2 Dedicated Guest Connections
15 CONFIGURING VLANs

15.1 Navigating To Virtual Wireless Network Settings 161
15.2 Configuring VLANs ... 161
15.3 Updating Settings ... 163
Chapter 15: Configuring VLANs

Navigating To Virtual Wireless Network Settings

The following sections describe how to configure multiple wireless networks on Virtual LANs (VLANs).

15.1 Navigating To Virtual Wireless Network Settings

To set up multiple networks on VLANs, navigate to the Manage > VWN tab, and update the fields as described below.

Figure 15.1 VWN Settings

<table>
<thead>
<tr>
<th>Modify Virtual Wireless Network settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN Enabled VLAN ID</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

15.2 Configuring VLANs

Note: To configure additional networks on VLANs, you must first enable Virtual Wireless Networks on the Ethernet Settings page. See “Virtual Wireless Networks” on page 140.

Important: If you configure VLANs, you may lose connectivity to the access point. First, be sure to verify that the switch and DHCP server you are using can support VLANs per the IEEE 802.1Q standard. After configuring VLANs, physically reconnect the Ethernet cable on the switch to the tagged packet (VLAN) port. Then, re-connect via the Administration Web pages to the new IP address. (If
necessary, check with the infrastructure support administrator regarding the VLAN and DHCP configurations.)

Table 15.1 Virtual Wireless Network Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Wireless Network</td>
<td>You can configure up to 6 VWNs.</td>
</tr>
<tr>
<td>Enabled</td>
<td>You can enable or disable a configured network.</td>
</tr>
<tr>
<td></td>
<td>• To enable the specified network, check the Enabled checkbox beside the appropriate VWN.</td>
</tr>
<tr>
<td></td>
<td>• To disable the specified network, uncheck the Enabled checkbox beside the appropriate VWN.</td>
</tr>
<tr>
<td></td>
<td>If you disable the specified network, you will lose the VLAN ID you entered.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Provide a number between 1 and 4094 for the Internal VLAN.</td>
</tr>
<tr>
<td></td>
<td>This will cause the access point to send DHCP requests with the VLAN tag. The switch and the DHCP server must support VLAN IEEE 802.1Q frames. The access point must be able to reach the DHCP server.</td>
</tr>
<tr>
<td></td>
<td>Check with the Administrator regarding the VLAN and DHCP configurations.</td>
</tr>
<tr>
<td>SSID</td>
<td>Enter a name for the wireless network as a character string. This name will apply to all access points on this network. As you add more access points, they will share this SSID.</td>
</tr>
<tr>
<td></td>
<td>The Service Set Identifier (SSID) is an alphanumeric string of up to 32 characters.</td>
</tr>
<tr>
<td></td>
<td>Note: If you are connected as a wireless client to the same AP that you are administering, resetting the SSID will cause you to lose connectivity to the AP. You will need to reconnect to the new SSID after you save this new setting.</td>
</tr>
</tbody>
</table>
15.3 Updating Settings

To update VLAN settings:

1. Navigate to the *VWN* tab page.
2. Configure the VLAN settings as required.
3. Click the **Update** button to apply the changes.
CONFIGURING 802.11 RADIO SETTINGS

16.1 Understanding Radio Settings ... 167
16.2 Navigating To Radio Settings ... 167
16.3 Configuring Radio Settings .. 169
16.4 Updating Settings ... 173
The following sections describe how to configure 802.11 Radio Settings on the 9160 G2 Wireless Gateway:

16.1 Understanding Radio Settings

Radio settings directly control the behaviour of the radio device in the access point, and its interaction with the physical medium; that is, how/what type of electromagnetic waves the AP emits. You can specify whether the radio is on or off, radio frequency (RF) broadcast channel, beacon interval (amount of time between AP beacon transmissions), transmit power, IEEE 802.11 mode in which the radio operates, and so on.

The 9160 G2 Wireless Gateway comes configured as a dual-band access point with one radio.

The access point is capable of broadcasting in the following modes:

- IEEE 802.11b mode.
- IEEE 802.11g mode.
- IEEE 802.11a mode.
- Atheros Turbo 5 GHz.
- Atheros Dynamic Turbo 5 GHz.
- Atheros Turbo 2.4 GHz.
- Atheros Dynamic Turbo 2.4 GHz.
- Extended Range.

Important: Psion Teklogix mobile computers do not support Atheros Turbo modes and to prevent unnecessary radio overhead the use of Turbo mode is not recommended.

The IEEE mode, along with other radio settings, are configured as described in “Navigating To Radio Settings” on page 167 and “Configuring Radio Settings” on page 169.

16.2 Navigating To Radio Settings

To specify radio settings, navigate to Manage > 802.11 Advanced Settings tab, which will open the Radio Settings page, and update the fields as described in Table 16.1 on page 169.
16.3 Configuring Radio Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Radio | The 9160 G2 Wireless Gateway is available as a one-radio or two-radio access point.
- **One-Radio AP**: If you have a one-radio version of the 9160 G2 Wireless Gateway, this field is not included on the Radio tab.
- **Two-Radio AP**: If you have a two-radio version of the 9160 G2 Wireless Gateway, specify Radio One or Radio Two. On a two-radio AP the rest of the settings on this tab apply to the radio selected in this field. Be sure to configure settings for both radios. |
| Status (On/Off) | Specify whether you want the radio on or off by clicking On or Off. |
| Mode | The Mode defines the Physical Layer (PHY) standard being used by the radio.
The 9160 G2 Wireless Gateway is available as a single or dual-band access point.
- **Single-Band AP**: For the Single-Band access point, select one of these modes:
 - IEEE 802.11b
 - IEEE 802.11g
- **Dual-Band AP**: For the Dual-Band access point, select one of these modes:
 - IEEE 802.11b
 - IEEE 802.11g
 - IEEE 802.11a

 Note: If you have a two-radio AP, different modes may available depending on whether Radio One or Radio Two is selected in the Radio field above.

 When you select the radio Mode, the appropriate set of Basic and Supported Rates for that Mode is automatically selected. (See description of Rate Sets further down in this table, on page 172.) |
| Super AG | Enabling Super AG provides better performance by increasing radio throughput for a radio mode (IEEE 802.11b, g, a, and so on). Keep in mind that, with Super AG enabled, the access point transmissions will consume more bandwidth.
 - To enable Super AG click Enabled.
 - To disable Super AG click Disabled. |
Chapter 16: Configuring 802.11 Radio Settings

Configuring Radio Settings

Extended Range
Atheros Extended Range (XR) is a proprietary method for implementing low rate traffic over longer distances. It is transparent to XR enabled clients and access points and is designed to be interoperable with the 802.11 standard in 802.11g and 802.11a modes. There is no support for Atheros XR in 802.11b, Atheros Turbo 5 GHz, or Atheros Dynamic Turbo 5 GHz.

Enabling Atheros XR will extend the range over which your client and access point can operate.

- To enable Extended Range, click **Enabled**.
- To disable Extended Range, click **Disabled**.

This option will not be available if you selected the hardware mode IEEE 802.11b, Atheros Turbo 5 GHz, or Atheros Dynamic Turbo 5 GHz. Atheros XR is not supported by these hardware modes.

Channel
The Channel defines the portion of the radio spectrum that the radio uses for transmitting and receiving. The range of channels and the default channel are determined by the Mode of the radio interface.

For most Modes, the default is **Auto**. Auto is the recommended mode because it automatically detects the best channel choices based on signal strength, traffic loads, and so on. However, you can also select a channel between one and eleven, inclusively.

Beacon Interval
Beacon frames are transmitted by an access point at regular intervals to announce the existence of the wireless network. The default behaviour is to send a beacon frame once every 100 milliseconds (or 10 per second).

The Beacon Interval value is set in milliseconds. Enter a value from 20 to 2000.

DTIM Period
The Delivery Traffic Information Map (DTIM) message is an element included in some Beacon frames. It indicates which client stations, currently sleeping in low-power mode, have data buffered on the access point awaiting pick-up.

The DTIM period you specify here indicates how often the clients served by this access point should check for buffered data still on the AP awaiting pickup.

Specify a DTIM period within the given range (1 - 255).

The measurement is in beacons. For example, if you set this to 1, clients will check for buffered data on the AP at every beacon. If you set this to 2, clients will check on every other beacon. If you set this to 10, clients will check on every 10th beacon.

Table 16.1 Radio Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended Range</td>
<td>Atheros Extended Range (XR) is a proprietary method for implementing low rate traffic over longer distances. It is transparent to XR enabled clients and access points and is designed to be interoperable with the 802.11 standard in 802.11g and 802.11a modes. There is no support for Atheros XR in 802.11b, Atheros Turbo 5 GHz, or Atheros Dynamic Turbo 5 GHz. Enabling Atheros XR will extend the range over which your client and access point can operate.</td>
</tr>
<tr>
<td></td>
<td>- To enable Extended Range, click Enabled.</td>
</tr>
<tr>
<td></td>
<td>- To disable Extended Range, click Disabled.</td>
</tr>
<tr>
<td></td>
<td>This option will not be available if you selected the hardware mode IEEE 802.11b, Atheros Turbo 5 GHz, or Atheros Dynamic Turbo 5 GHz. Atheros XR is not supported by these hardware modes.</td>
</tr>
<tr>
<td>Channel</td>
<td>The Channel defines the portion of the radio spectrum that the radio uses for transmitting and receiving. The range of channels and the default channel are determined by the Mode of the radio interface.</td>
</tr>
<tr>
<td></td>
<td>For most Modes, the default is Auto. Auto is the recommended mode because it automatically detects the best channel choices based on signal strength, traffic loads, and so on. However, you can also select a channel between one and eleven, inclusively.</td>
</tr>
<tr>
<td>Beacon Interval</td>
<td>Beacon frames are transmitted by an access point at regular intervals to announce the existence of the wireless network. The default behaviour is to send a beacon frame once every 100 milliseconds (or 10 per second).</td>
</tr>
<tr>
<td></td>
<td>The Beacon Interval value is set in milliseconds. Enter a value from 20 to 2000.</td>
</tr>
<tr>
<td>DTIM Period</td>
<td>The Delivery Traffic Information Map (DTIM) message is an element included in some Beacon frames. It indicates which client stations, currently sleeping in low-power mode, have data buffered on the access point awaiting pick-up.</td>
</tr>
<tr>
<td></td>
<td>The DTIM period you specify here indicates how often the clients served by this access point should check for buffered data still on the AP awaiting pickup.</td>
</tr>
<tr>
<td></td>
<td>Specify a DTIM period within the given range (1 - 255).</td>
</tr>
<tr>
<td></td>
<td>The measurement is in beacons. For example, if you set this to 1, clients will check for buffered data on the AP at every beacon. If you set this to 2, clients will check on every other beacon. If you set this to 10, clients will check on every 10th beacon.</td>
</tr>
</tbody>
</table>
Chapter 16: Configuring 802.11 Radio Settings

Configuring Radio Settings

171

Table 16.1 Radio Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Fragmentation Threshold** | Specify a number between 256 and 2,346 to set the frame size threshold in bytes.
The fragmentation threshold is a way of limiting the size of packets (frames) transmitted over the network. If a packet exceeds the fragmentation threshold set here, the fragmentation function will be activated and the packet will be sent as multiple 802.11 frames.
If the packet being transmitted is equal to or less than the threshold, fragmentation will not be used.
Setting the threshold to the largest value (2,346 bytes) effectively disables fragmentation.
Fragmentation involves more overhead both because of the extra work of dividing up and reassembling of frames it requires, and because it increases message traffic on the network. However, fragmentation can help improve network performance and reliability if properly configured.
Sending smaller frames (by using lower fragmentation threshold) may help with some interference problems; for example, with microwave ovens.
By default, fragmentation is off. We recommend not using fragmentation unless you suspect radio interference. The additional headers applied to each fragment increase the overhead on the network and can greatly reduce throughput. |
| **RTS Threshold** | Specify an RTS Threshold value between 0 and 2347.
The RTS threshold specifies the packet size of a request to send (RTS) transmission. This helps control traffic flow through the access point, especially one with a lot of clients.
If you specify a low threshold value, RTS packets will be sent more frequently. This will consume more bandwidth and reduce the throughput of the packet.
On the other hand, sending more RTS packets can help the network recover from interference or collisions which might occur on a busy network, or on a network experiencing electromagnetic interference. |
| **Maximum Stations** | Specify the maximum number of stations allowed to access this AP at any one time.
You can enter a value between 0 and 2007. |
Chapter 16: Configuring 802.11 Radio Settings

Configuring Radio Settings

Transmit Power

Provide a percentage value to set the transmit power for this access point. The default is to have the access point transmit using 100 percent of its power.

Recommendations:

- For most cases, we recommend keeping the default and having the transmit power set to 100 percent. This is more cost-efficient as it gives the access point a maximum broadcast range, and reduces the number of APs needed.
- To increase capacity of the network, place APs closer together and reduce the value of the transmit power. This will help reduce overlap and interference among APs. A lower transmit power setting can also keep your network more secure because weaker wireless signals are less likely to propagate outside of the physical location of your network.

Rate Sets

Check the transmission rate sets you want the access point to support and the basic rate sets you want the access point to advertise.

Rates are expressed in megabits per second.

- **Supported Rate Sets** indicate rates that the access point supports. You can check multiple rates (click a checkbox to select or de-select a rate). The AP will automatically choose the most efficient rate based on factors like error rates and distance of client stations from the AP.

- **Basic Rate Sets** indicate rates that the access point will advertise to the network for the purposes of setting up communication with other APs and client stations on the network. It is generally more efficient to have an AP broadcast a subset of its supported rate sets.

To support both “b” and “g” clients, change the radio Mode to IEEE 802.11g. The Web UI will automatically select the default Rate Sets that allow both “b” and “g” clients to connect.

To support only “g” clients, change the radio Mode to IEEE 802.11g. The Web UI will automatically select the default Rate Sets. Now add 24, 12, and 6 as Basic Rates. This will prevent “b” clients from connecting since they do not support these rates, but will allow “g” clients to connect since they are required by the standard to support these rates.

For more information, see description of Mode further up in this table, on page 169.

Table 16.1 Radio Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Power</td>
<td>Provide a percentage value to set the transmit power for this access point.</td>
</tr>
<tr>
<td></td>
<td>The default is to have the access point transmit using 100 percent of its power.</td>
</tr>
<tr>
<td>Rate Sets</td>
<td>Check the transmission rate sets you want the access point to support and the basic rate sets you want the access point to advertise.</td>
</tr>
<tr>
<td></td>
<td>Rates are expressed in megabits per second.</td>
</tr>
<tr>
<td></td>
<td>Supported Rate Sets indicate rates that the access point supports.</td>
</tr>
<tr>
<td></td>
<td>You can check multiple rates (click a checkbox to select or de-select a rate).</td>
</tr>
<tr>
<td></td>
<td>The AP will automatically choose the most efficient rate based on factors like error rates and distance of client stations from the AP.</td>
</tr>
<tr>
<td></td>
<td>Basic Rate Sets indicate rates that the access point will advertise to the network for the purposes of setting up communication with other APs and client stations on the network. It is generally more efficient to have an AP broadcast a subset of its supported rate sets.</td>
</tr>
<tr>
<td></td>
<td>To support both “b” and “g” clients, change the radio Mode to IEEE 802.11g.</td>
</tr>
<tr>
<td></td>
<td>The Web UI will automatically select the default Rate Sets that allow both “b” and “g” clients to connect.</td>
</tr>
<tr>
<td></td>
<td>To support only “g” clients, change the radio Mode to IEEE 802.11g.</td>
</tr>
<tr>
<td></td>
<td>The Web UI will automatically select the default Rate Sets. Now add 24, 12, and 6 as Basic Rates. This will prevent “b” clients from connecting since they do not support these rates, but will allow “g” clients to connect since they are required by the standard to support these rates.</td>
</tr>
<tr>
<td></td>
<td>For more information, see description of Mode further up in this table, on page 169.</td>
</tr>
</tbody>
</table>
16.4 Updating Settings

To update Radio settings:

1. Navigate to the 802.11 Advanced Settings tab page.
2. Configure the radio settings as required.
3. Click the **Update** button to apply the changes.

Note: If you are using the two-radio version of the 9160 G2 Wireless Gateway, keep in mind that both Radio One and Radio Two are configured on this tab. The displayed settings apply to either Radio One or Radio Two, depending on which radio you choose in the **Radio** field (first field on tab). When you have configured settings for one of the radios, click **Update** and then select and configure the other radio. Be sure to click **Update** to apply the second set of configuration settings for the other radio.

Table 16.1 Radio Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Enable Broadcast/Multicast Rate Limiting | Enabling multicast and broadcast rate limiting can improve overall network performance by limiting the number of packets transmitted across the network. Some protocols use multicast and broadcast packets for traffic that the majority of nodes on a network are uninterested in. For example, ARP requests for other machines, DHCP or BOOTP messages. For some protocols, if you set a rate limit control you limit the number of redundant packets transmitted across the network. Typically, any filtered traffic will be retransmitted at a later time and will not cause difficulties.
 - To enable Multicast and Broadcast Rate Limiting, click **Enabled**.
 - To disable Multicast and Broadcast Rate Limiting, click **Disabled**.
 By default the Multicast/Broadcast Rate Limiting option is disabled. Until you enable Multicast/Broadcast Rate Limiting, the following fields will be disabled. |
| Broadcast/Multicast Rate Limit | Enter the rate limit you want to set for multicast and broadcast traffic. The limit should be greater than 1, but less than 50 packets per second. Any traffic that falls below this rate limit will always conform and be transmitted to the appropriate destination.
 The default and maximum rate limit setting is 50 packets per second. |
| Broadcast/Multicast Rate Limit Burst | Setting a rate limit burst determines how much traffic bursts can be before all traffic exceeds the rate limit. This burst limit allows intermittent bursts of traffic on a network above the set rate limit.
 The default and maximum rate limit burst setting is 75 packets per second. |
MAC ADDRESS FILTERING

17.1 Navigating To MAC Filtering Settings ... 177
17.2 Using MAC Filtering .. 178
17.3 Updating Settings ... 178
A Media Access Control (MAC) address is a hardware address that uniquely identifies each node of a network. All IEEE 802 network devices share a common 48-bit MAC address format, usually displayed as a string of 12 hexadecimal digits separated by colons, for example FE:DC:BA:09:87:65. Each wireless network interface card (NIC) used by a wireless client has a unique MAC address.

You can control client access to your wireless network by switching on MAC Filtering and specifying a list of approved MAC addresses. When MAC Filtering is on, only clients with a listed MAC address can access the network.

The following sections describe how to use MAC address filtering on the 9160 G2 Wireless Gateway.

17.1 **Navigating To MAC Filtering Settings**

To enable filtering by MAC address, navigate to the Manage > MAC Filtering tab, and update the fields as described below.

Figure 17.1 MAC Filtering Settings
17.2 Using MAC Filtering

This page allows you to control access to the 9160 G2 Wireless Gateway based on Media Access Control (MAC) addresses. Based on how you set the filter, you can allow only client stations with a listed MAC address or prevent access to the stations listed.

For the Guest interface, MAC Filtering settings apply to both BSSes.

On a two-radio AP, MAC Filtering settings apply to both radios.

Table 17.1 MAC Filtering Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Filter | To set the MAC Address Filter, click one of the following radio buttons:
 - Allow only stations in the list
 - Block all stations in list |
| Stations List | To add a MAC Address to Stations List, enter its 48-bit MAC address into the lower textboxes, then click Add.
 The MAC Address is added to the Stations List.
 To remove a MAC Address from the Stations List, select its 48-bit MAC address, then click Remove.
 The stations in the list will either be allowed or prevented from accessing the AP based on how you set the Filter. |

17.3 Updating Settings

To update MAC settings:

1. Navigate to the MAC Filtering tab page.
2. Configure the MAC settings as required.
3. Click the Update button to apply the changes.
Load Balancing

18.1 Understanding Load Balancing .. 181
 18.1.1 Identifying Imbalance: Overworked Or Under-utilized Access Points. . 181
 18.1.2 Specifying Limits For Utilization And Client Associations 181
 18.1.3 Load Balancing And QoS .. 181
18.2 Navigating To Load Balancing Settings 182
18.3 Configuring Load Balancing .. 182
18.4 Updating Settings .. 184
The 9160 G2 Wireless Gateway allows you to balance the distribution of wireless client connections across multiple access points. Using load balancing, you can prevent scenarios where a single access point in your network shows performance degradation because it is handling a disproportionate share of the wireless traffic.

The following sections describe how to configure Load Balancing on your wireless network.

18.1 **Understanding Load Balancing**

Like most configuration settings on the 9160 G2 Wireless Gateway, load balancing settings are shared among clustered access points.

Note: In some cases you might want to set limits for only one access point that is consistently over-utilized. You can apply unique settings to a particular access point if it is operating in standalone mode. (See “Understanding Clustering” on page 55 and “Navigating To Access Points Management” on page 55.)

18.1.1 **Identifying Imbalance: Overworked Or Under-utilized Access Points**

A typical scenario is that a comparison of Client Association data and Transmit/Receive data for multiple access points allows you to identify an access point that is consistently handling a disproportionately large percentage of wireless traffic. This can happen when location placement or other factors causes one access point to transmit the strongest signal to a majority of clients on a network. By default, that access point will receive most of the client requests while the other access points stay idle much of the time.

Imbalances in distribution of wireless traffic across access points will be evident in Client Association data and Transmit/Receive statistics, which will show higher “Utilization” rates on overworked APs and conversely, higher “Idle” times on under-utilized APs. An AP that is handling more than its fair share of traffic might also show slower data rates or lower transmit/receive rates due to the overload.

18.1.2 **Specifying Limits For Utilization And Client Associations**

You can correct for imbalances in network AP utilization by enabling load balancing and setting limits on utilization rates and number of client associations allowed per access point.

18.1.3 **Load Balancing And QoS**

Load balancing also plays a part in contributing to *Quality of Service* (QoS) for *Voice Over IP* (VoIP) and other such time-sensitive applications competing for bandwidth and timely access to the air waves on a wireless network. For more information about configuring your network for QoS, see Chapter 19: “Quality Of Service (QoS)”.
18.2 **Navigating To Load Balancing Settings**

On the Administration UI, navigate to the *Manage > Load Balancing* tab, and update the fields as described in the next section.

Figure 18.1 Load Balancing Settings

![Modify load balancing settings](image)

18.3 **Configuring Load Balancing**

To configure load balancing, *enable Load Balancing* and set limits and behaviour to be triggered by a specified utilization rate of the access point.

Notes: Even when clients are disassociated from an AP, the network will still provide continuous service to client stations if another access point is within range so that clients can re-connect to the network. Clients should automatically retry the AP they were originally connected to and other APs on the subnet. Clients who are disassociated from one AP should experience a seamless transition to another AP on the same subnet.
Load Balancing settings apply to the AP load as a whole. When Guest access is enabled, the settings apply to both Internal and Guest networks together.

On a two-radio access point, Load Balancing settings apply to both radios but the load of each radio is calculated independently and includes both the Internal and Guest network (when Guest access is enabled).

Table 18.1 Load Balancing Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Balancing</td>
<td>To enable load balancing on this access point, click Enable. To disable load balancing on this access point, click Disable.</td>
</tr>
<tr>
<td>Utilization for No New Associations</td>
<td>Utilization rate limits relate to wireless bandwidth utilization. Provide a bandwidth utilization rate percentage limit for this access point to indicate when to stop accepting new client associations. When the utilization rate for this access point exceeds the specified limit, no new client associations will be allowed on this access point. If you specify 0 in this field, all new associations will be allowed regardless of the utilization rate.</td>
</tr>
<tr>
<td>Utilization for Disassociation</td>
<td>Utilization rate limits relate to wireless bandwidth utilization. Provide a bandwidth utilization rate percentage limit for this access point to indicate when to disassociate current clients. When the utilization rate exceeds the specified limit, a client currently associated with this access point will be disconnected. If you specify 0 in this field, current clients will never be disconnected regardless of the utilization rate.</td>
</tr>
<tr>
<td>Stations Threshold for Disassociation</td>
<td>Specify the number of client stations you want as a “stations threshold” for disassociation. If the number of client stations associated with the AP at any one time is equal to or less than the number you specify here, no stations will be disassociated regardless of the Utilization for Disassociation value. Theoretically, the maximum number of client stations allowed is 2007. We recommend setting the maximum to between 30 and 50 client stations. This allows for a workable load on the access point, given that bandwidth is shared among the AP clients.</td>
</tr>
</tbody>
</table>
18.4 Updating Settings

To update load balancing settings:

1. Navigate to the Load Balancing tab page.
2. Configure the load balancing settings as required.
3. Click the Update button to apply the changes.
QUALITY OF SERVICE (QoS)

19.1 Understanding QoS ... 187
 19.1.1 QoS And Load Balancing .. 187
 19.1.2 802.11e And WMM Standards Support .. 187
 19.1.3 QoS Queues And Parameters To Coordinate Traffic Flow 188
 19.1.3.1 QoS Queues And Type Of Service (ToS) On Packets 188
 19.1.3.2 EDCF Control Of Data Frames And Arbitration Interframe Spaces 190
 19.1.3.3 Random Backoff And Minimum/Maximum Contention Windows 191
 19.1.3.4 Packet Bursting For Better Performance 191
 19.1.3.5 Transmission Opportunity (TXOP) Interval For Client Stations 192
 19.1.4 802.1p And DSCP Tags ... 192
 19.1.4.1 VLAN Priority .. 193
 19.1.4.2 DSCP Priority .. 194
19.2 Configuring QoS Queues .. 194
 19.2.1 Configuring AP EDCA Parameters ... 196
 19.2.2 Enabling/Disabling Wi-Fi Multimedia ... 198
 19.2.3 Configuring Station EDCA Parameters 198
19.3 Updating Settings .. 200
Chapter 19: Quality Of Service (QoS)
Understanding QoS

Quality of Service (QoS) provides you with the ability to specify parameters on multiple queues for increased throughput and better performance of differentiated wireless traffic like Voice-over-IP (VoIP), other types of audio, video, and streaming media, as well as traditional IP data over the 9160 G2 Wireless Gateway.

The following sections describe how to configure Quality of Service queues on the 9160 G2 Wireless Gateway.

19.1 Understanding QoS
A primary factor that affects QoS is network congestion due to an increased number of clients attempting to access the air waves and higher traffic volume competing for bandwidth during a busy time of day. The most noticeable degradation in service on a busy, overloaded network will be evident in time-sensitive applications like Video, Voice-over-IP (VoIP), and streaming media.

Unlike typical data files which are less affected by variability in QoS, Video, VoIP and streaming media must be sent in a specific order at a consistent rate and with minimum delay between Packet transmission. If the quality of service is compromised, the audio or video will be distorted.

19.1.1 QoS And Load Balancing
By using a combination of load balancing (see Chapter 18: “Load Balancing”) and QoS techniques, you can provide a high quality of service for time-sensitive applications even on a busy network. Load balancing is a way of better distributing the traffic volume across access points. QoS is a means of allocating bandwidth and network access based on transmission priorities for different types of wireless traffic within a single access point.

19.1.2 802.11e And WMM Standards Support
QoS describes a range of technologies for controlling data streams on shared network connections. The IEEE 802.11e task group is in the process of defining a QoS standard for transmission quality and availability of service on wireless networks. QoS is designed to provide better network service by minimizing network congestion; limiting Jitter, Latency, and Packet Loss; supporting dedicated bandwidth for time-sensitive or mission critical applications, and prioritizing wireless traffic for channel access.

As with all IEEE 802.11 working group standards, the goal is to provide a standard way of implementing QoS features so that components from different companies are interoperable.
Chapter 19: Quality Of Service (QoS)

QoS Queues And Parameters To Coordinate Traffic Flow

The 9160 G2 Wireless Gateway provides QoS based on the *Wireless Multimedia (WMM)* specification and *Wireless Multimedia* (WMM) standards, which are implementations of a subset of *802.11e* features. Both access points and wireless clients (laptops, consumer electronics products) can be WMM-enabled.

19.1.3 QoS Queues And Parameters To Coordinate Traffic Flow

Configuring QoS options on the 9160 G2 Wireless Gateway consists of setting parameters on existing queues for different types of wireless traffic. You can configure different minimum and maximum wait times for the transmission of packets in each queue based on the requirements of the media being sent. Queues automatically provide minimum transmission delay for Voice, Video, multimedia, and mission critical applications, and rely on best-effort parameters for traditional IP data.

For example, time-sensitive Voice, Video, and multimedia are given effectively higher priority for transmission (lower wait times for channel access), while other applications and traditional IP data which are less time-sensitive but often more data-intensive are expected to tolerate longer wait times.

The 9160 G2 Wireless Gateway implements QoS based on the IEEE Wireless Multimedia (WMM) standard. A Linux-based queuing class is used to tag packets and establish multiple queues. The queues provided offer built-in prioritization and routing based on the type of data being transmitted.

The Administration UI provides a way for you to configure parameters on the queues.

19.1.3.1 QoS Queues And Type Of Service (ToS) On Packets

QoS on the 9160 G2 Wireless Gateway leverages *WMM* information in the *IP* packet header related to Type of Service (*ToS*). Every IP packet sent over the network includes a ToS field in the header that indicates how the data should be prioritized and transmitted over the network. The ToS field consists of a 3 to 7 bit value with each bit representing a different aspect or degree of priority for this data as well as other meta-information (low delay, high throughput, high reliability, low cost, and so on).

For example, the ToS for FTP data packets is likely to be set for maximum throughput since the critical consideration for FTP is the ability to transmit relatively large amounts of data in one go. Interactive feedback is a nice-to-have in this situation but certainly less critical. VoIP data packets are set for minimum delay because that is a critical factor in quality and performance for that type of data.
Chapter 19: Quality Of Service (QoS)

QoS Queues And Parameters To Coordinate Traffic Flow

The access point examines the ToS field in the headers of all packets that pass through the AP. Based on the value in a packet’s ToS field, the AP prioritizes the packet for transmission by assigning it to one of the queues. This process occurs automatically, regardless of whether you deliberately configure QoS or not.

A different type of data is associated with each queue. The queue and associated priorities and parameters for transmission are as follows:

- **Data 0 (Voice).** Highest priority queue, minimum delay. Time-sensitive data such as Voice over IP (VoIP) is automatically sent to this queue.
- **Data 1 (Video).** High priority queue, minimum delay. Time-sensitive data such as Video and other streaming media are automatically sent to this queue.
- **Data 2 (Best Effort).** Medium priority queue, medium throughput and delay. Most traditional IP data is sent to this queue.
- **Data 3 (Background).** Lowest priority queue, high throughput. Bulk data that requires maximum throughput and is not time-sensitive is sent to this queue (FTP data, for example).

Packets in a higher priority queue will be transmitted before packets in a lower priority queue. Interactive data in the queues labelled “Data 0” and “Data 1” is always sent first, best effort data in “Data 2” is sent next, and Background (bulk) data in “Data 3” is sent last. Each lower priority queue (class of traffic) gets bandwidth that is left over after the higher classes of traffic have been sent. At an extreme end if you have enough interactive data to keep the access point busy all the time, low priority traffic would never get sent.

Using the QoS settings on the Administration UI, you can configure Enhanced Distributed Channel Access (EDCA) parameters that determine how each queue is treated when it is sent by the access point to the client or by the client to the access point.

Note: Wireless traffic travels:
- Downstream from the access point to the client station.
- Upstream from client station to access point.
- Upstream from access point to network.
- Downstream from network to access point.

With WMM enabled, QoS settings on the 9160 G2 Wireless Gateway affect the first two of these: downstream traffic flowing from the access point to client station (AP EDCA parameters) and the upstream traffic flowing from the station to the access point (station EDCA parameters).

With WMM disabled, you can still set parameters on the downstream traffic flowing...
from the AP to the client station (AP EDCA parameters).

The other phases of the traffic flow (to and from the network) are not under control of the QoS settings on the AP.

19.1.3.2 EDCF Control Of Data Frames And Arbitration Interframe Spaces

Data is transmitted over 802.11 wireless networks in frames. A Frame consists of a discrete portion of data along with some descriptive meta-information packaged for transmission on a wireless network.

Note: A Frame is similar in concept to a Packet, the difference being that a packet operates on the Network layer (layer 3 in the OSI model) whereas a frame operates on the Data-Link layer (layer 2 in the OSI model).

Each frame includes a source and destination MAC address, a control field with protocol version, frame type, frame sequence number, frame body (with the actual information to be transmitted) and frame check sequence for error detection.

The 802.11 standard defines various frame types for management and control of the wireless infrastructure, and for data transmission. 802.11 frame types are: (1) management frames, (2) control frames, and (3) data frames. Management and control frames (which manage and control the availability of the wireless infrastructure) automatically have higher priority for transmission.

802.11e uses interframe spaces to regulate which frames get access to available channels and to coordinate wait times for transmission of different types of data.

Management and control frames wait a minimum amount of time for transmission; they wait a short interframe space (SIF). These wait times are built-in to 802.11 as infrastructure support and are not configurable.

The 9160 G2 Wireless Gateway supports the Enhanced Distribution Coordination Function (EDCF) as defined by the 802.11e standard. EDCF, which is an enhancement to the DCF standard and is based on CSMA/CA protocol, defines the interframe space (IFS) between data frames. Data frames wait for an amount of time defined as the arbitration interframe space (AIFS) before transmitting.

This parameter is configurable.

Note: Sending data frames in AIFS allows higher priority management and control frames to be sent in SIF's first.

The AIFS ensures that multiple access points do not try sending data at the same time but instead wait until a channel is free.
19.1.3.3 Random Backoff And Minimum/Maximum Contention Windows

If an access point detects that the medium is in use (busy), it uses the DCF *random backoff* timer to determine the amount of time to wait before attempting to access a given channel again. Each access point waits some random period of time between retries. The wait time (initially a random value within a range specified as the *Minimum Contention Window*) increases exponentially up to a specified limit (*Maximum Contention Window*). The random delay avoids most of the collisions that would occur if multiple APs got access to the medium at the same time and tried to transmit data simultaneously. The more active users you have on a network, the more significant the performance gains of the backoff timer will be in reducing the number of collisions and retransmissions.

![Figure 19.1 DCF Random Backoff Timer](image)

The random backoff used by the access point is a configurable parameter. To describe the random delay, a “Minimum Contention Window” (MinCW) and a “Maximum Contention Window” (MaxCW) is defined.

- The value specified for the *Minimum Contention Window* is the upper limit of a range for the initial random backoff wait time. The number used in the random backoff is initially a random number between 0 and the number defined for the Minimum Contention Window.
- If the first random backoff time ends before successful transmission of the data frame, the access point increments a retry counter, and doubles the value of the random backoff window. The value specified in the *Maximum Contention Window* is the upper limit for this doubling of the random backoff. This doubling continues until either the data frame is sent or the Maximum Contention Window size is reached.

19.1.3.4 Packet Bursting For Better Performance

The 9160 G2 Wireless Gateway includes 802.11e based *packet bursting* technology that increases data throughput and speed of transmission over the wireless network. Packet bursting enables the transmission of multiple packets without the extra overhead of header
information. The effect of this is to increase network speed and data throughput. The size of packet bursts allowed (maximum burst length) is a configurable parameter.

19.1.3.5 Transmission Opportunity (TXOP) Interval For Client Stations

The Transmission Opportunity (TXOP) is an interval of time when a Wi-Fi Multimedia (WMM) client station has the right to initiate transmissions onto the wireless medium (WM).

19.1.4 802.1p And DSCP Tags

IEEE 802.1p is an extension of the IEEE 802 standard and is responsible for QoS provision. The primary purpose of 802.1p is to prioritize network traffic at the data link/MAC layer. 802.1p offers the ability to filter multicast traffic to ensure it doesn’t increase over layer 2 switched networks. It uses tag frames for the prioritization scheme. To be compliant with this standard, layer 2 switches must be capable of grouping incoming LAN packets into separate traffic classes.

The 802.1p header includes a three-bit field for prioritization, which allows packets to be grouped into various traffic classes. Eight priority levels are defined. The highest priority is seven, which might go to network-critical traffic (voice). Higher priority packets are always transmitted first. Lower priority packets are not transmitted if higher priority packets are still in transmission, rather they are held in a queue until the higher packets have been successfully transmitted. The lowest priority level is zero, this is used as a best-effort default, it is invoked automatically when no other value has been set.

Note: It is important to note that 802.1p will not work unless QoS and WMM are enabled. WMM must be enabled on both the AP and on the client connecting to the AP.

The flow diagram in Figure 19.2 outlines the way in which tags are retrieved and traffic prioritized on a network.
19.1.4.1 VLAN Priority

Table 19.1 outlines the priority tags and their associated values taken from a VLAN tag.

<table>
<thead>
<tr>
<th>VLAN ID Tag</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - default DHCP value</td>
<td>Best Effort</td>
</tr>
<tr>
<td>1</td>
<td>Background</td>
</tr>
<tr>
<td>2</td>
<td>Background</td>
</tr>
<tr>
<td>3</td>
<td>Best Effort</td>
</tr>
</tbody>
</table>
Table 19.1 VLAN Tag Priorities

<table>
<thead>
<tr>
<th>VLAN ID Tag</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Video</td>
</tr>
<tr>
<td>5</td>
<td>Video</td>
</tr>
<tr>
<td>6</td>
<td>Voice</td>
</tr>
<tr>
<td>7</td>
<td>Voice</td>
</tr>
</tbody>
</table>

19.1.4.2 DSCP Priority

Table 19.2 outlines the DSCP values, the associated ID, and the priority level.

Table 19.2 DSCP Tag Priorities

<table>
<thead>
<tr>
<th>ID Tag</th>
<th>Priority</th>
<th>DSCP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - default DHCP value</td>
<td>Best Effort</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Background</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Background</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Best Effort</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Video</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>Video</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>Voice</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>Voice</td>
<td>56</td>
</tr>
</tbody>
</table>

19.2 Configuring QoS Queues

To set up queues for QoS, navigate to the Services > QoS tab, and configure settings as described below.
Configuring Quality of Service (QoS) on the 9160 G2 Wireless Gateway consists of setting parameters on existing queues for different types of wireless traffic, and effectively specifying minimum and maximum wait times (via Contention Windows) for transmission. The settings described here apply to data transmission behaviour on the access point only, not to that of the client stations.

Note: For the Guest interface, QoS queue settings apply to the access point load as a whole (both BSSes together).

On a two-radio access point these settings apply to both radios but the traffic for each radio is queued independently. (The exception to this is guest traffic as noted below.) Internal and Guest network traffic is always queued together within each radio.
Quality Of Service (QoS)

Chapter 19: Quality Of Service (QoS)

Configuring AP EDCA Parameters

is the case on both one-radio and two-radio APs.

QoS on the access point leverages existing information in the IP packet header related to Type of Service (ToS). The access point examines the ToS field in the headers of all packets that pass through the AP. Based on the value in a packet’s ToS field, the AP prioritizes the packet for transmission by assigning it to one of the queues. A different type of data is associated with each queue. You can configure parameters that determine how each queue is treated when it is sent by the access point.

Configuring Quality of Service includes:
- “Configuring AP EDCA Parameters” on page 196.
- “Enabling/Disabling Wi-Fi Multimedia” on page 198.
- “Updating Settings” on page 200.

19.2.1 Configuring AP EDCA Parameters

AP Enhanced Distributed Channel Access (EDCA) Parameters affect traffic flowing from the access point to the client station.

Table 19.3 AP EDCA Parameters

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue</td>
<td></td>
</tr>
<tr>
<td>Data 0 (Voice)</td>
<td>High priority queue, minimum delay. Time-sensitive data such as VoIP and streaming media are automatically sent to this queue.</td>
</tr>
<tr>
<td>Data 1 (Video)</td>
<td>High priority queue, minimum delay. Time-sensitive video data is automatically sent to this queue.</td>
</tr>
<tr>
<td>Data 2 (best effort)</td>
<td>Medium priority queue, medium throughput and delay. Most traditional IP data is sent to this queue.</td>
</tr>
<tr>
<td>Data 3 (Background)</td>
<td>Lowest priority queue, high throughput. Bulk data that requires maximum throughput and is not time-sensitive is sent to this queue (FTP data, for example).</td>
</tr>
</tbody>
</table>

For more information, see “QoS Queues And Parameters To Coordinate Traffic Flow” on page 188.
AIFS (Inter-Frame Space)

The Arbitration Inter-Frame Spacing (AIFS) specifies a wait time (in milliseconds) for data frames. Valid values for AIFS are 1 through 255. For more information, see DCF Control of Data Frames and Interframe Spaces. For more information, see “EDCF Control Of Data Frames And Arbitration Interframe Spaces” on page 190.

Table 19.3 AP EDCA Parameters

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIFS (Inter-Frame Space)</td>
<td>The Arbitration Inter-Frame Spacing (AIFS) specifies a wait time (in milliseconds) for data frames. Valid values for AIFS are 1 through 255. For more information, see DCF Control of Data Frames and Interframe Spaces. For more information, see “EDCF Control Of Data Frames And Arbitration Interframe Spaces” on page 190.</td>
</tr>
<tr>
<td>cwMin (Minimum Contention Window)</td>
<td>This parameter is input to the algorithm that determines the initial random backoff wait time (“window”) for retry of a transmission. The value specified here in the Minimum Contention Window is the upper limit (in milliseconds) of a range from which the initial random backoff wait time is determined. The first random number generated will be a number between 0 and the number specified here. If the first random backoff wait time expires before the data frame is sent, a retry counter is incremented and the random backoff value (window) is doubled. Doubling will continue until the size of the random backoff value reaches the number defined in the Maximum Contention Window. Valid values for the “cwmin” are 1, 3, 7, 15, 31, 63, 127, 255, 511, or 1023. For more information, see “Random Backoff And Minimum/Maximum Contention Windows” on page 191.</td>
</tr>
<tr>
<td>cwMax (Maximum Contention Window)</td>
<td>The value specified here in the Maximum Contention Window is the upper limit (in milliseconds) for the doubling of the random backoff value. This doubling continues until either the data frame is sent or the Maximum Contention Window size is reached. Once the Maximum Contention Window size is reached, retries will continue until a maximum number of retries allowed is reached. Valid values for the “cwmax” are 1, 3, 7, 15, 31, 63, 127, 255, 511, or 1023. For more information, see “Random Backoff And Minimum/Maximum Contention Windows” on page 191.</td>
</tr>
</tbody>
</table>
Chapter 19: Quality Of Service (QoS)

19.2.2 Enabling/Disabling Wi-Fi Multimedia

By default, Wi-Fi MultiMedia (WMM) is enabled on the access point. With WMM enabled, QoS prioritization and coordination of wireless medium access is on. With WMM enabled, QoS settings on the 9160 G2 Wireless Gateway control downstream traffic flowing from the access point to client station (AP EDCA parameters) and the upstream traffic flowing from the station to the access point (station EDCA parameters).

Disabling WMM will deactivate QoS control of station EDCA parameters on upstream traffic flowing from the station to the access point. With WMM disabled, you can still set parameters on the downstream traffic flowing from the access point to the client station (AP EDCA parameters).

- To disable WMM extensions, click **Disabled**.
- To enable WMM extensions, click **Enabled**.

19.2.3 Configuring Station EDCA Parameters

Station Enhanced Distributed Channel Access (EDCA) Parameters affect traffic flowing from the client station to the access point.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Burst Length</td>
<td>AP EDCA Parameter Only (The Max. Burst Length applies only to traffic flowing from the access point to the client station.)
This value specifies (in milliseconds) the Maximum Burst Length allowed for packet bursts on the wireless network. A packet burst is a collection of multiple frames transmitted without header information. The decreased overhead results in higher throughput and better performance.
Valid values for maximum burst length are 0.0 through 999.9.
For more information, see “Packet Bursting For Better Performance” on page 191.</td>
</tr>
</tbody>
</table>
Table 19.4 Station EDCA Parameters

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue</td>
<td>Queues are defined for different types of data transmitted from station-to-AP:</td>
</tr>
<tr>
<td>Data 0 (Voice)</td>
<td>Highest priority queue, minimum delay. Time-sensitive data such as VoIP and streaming media are automatically sent to this queue.</td>
</tr>
<tr>
<td>Data 1 (Video)</td>
<td>Highest priority queue, minimum delay. Time-sensitive video data is automatically sent to this queue.</td>
</tr>
<tr>
<td>Data 2 (Best Effort)</td>
<td>Medium priority queue, medium throughput and delay. Most traditional IP data is sent to this queue.</td>
</tr>
<tr>
<td>Data 3 (Background)</td>
<td>Lowest priority queue, high throughput. Bulk data that requires maximum throughput and is not time-sensitive is sent to this queue (FTP data, for example).</td>
</tr>
<tr>
<td></td>
<td>For more information, see “QoS Queues And Parameters To Coordinate Traffic Flow” on page 188.</td>
</tr>
<tr>
<td>AIFS (Inter-Frame Space)</td>
<td>The Arbitration Inter-Frame Spacing (AIFS) specifies a wait time (in milliseconds) for data frames.</td>
</tr>
<tr>
<td></td>
<td>For more information, see DCF Control of Data Frames and Interframe Spaces.</td>
</tr>
<tr>
<td></td>
<td>For more information, see “EDCF Control Of Data Frames And Arbitration Interframe Spaces” on page 190.</td>
</tr>
<tr>
<td>cwMin (Minimum Contention Window)</td>
<td>This parameter is input to the algorithm that determines the initial random backoff wait time (“window”) for retry of a transmission.</td>
</tr>
<tr>
<td></td>
<td>The value specified here in the Minimum Contention Window is the upper limit (in milliseconds) of a range from which the initial random backoff wait time is determined.</td>
</tr>
<tr>
<td></td>
<td>The first random number generated will be a number between 0 and the number specified here.</td>
</tr>
<tr>
<td></td>
<td>If the first random backoff wait time expires before the data frame is sent, a retry counter is incremented and the random backoff value (window) is doubled. Doubling will continue until the size of the random backoff value reaches the number defined in the Maximum Contention Window.</td>
</tr>
<tr>
<td></td>
<td>For more information, see “Random Backoff And Minimum/Maximum Contention Windows” on page 191.</td>
</tr>
</tbody>
</table>
Chapter 19: Quality Of Service (QoS)

Updating Settings

19.3 Updating Settings

To update QoS settings:

1. Navigate to the QoS tab page.
2. Configure the QoS settings as required.
3. Click the **Update** button to apply the changes.

Table 19.4 Station EDCA Parameters

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| cwMax (Maximum Contention Window) | The value specified here in the Maximum Contention Window is the upper limit (in milliseconds) for the doubling of the random backoff value. This doubling continues until either the data frame is sent or the Maximum Contention Window size is reached.

Once the Maximum Contention Window size is reached, retries will continue until a maximum number of retries allowed is reached.

For more information, see “Random Backoff And Minimum/Maximum Contention Windows” on page 191. |
| TXOP Limit | Station EDCA Parameter Only (The TXOP Limit applies only to traffic flowing from the client station to the access point.)

The Transmission Opportunity (TXOP) is an interval of time when a WME client station has the right to initiate transmissions onto the wireless medium (WM).

This value specifies (in milliseconds) the Transmission Opportunity (TXOP) for client stations; that is, the interval of time when a WMM client station has the right to initiate transmissions on the wireless network. |
Wireless Distribution System

20.1 Understanding The Wireless Distribution System .. 203
 20.1.1 Using WDS To Bridge Distant Wired LANs 203
 20.1.2 Using WDS To Extend Network Beyond The Wired Coverage Area 204
 20.1.3 Using WDS To Create Backup Links ... 205

20.2 Security Considerations Related To WDS Links 205
 20.2.1 Understanding Static WEP Data Encryption 205
 20.2.2 Understanding WPA (PSK) Data Encryption 206

20.3 Configuring WDS Settings ... 206
 20.3.1 Example Of Configuring A WDS Link .. 209

20.4 Updating Settings ... 210
Chapter 20: Wireless Distribution System
Understanding The Wireless Distribution System

The 9160 G2 Wireless Gateway lets you connect multiple access points using a Wireless Distribution System (WDS). WDS allows access points to communicate with one another wirelessly. This capability is critical in providing a seamless experience for roaming clients and for managing multiple wireless networks. It can also simplify the network infrastructure by reducing the amount of cabling required.

The following sections describe how to configure the WDS on the 9160 G2 Wireless Gateway.

20.1 Understanding The Wireless Distribution System

A Wireless Distribution System (WDS) is a technology that wirelessly connects access points, known as Basic Service Sets (BSS), to form what is known as an Extended Service Set (ESS).

Note: A BSS generally equates to an access point (deployed as a single-AP wireless “network”), except in cases where multi-BSSID features make a single access point look like two or more access points to the network. In such cases, the access point has multiple unique BSSIDs.

20.1.1 Using WDS To Bridge Distant Wired LANs

In an ESS, a network of multiple access points, each access point serves part of an area which is too large for a single access point to cover. You can use WDS to bridge distant Ethernets to create a single LAN. For example, suppose you have one access point which is connected to the network by Ethernet and serving multiple client stations in the Conference Room (LAN Segment 1), and another Ethernet-wired access point serving stations in the West Wing offices (LAN Segment 2). You can bridge the Conference Room and West Wing access points with a WDS link to create a single network for clients in both areas (see Figure 20.1 on page 204).
20.1.2 Using WDS To Extend Network Beyond The Wired Coverage Area

An **ESS** can extend the reach of the network into areas where cabling would be difficult, costly, or inefficient.

For example, suppose you have an access point which is connected to the network by Ethernet and serving multiple client stations in one area (“East Wing” in our example), but cannot reach others which are out of range. Suppose also that it is too difficult or too costly to wire the distant area with Ethernet cabling. You can solve this problem by placing a second access point closer to the second group of stations (“Poolside” in our example in Figure 20.1.3 on page 205) and bridge the two APs with a WDS link. This *extends* your network wirelessly by providing an extra hop to get to distant stations (see Figure 20.1.3 on page 205).
20.1.3 Using WDS To Create Backup Links

Another use for WDS bridging is the creation of backup links. With Spanning Tree Protocol (STP) automatically enabled on the 9160 G2 Wireless Gateway, WDS can be used to configure backup paths between access points across the network. For example, between two access points you could have both a primary path via Ethernet and a secondary (backup) wireless path via a WDS link. If the Ethernet connection goes down, STP reconfigures its map of the network and effectively fixes the down network segment by activating the backup wireless path.

20.2 Security Considerations Related To WDS Links

It is important to set some type of security on WDS links. You can set any type of security on the WDS link, regardless of the security setting applied to the APs on the link. For example, you may have the security on AP1 set to None and the security on AP2 set to WEP. Even though both settings are different, you can choose to set the security on the WDS link as either None or WEP. The only exception to this rule is in the case of WPA (PSK). The WPA (PSK) security setting can only be set on the WDS link if you have set security on both AP1 and AP2 to either WPA Personal or WPA Enterprise.

20.2.1 Understanding Static WEP Data Encryption

Static Wired Equivalent Privacy (WEP) is a data encryption protocol for 802.11 wireless networks. Both access points in a given WDS link must be configured with the same security settings. For static WEP, either a static 64-bit (40-bit secret key + 24-bit initialization...
Understanding WPA (PSK) Data Encryption

20.2.2 Understanding WPA (PSK) Data Encryption

Wi-Fi Protected Access (Pre-Shared Key) or WPA (PSK) is a more robust form of security than Static WEP. Formerly known as ‘WPA-Home’, WPA (PSK) works using a pre-shared key which is basically a shared password between the APs on a bridged link. WPA (PSK) provides enhanced 802.11 wireless security without the need for a RADIUS authentication infrastructure, which is both complicated and expensive to implement.

Since WPA (PSK) encryption relies upon a shared key, both APs on the WDS link must be set with the same key, otherwise they will not be able to communicate and share information.

Note: For security reasons it is recommended you change the shared keys on your WDS bridge on a regular basis.

For more information about the effectiveness of the different security modes, see Chapter 10: “Configuring Security”.

20.3 Configuring WDS Settings

To specify the details of traffic exchange from this access point to others, navigate to the Manage > WDS tab, and update the fields as described below.

Note: Figure 20.3 shows the WDS settings page for the two-radio AP. The Administration Web page for the one-radio AP will look slightly different.
The following notes summarize some critical guidelines regarding WDS configuration. Please read all the notes before proceeding with WDS configuration.

Note: When using WDS, be sure to configure WDS settings on both access points participating in the WDS link.

You can have only one WDS link between any pair of access points. That is, a remote MAC address may appear only once on the WDS page for a particular access point.

Both access points participating in a WDS link must be on the same Radio channel and using the same IEEE 802.11 mode. (See Chapter 16: “Configuring 802.11 Radio Settings” for information on configuring the Radio mode and channel.)

When 802.11h is operational, setting up WDS links can be difficult. See “802.11h Regulatory Domain Control” on page 148.
To configure WDS on this access point, describe each AP intended to receive hand-offs and send information to this AP. Each destination AP needs the following description, as shown in Table 20.1.

Table 20.1 Destination Access Point Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Address</td>
<td>Indicates the Media Access Control (MAC) addresses for this access point.</td>
</tr>
<tr>
<td></td>
<td>A MAC address is a permanent, unique hardware address for any device that represents an interface to the network. The MAC address is assigned by the manufacturer. You cannot change the MAC address. It is provided here for informational purposes as a unique identifier for the access point or interface.</td>
</tr>
<tr>
<td></td>
<td>One-Radio AP:</td>
</tr>
<tr>
<td></td>
<td>On a one-radio access point, a single MAC address is shown at the top of the WDS settings page. The address shown for the one-radio AP is the MAC address for that radio AP. This is the address by which the AP is known externally to other networks.</td>
</tr>
<tr>
<td></td>
<td>Two-Radio AP:</td>
</tr>
<tr>
<td></td>
<td>For each WDS link on a two-radio AP, the Local Address reflects the MAC address for the internal interface on the selected radio (Radio One on WLAN0 or Radio Two on WLAN1).</td>
</tr>
<tr>
<td>Remote Address</td>
<td>Specify the MAC address of the destination access point; that is, the access point to which data will be sent or “handed-off” and from which data will be received—in other words, the AP to which you are creating the WDS bridge.</td>
</tr>
<tr>
<td></td>
<td>Click the arrow to the right of the Remote Address field to see a list of all the available MAC Addresses and their associated SSIDs on the network. Select the appropriate MAC address from the list.</td>
</tr>
<tr>
<td></td>
<td>Note: The SSID displayed in the drop-down list is simply to help you identify the correct MAC Address for the destination access point. This SSID is a separate SSID to that which you set for the WDS link. The two do not (and should not) be the same value or name.</td>
</tr>
</tbody>
</table>
20.3.1 Example Of Configuring A WDS Link

When using WDS, be sure to configure WDS settings on both access points on the WDS link. For example, to create a WDS link between a pair of access points “MyAP1” and “MyAP2” do the following:

1. Open the Administration Web pages for MyAP1, by entering the IP address for MyAP1 as a URL in the Web browser address bar in the following form:

 \[\text{http://IP} \text{AddressOfAccessPoint} \]

 where \text{IP}AddressOfAccessPoint is the address of MyAP1.

2. Navigate to the WDS tab on MyAP1 Administration Web pages.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption</td>
<td>If you are unconcerned about security issues on the WDS link you may decide not to set any type of encryption. Alternatively, if you have security concerns you can choose between Static WEP, and WPA (PSK).</td>
</tr>
<tr>
<td>Note: Encryption options available here will depend on the settings you have specified on the Security tabbed page. The WPA (PSK) option will only be an available option on the WDS page if you set the Mode on the Security tabbed page to WPA Personal or WPA Enterprise.</td>
<td></td>
</tr>
<tr>
<td>None (Plain Text):</td>
<td>If you set encryption to None, the data sent between the APs across the WDS bridge will not be encrypted, but rather will be sent as plain text.</td>
</tr>
<tr>
<td>WEP</td>
<td>Specify whether you want Wired Equivalent Privacy (WEP) encryption enabled for the WDS link. Wired Equivalent Privacy (WEP) is a data encryption protocol for 802.11 wireless networks. Both access points on the WDS link must be configured with the same security settings. For static WEP, a static 64-bit (40-bit secret key + 24-bit initialization vector (IV)) or 128-bit (104-bit secret key + 24-bit IV) Shared Key for data encryption. For more information on WEP security, see “Static WEP” on page 103.</td>
</tr>
<tr>
<td>WPA (PSK):</td>
<td>Specify whether you want WPA (PSK) encryption enabled for the WDS link. Wi-Fi Protected Access Pre-Shared Key, WPA (PSK) is a more secure form of encryption than WEP. When you use WPA (PSK) encryption, each AP on your network must be set with the same unique key, otherwise the APs will not be able to communicate with one another.</td>
</tr>
<tr>
<td>The WPA (PSK) option will only be an available option on the WDS page if you set the Mode on the Security tabbed page to WPA Personal or WPA Enterprise. For more information on Security, see “Understanding Security Issues On Wireless Networks” on page 93.</td>
<td></td>
</tr>
<tr>
<td>For more information on WPA (PSK) security, see “WPA Personal” on page 111.</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 20: Wireless Distribution System

Updating Settings

The MAC address for MyAP1 (the access point you are currently viewing) will show as the “Local Address” at the top of the page.

3. Configure a WDS interface for data exchange with MyAP2.

Start by entering the MAC address for MyAP2 as the “Remote Address” and fill in the rest of the fields to specify the network (guest or internal), security, and so on. Save the settings (click Update).

4. Navigate to the radio settings on the Administration Web pages (Manage > 802.11 Advanced Settings) to verify or set the mode and the radio channel on which you want MyAP1 to broadcast.

Remember that the two access points participating in the link, MyAP1 and MyAP2, must be set to the same Mode and be transmitting on the same channel.

For our example, let’s say we’re using IEEE 802.11b Mode and broadcasting on Channel 6. (We’d choose Mode and Channel from the drop-down menus on the Radio tab.)

5. Now repeat the same steps for MyAP2:
 - Open Administration Web pages for MyAP2 by using MyAP2’s IP address in a URL.
 - Navigate to the WDS tab on MyAP2 Administration Web pages. (MyAP2’s MAC address will show as the “Local Address”.)
 - Configure a WDS interface for data exchange with MyAP1, starting with the MAC address for MyAP1.
 - Navigate to the radio settings for MyAP2 to verify that it is using the same mode and broadcasting on the same channel as MyAP1. (For our example Mode is 802.11b and the channel is 6.)
 - Be sure to save the settings by clicking Update.

20.4 Updating Settings

To update WDS settings:

1. Navigate to the WDS tab page.
2. Configure the WDS settings as required.
3. Click the Update button to apply the changes.
21.1 Understanding SNMP Settings ... 213
21.2 Navigating To SNMP Settings .. 214
21.3 Configuring SNMP Settings .. 215
 21.3.1 Configuring SNMP Traps ... 217
 21.3.2 Updating SNMP Settings .. 218
The following sections describe how to configure SNMP and related settings on the 9160 G2 Wireless Gateway Enterprise-Manager API:

21.1 Understanding SNMP Settings

Simple Network Management Protocol (SNMP) defines a standard for recording, storing, and sharing information about network devices. SNMP facilitates network management, troubleshooting, and maintenance.

Key components of any SNMP-managed network are managed devices, SNMP agents, and a management system. The agents store data about their devices in Management Information Bases (MIBs) and return this data to the SNMP manager when requested. Managed devices can be network nodes such as access point base stations, routers, switches, bridges, hubs, servers, or printers.

The 9160 G2 Wireless Gateway can function as an SNMP-managed device for seamless integration into network management systems such as HP OpenView or Devicescape Wireless Operations Center.

MIBs are a collection of objects or files that exist in a virtual database on a network. SNMP uses a specific set of commands and queries to obtain information from the MIB.

The 9160 G2 Wireless Gateway supports the following standard SNMP MIBs:

- Bridge MIB 802.1d (RFC 1493).
- SNMPv2 MIB (RFC 3418).
- IEEE Std 802.11 MIB (base).
- Interfaces Group MIB (RFC 2233).
- Two proprietary MIBs (Wireless MIB and System MIB) based on the upcoming IEEE 802.11k MIB. They provide information about the 9160 G2 Wireless Gateway client association list and AP detection table, respectively. The proprietary System MIB provides maintenance functionality such as system reboot or firmware upgrade.

The 9160 G2 Wireless Gateway also supports SNMP traps. Figure 21.1 illustrates how SNMP works on a network.
21.2 Navigating To SNMP Settings

To configure SNMP settings, navigate to **Services > SNMP**, and update the fields as described below.
21.3 Configuring SNMP Settings

Start/stop control of SNMP agents, community password configuration, access to MIBs, and configuration of SNMP Trap destinations is provided through the 9160 G2 Wireless Gateway, as described below.
Configuring SNMP Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| **SNMP Enabled/Disabled** | You can choose whether or not you want to enable SNMP on your network. By default SNMP is disabled.
 • To enable SNMP, click **Enabled**.
 • To disable SNMP, click **Disabled**.
 Note: If you do not enable SNMP, all remaining fields on the SNMP page will be disabled. |
| **Read-only community name for permitted GETs** | Enter a read-only community name.
 The community name, as defined in SNMPv2c, acts as a simple authentication mechanism to restrict the machines on the network that can request data to the SNMP agent. The name functions as a password and the request is assumed to be authentic if the sender knows the password.
 The community name can be in any alphanumeric format. |
| **Port number the SNMP agent will listen to** | By default an SNMP agent only listens to requests from port 161. However, you can configure this so the agent listens to requests on another port.
 Enter the port number on which you want the SNMP agents to listen to requests. |
| **Allow SNMP SET Requests** | You can choose whether or not to allow SNMP SET requests.
 Enabling SET requests means that machines on the network can execute SET requests to the configured agent on the AP.
 Note: SET requests are restricted to the proprietary System MIB.
 • To enable SNMP SET requests, click **Enabled**.
 • To disable SNMP SET requests, click **Disabled**. |
| **Read-write community name for permitted SETs** | If you have enabled SNMP SET requests, you can set a read-write community name.
 Setting a community name is similar to setting a password. Only requests from the machines that identify themselves with this community name will be accepted.
 The community name can be in any alphanumeric format. |
21.3.1 Configuring SNMP Traps

SNMP Traps facilitate asynchronous communication of messages from SNMP managed devices (like the 9160 G2 Wireless Gateway) to designated hosts. If a Network Management System (NMS) is responsible for monitoring a large number of devices on a network, it is not practical to periodically query every device on the network. By enabling SNMP event traps on the AP, individual devices can send messages directly to SNMP Managers or to other designated hosts on the NMS regarding some network events, such as network interfaces going up or down, clients failing to associate or authenticate with the access point, system power up or down and changes in the network topology.

Table 21.1 SNMP Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Restrict the source of SNMP requests to only the designated hosts or subnets** | You can restrict the source of permitted SNMP requests.
- To restrict the source of permitted SNMP requests, click **Enabled**.
- To permit any source submitting an SNMP request, click **Disabled**. |
| **Hostname or subnet of Network Management System** | Specify the DNS hostname or subnet of the machines that can execute GET and SET requests to the managed devices.
As with community names, this provides a level of security on SNMP settings. The SNMP agent will only accept requests from the hostname or subnet specified here.
To specify a subnet, enter one or more subnetwork address ranges in the form Address-Range/NetMask, where AddressRange is an IP address and NetMask is the number of mask bits. Both formats ‘NetAddress/NetMask’ and ‘NetAddress/NetMask’ are supported. Individual hosts can be provided for this, i.e. IP Address or Hostname. For example, if you enter a range of 192.168.1.0/24 this specifies a subnetwork with address 192.168.1.0 and a subnet mask of 255.255.255.0.
The address range is used to specify the subnet of the designated NMS. Only machines with IP addresses in this range are permitted to execute GET and SET requests on the managed device.
Given the example above, the machines with addresses from 192.168.1.1 through 192.168.1.254 can execute SNMP commands on the device. (The address identified by suffix .0 in a subnetwork range is always reserved for the subnet address, and the address identified by .255 in the range is always reserved for the broadcast address).
As another example, if you enter a range of 10.10.1.128/25, machines with IP addresses from 10.10.1.129 through 10.10.1.254 can execute SNMP requests on managed devices. In this example, 10.10.1.128 is the network address and 10.10.1.255 is the broadcast address. 126 addresses would be designated. |
SNMP traps save on network resources by eliminating redundant SNMP requests. They also make it easier for SNMP Managers to troubleshoot their network. For example, if an SNMP manager is responsible for a large network that supports many devices, and each device has a large number of objects, it is impractical to request information from every object on every device. The optimum solution is for each agent on the managed device to notify the manager of any unusual events. It does this by sending a trap of the event. After receiving the event information, the manager can choose what action, if any, to take.

Table 21.2 SNMP Trap Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community name for traps</td>
<td>Enter the global community string associated with SNMP traps. Traps sent from the device will provide this string as a community name.</td>
</tr>
<tr>
<td>Hostname</td>
<td>Enter the DNS hostname of the computer to which you want to send SNMP traps.</td>
</tr>
<tr>
<td></td>
<td>An example of a DNS hostname is: snmptraps.teklogix.com</td>
</tr>
<tr>
<td></td>
<td>Since SNMP traps are sent randomly from the SNMP agent, it makes sense to specify where exactly the traps should be sent.</td>
</tr>
<tr>
<td></td>
<td>Ensure you select the Enabled checkbox beside the appropriate hostname.</td>
</tr>
</tbody>
</table>

21.3.2 Updating SNMP Settings

To update SNMP settings:
1. Navigate to the SNMP tab page.
2. Configure the SNMP settings as required.
3. Click the Update button to apply the changes.
22.1 Overview ... 221
22.2 Radio Protocols .. 222
 22.2.1 Adaptive Polling/Contention Protocol 222
22.3 Narrow Band Menus 222
 22.3.1 Narrow Band Radio Configuration Settings 222
 22.3.1.1 RA1001A Radio Parameters 224
 22.3.2 Connectivity Options 225
 22.3.3 Connectivity Options: Base Station Mode 225
 22.3.3.1 Polling Protocol Parameters 227
 22.3.3.2 Radio Parameters 230
 22.3.4 Connectivity Options: RRM Mode 231
22.4 Connectivity Menus 231
 22.4.1 Base Station Configuration Settings 232
 22.4.2 RRM Groups Configuration Settings 234
 22.4.2.1 RRM Groups 236
 22.4.2.2 Polling Protocol Parameters 237
 22.4.2.3 Radio Parameters 239
 22.4.2.4 Group Parameters 240
 22.4.2.5 Remote Radio Modules 241
 22.4.3 Radio Link Features Configuration Settings 241
 22.4.3.1 Radio Link Features 243
 22.4.3.2 Automatic Radio Address 244
 22.4.3.3 Automatic Terminal Number 245
 22.4.4 Hosts Menu 246
 22.4.4.1 9010 Configuration 249
22.1 Overview

The 9160 G2 Wireless Gateway can function as either a wired or wireless Base Station, or as a Remote Radio Module (RRM), using a radio link and Psion Teklogix proprietary protocols to facilitate communications with the mobile computers (see “Radio Protocols” on page 222).

As a wired base station, the 9160 G2 can communicate with wireless mobile computers using Adaptive Polling/Contention Protocol (page 222), and is connected to the network controller over a network.

As a wireless base station, the 9160 G2 communicates with the wired base station and mobile computers using 802.11 WDS.

As an RRM, the operation and timing of the 9160 G2’s radio link to the mobile computers is directly controlled by a network controller that uses a timeplexing radio protocol (see “Timeplexing And Cellular Switching”, below). It is connected to the network controller over a network.

Timeplexing And Cellular Switching

There are two methods of operating on the radio link. The first method is called cellular switching. It is similar in concept to cellular telephone systems. Here, each base station uses a different radio channel. The mobile computers monitor the radio link and automatically switch to the channel with best radio reception. This cellular switching capability is transparent to the host.

The second method is called timeplexing. Here, all Remote Radio Module (RRM) bases at the site use the same channel. Over a UDP/IP network, a network controller coordinates the polling sequence so that the RRM s do not transmit simultaneously. This timeplexing capability is also transparent to the host. Timeplexing is suited for sites with low transaction rates.

Cellular switching and timeplexing can be combined within one Psion Teklogix system: a site may operate on two or more channels, with several grouped timeplexed bases using each channel, and cellular switching between the channels.

In all of these cases, the operator may move freely throughout the site without loss of communication. The Psion Teklogix system handles channel-switching and handovers between bases without alerting the user.

For operation as a base station or RRM, the parameters in the Base Station Configuration pages on the Configuration Main Menu screen should be set appropriately, as described in the sections that follow.

In addition, the appropriate radio and host parameters must be applied. The radio parameters
Chapter 22: The 9160 G2 As Base Station

Radio Protocols

Section 22.2 Radio Protocols

RF protocols allow mobile computers to communicate with a base station by sharing the use of a radio channel in an efficient way. Psion Teklogix systems use one of two types of RF protocols: the Psion Teklogix Adaptive Polling/Contention protocol or the non-proprietary IEEE 802.11 protocol.

When used as a base station or RRM, the 9160 G2 uses the Adaptive Polling/Contention protocol. The 9160 G2 supports simultaneous base station and 802.11 access point operation.

22.2.1 Adaptive Polling/Contention Protocol

The Adaptive Polling/Contention protocol is always used on Narrow Band radio systems with baud rates of up to 19.2 kb/s, and may also be used on Spread Spectrum systems at higher rates.

Mobile computers operating with this protocol do not transmit unless they receive polls from the 9160 G2. Mobile computers are generally polled en masse. Following each poll, groups of mobile computers are assigned response windows in which they may respond to the poll. If a “collision” occurs—more than one mobile computer attempts to respond in a particular window—the 9160 G2 that is polling divides and reassigns that group until the colliding mobile computers can respond without a collision.

Adaptive features of this protocol allow the response windows to be adjusted to accommodate high or low RF traffic conditions, and to prevent data from being queued too long when a particular mobile computer has a burst of data to send or receive.

Systems using adaptive polling/contention can use the cellular option so that mobile computer operators can roam the site, maintaining uninterrupted communication as they pass between coverage areas.

If cellular base is not enabled, a “RESET: Press Enter” message appears on the mobile computer screen each time an operator moves from one base station coverage area to another.

22.3 Narrow Band Menus

22.3.1 Narrow Band Radio Configuration Settings

When you select the Radio sub-menu from the Narrow Band menu options, the 9160 G2 displays the Narrow Band Radio Configuration Settings of the operating mode for which the parameters for the hosts are described in “Section 22.4.4 Hosts Menu” on page 246.

Note: The 9160 G2 main parameters should first be set up as described in Chapter 4: “Quick Steps For Setup And Launch” and Chapter 5: “Configuring Basic Settings”. For details on the RF protocols, see the following sections.
Chapter 22: The 9160 G2 As Base Station
Narrow Band Radio Configuration Settings

9160 G2 is set (base station or RRM). The page displayed allows you to set the status of the 9160 G2, and to retrieve the RA1001A radio card’s permanent communications settings.

Figure 22.1 Overview Of Narrow Band Radio Settings

<table>
<thead>
<tr>
<th>View NarrowBand radio configuration settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio Card:* Installed</td>
</tr>
<tr>
<td>Radio Card Status:</td>
</tr>
<tr>
<td>[] Enabled</td>
</tr>
<tr>
<td>[] Disabled</td>
</tr>
<tr>
<td>Update</td>
</tr>
</tbody>
</table>

General Parameters:
- Modulation: 2 Level
- Band Rate: 9600
- Band Start: 450 MHz
- Band Size: 20 MHz
- Frequency Step: 12500 Hz
- Channel Bandwidth: 25000 Hz
- Collision Threshold: 1114 ms
- TX Delay, 4 Levels: 11 ms
- Preamble, 2 Levels: 1606,1607 chars
- Preamble, 4 Levels: 659,1607 chars

Tuning Values:
- Data Squelch: 62
- Frequency Adjust: -160
- Power: 86
- Deviation, 4 Levels: 66
- Deviation, 2 Levels: 44
- Local Oscillator Adjust: 9
- Demodulator Adjust: 181
- TCXO Adjust: 113

Frequencies:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Rx</th>
<th>Tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>450000000 Hz</td>
<td>450000000 Hz</td>
</tr>
<tr>
<td>2</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>3</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>4</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>5</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>6</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>7</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>8</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>9</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>10</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>11</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>12</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>13</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>14</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>15</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>16</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>17</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>18</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>19</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>20</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
</tbody>
</table>
Radio Card Status

This parameter enables or disables the Narrow Band Radio. The card may be disabled temporarily when, for testing purposes, it is required that there be no radio interference. Press the Update button to initialize the change.

22.3.1.1 RA1001A Radio Parameters

The Narrow Band Radio Configuration Settings page displays the General, Frequencies, and Tuning Values parameters for the RA1001A Narrow Band radio. These manufacturer’s settings are not configurable. The settings are shown in the following figures.

Figure 22.2 RA1001A Radio Parameters

<table>
<thead>
<tr>
<th>General Parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation: 2 Level</td>
</tr>
<tr>
<td>Baud Rate: 9600</td>
</tr>
<tr>
<td>Band Start: 450 MHz</td>
</tr>
<tr>
<td>Band Size: 20 MHz</td>
</tr>
<tr>
<td>Frequency Step: 12500 Hz</td>
</tr>
<tr>
<td>Channel Bandwidth: 25000 Hz</td>
</tr>
<tr>
<td>Collision Threshold: 1154ms</td>
</tr>
<tr>
<td>TX Delay, 4 Level: 11ms</td>
</tr>
<tr>
<td>Preamble, 2 Level: 10DEL,1SOH chars</td>
</tr>
<tr>
<td>Preamble, 4 Level: 6DEL,1SOH chars</td>
</tr>
</tbody>
</table>

Figure 22.3 RA1001A Radio Tuning Values

<table>
<thead>
<tr>
<th>Tuning Values:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Squelch: 62</td>
</tr>
<tr>
<td>Frequency Adjust: -100</td>
</tr>
<tr>
<td>Power: 68</td>
</tr>
<tr>
<td>Deviation, 4 Level: 56</td>
</tr>
<tr>
<td>Deviation, 2 Level: 44</td>
</tr>
<tr>
<td>Local Oscillator Adjust: 0</td>
</tr>
<tr>
<td>Demodulator Adjust: 181</td>
</tr>
<tr>
<td>TCXO Adjust: 122</td>
</tr>
</tbody>
</table>
22.3.2 Connectivity Options

When you select this sub-menu, the page displayed allows you to set the operating options for the 9160 G2 in either base station or RRM mode.

22.3.3 Connectivity Options: Base Station Mode

When you enter the Connectivity Options sub-menu for the 9160 G2 set in base station operating mode, the Polling Protocol and Radio Parameters are displayed.
Operating Mode
This parameter allows you to set the operating mode of the 9160 G2 as Base Station or RRM.

Auto-Startup
This parameter enables polling immediately when the 9160 G2 is rebooted. If Auto-Startup is disabled, the 9160 G2 will wait until polling is initialized from the network controller.
Shared Channel

Shared Channel is only used in Holland to accommodate government requirements. When enabled, it imposes timing restrictions for polling. Every 2 seconds of polling is followed by 0.5 seconds of silence—no polling occurs.

Further, if another carrier is detected on the channel, the 9160 G2 will cease radio transmissions on that channel until the path is clear.

22.3.3.1 Polling Protocol Parameters

<table>
<thead>
<tr>
<th>Polling Protocol Parameters:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Poll Windows:</td>
<td>3 (Range 2..4)</td>
</tr>
<tr>
<td>Size of Poll Windows:</td>
<td>8 (Range 5..32)</td>
</tr>
<tr>
<td>Maximum Message Segment Size:</td>
<td>100 (Range 32..116)</td>
</tr>
<tr>
<td>Number of Retries:</td>
<td>3 (Range 1..7)</td>
</tr>
<tr>
<td>Collision Size:</td>
<td>6 (Range 3..10)</td>
</tr>
<tr>
<td>Free Window Factor:</td>
<td>7 (Range 0..7)</td>
</tr>
<tr>
<td>Message Mode Limit:</td>
<td>4 (Range 0..7)</td>
</tr>
<tr>
<td>Callsign Period:</td>
<td>0 (Range 0..60)</td>
</tr>
<tr>
<td>Callsign String:</td>
<td>Teklogix (Max 10 letters or digits)</td>
</tr>
</tbody>
</table>

Number of Poll Windows

This parameter defines the number of poll windows the 9160 G2 will use. The value assigned to this parameter is dependent on the number of mobile computers and the radio link protocol used. Table 22.1 indicates how the value assigned to the *Number of Poll Windows* parameter is determined.

Table 22.1 Number Of Poll Windows – Cellular Protocol

<table>
<thead>
<tr>
<th>Number of Mobile Computers</th>
<th>Minimum # of Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-16</td>
<td>2</td>
</tr>
<tr>
<td>17-81</td>
<td>3</td>
</tr>
<tr>
<td>82-256</td>
<td>4</td>
</tr>
</tbody>
</table>
Size of Poll Windows

The value assigned to this parameter determines the largest message that can be passed between the 9160 G2 and the mobile computer in a normal poll window. The window size can be adjusted to accommodate anywhere from 5 to 32 characters.

Larger windows increase the polling period and can increase the response time. Smaller windows increase the number of message and long message polls, and can also increase the response time.

Important: In “Cellular” mode, the minimum value for this parameter is 8.

Maximum Message Segment Size

This parameter determines the largest single message that can be passed to a mobile computer in message mode or from a mobile computer in long message mode. In a 9160 G2 base station, the value entered in this parameter must be greater than or equal to the value entered in the network controller or 9160 G2 mini-controller. The range of this parameter is between 32 and 116 characters. (Longer messages are broken into several packets.) The default value is 100.

Number of Retries

This parameter determines how many times the 9160 G2 attempts to resend a message if an acknowledgement is not received from the mobile computer. (These retries do not necessarily occur in consecutive polls because incomplete messages are returned to the bottom of the message queue.) After all retries have been exhausted, the mobile computer is declared “offline”. The 9160 G2 does not transmit any messages to the mobile computer until the mobile computer declares itself “online”. The allowable values range from 1 to 7.

Collision Size

This parameter reduces the probability that random noise on the radio link will be interpreted as a collision between mobile computers. Response time increases when the 9160 G2 resolves collisions unnecessarily.

Collision Size places an upper limit on the number of characters that are received prior to the receipt of an error message (CRC, CD lost, etc.). If eight is the value of this parameter, eight or less characters followed by an error message appearing over the radio link are considered noise. If there are more than eight characters, it is considered a collision. Acceptable values range from 3 to 10.
Free Window Factor
The value entered in this parameter determines if “free window mode” will be used. In free window mode, all mobile computers that are not assigned any other window can use the free window.

Entering a value of 0 (zero) in this parameter disables free window mode. Increasing the value of this parameter increases the likelihood of a message being transmitted in the free window.

Message Mode Limit
This parameter defines an upper limit to the number of messages that must be queued for transmission before message mode polling starts. Accepted values range from 0 to 7, where 0 disables message mode.

Note: The number of mobile computers and past events are also part of the algorithm that determines whether or not to start message mode.

Callsign Period
A callsign is periodically transmitted as an audible Morse code signal. This parameter specifies the interval in minutes between callsign transmissions. Acceptable values range from 0 to 60. The federal agencies, Industry Canada and the Federal Communications Commission in the United States, require that each system transmit its own identification callsign every 15 minutes.

In countries where a callsign is not required, setting this parameter to 0 prevents the transmission of any callsigns, allowing for shorter poll time-outs in mobile computers and faster channel switching.

Callsign String
This string can be a maximum of 10 characters long. All characters are either numbers or letters. The prefix “DE” (from) is added to the beginning of the transmitted callsign.
22.3.3.2 Radio Parameters

<table>
<thead>
<tr>
<th>Radio Parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync Delay:</td>
</tr>
<tr>
<td>Remote Tx On:</td>
</tr>
<tr>
<td>Active Channel:</td>
</tr>
</tbody>
</table>

Sync Delay

Important: This parameter should not be changed from its factory setting without a clear understanding of the timing of the radio protocol.

`Sync Delay` specifies the delay between the time of the base station transmission and the first response window, measured in character times. The value assigned to this parameter must be compatible with other base stations and mobile computers in the system. The RA1001A radio is available in either two level or four level modulation, providing baud rates of 4800 bps and 9600 bps, or 9600 bps and 19200 bps, respectively.

The default setting for a two level modulation narrow band radio, operating at 9600 baud, is 23.

The default setting for a four level modulation narrow band radio, operating at 19200 baud, is 31.

Remote Tx On

`Remote Tx On` accommodates the turn-on time of the radio in mobile computers (remotes). It specifies the number of fill characters sent to the radio before real data is output. Since this parameter is based on character times, the number is dependent on the radio link baud rate.

The value assigned to the `Remote Tx On` parameter must be consistent across all mobile computers and base station equipment. The allowable value range is 3 to 60.

Important: This parameter should not be changed from its factory setting without an understanding of the timing of the radio protocol.

Active Channel

This parameter determines the operating radio channel of the 9160 G2. This makes the channel available for channel searching by the mobile computers. The channel selected must be one of those that have been configured with frequencies, as indicated on the Narrow
22.3.4 Connectivity Options: RRM Mode

When you enter the Connectivity Options sub-menu for a slave 9160 G2 set in RRM operating mode, the 9160 G2 displays the RRM parameters.

IP Port

This parameter allows you to enter the listening port number of the 9160 G2 operating as an RRM slave. The port number can range from 1024 to 32767.

Important: The port number entered here must match the port number entered for this 9160 G2 in the network controller’s RRM configuration.

22.4 Connectivity Menus

The 9160 G2 Wireless Gateway can operate as a base station or remote radio module (RRM), facilitating the communications between mobile computers and wireless base stations and a network controller (Psion Teklogix 9500 Communications Server or 9160 G2 Wireless Gateway), using a range of host platforms. Alternatively, the network controller can be a host running a Psion Teklogix SDK (handler).

The 9160 G2 can also act as a slave base station to another 9160 G2 on the network.
22.4.1 Base Station Configuration Settings

Base stations communicate over the radio link using Psion Teklogix proprietary protocols. Base stations can be connected to network controllers using TCP/IP over Ethernet networks. As a base station communicating with mobile computers through a radio link, the 9160 G2
uses the Adaptive Polling/Contention RF protocol (see ‘Radio Protocols’ on page 222 for details on the protocols).

The 9160 G2 controls the radio link’s operation and timing. Each base station uses a different radio channel, and mobile computers use cellular switching to roam between stations.

The options and parameters on the following pages allow you to configure the 9160 G2 as a master base station connected to up to 32 slave 9160 G2 base stations over an Ethernet network. The master 9160 G2 is connected to a 9500 Communications Server, or up to six hosts running the Psion Teklogix Software Development Kit. The Base Station option under Connectivity, will enable you to add a new slave base station to the system or change the parameters on an existing slave base station.

Pressing the Update button will save your settings; pressing the Default button will re-load the default configuration values for that base station.

Number of Configured Slave Base Stations
You can configure up to **32** slave 9160 G2 base stations.

Base Station Number
This parameter indicates the assigned base station number. Choosing the Base Station Number from the drop-down list displays the parameters that can be modified or deleted for that host. New slave base stations can be added by selecting an unassigned number and configuring the parameters for it.

Status
This parameter enables or disables this slave base station.

Description
The name entered in this parameter is used as an alternate way of identifying the IP address of a slave base station.

IP Address
This parameter provides the corresponding IP address for the slave base station. The IP Address must be a unique value so that each slave base station can be identified on the network.

The acceptable value ranges from **0.0.0.0** to **239.255.255.255**.

The default value for the IP port is **16100**.
Message Size

Message Size determines the largest single message that can be passed to a mobile computer. The range of this parameter is between 32 and 380 characters. (Longer messages are broken into several packets.) For polling protocol base stations, the upper limit is 116.

Auto-Startup

When this parameter is enabled, the slave base stations will start polling when the master 9160 G2 boots up. When *Auto-Startup* is disabled, the base stations will not start polling until they receive a *start polling* command from the host.

22.4.2 RRM Groups Configuration Settings

While the 9160 G2 can operate as a Remote Radio Module (RRM, see “Connectivity Options: RRM Mode” on page 231), it can also control other RRMs. For a 9160 G2 to control RRMs, RRM groups must be configured. Once an RRM group has been defined, from one to four RRMs can be members of a group.

All RRMs in a group operate on the same radio channel. The 9160 G2 coordinates the transmissions of all the RRMs in a group (for this reason, the controlling 9160 G2 is sometimes referred to as the “Timeplexing Master”).
Figure 22.7 Overview Of RRM Groups Configuration Settings

View RRM Groups configuration settings

RRM Groups:
- Number of Configured RRM Groups: 0
- RRM Group Number: 1
- Status: [Enabled/Disabled]
- Description: [Unnamed RRM Group]
- Auto-Startup: [Enabled/Disabled]
- Shared Channel: [Enabled/Disabled]

Polling Protocol Parameters:
- Number of Poll Windows: 3 (Range: 2..4)
- Size of Poll Windows: 8 (Range: 5..32)
- Maximum Message Segment Size: 100 (Range: 32..116)
- Number of Retries: 3 (Range: 1..7)
- Collision Size: 6 (Range: 3..10)
- Free Window Factor: 0 (Range: 0..7)
- Message Mode Limit: 4 (Range: 0..7)
- Collision Peroid: 0 (Range: 0..60)
- Collision String: Tkonopik (Max 10 letters or digits)

Radio Parameters:
- Sync Delay: 22 (Range: 3..45)
- Remote Tx On: 13 (Range: 3..60)
- Active Channel: 1 (Range: 1..20)

Group Parameters:
- Combination 1: [Sequence of RRM indices]
- Combination 2: [Sequence of RRM indices]

Remote Radio Modules:

<table>
<thead>
<tr>
<th>Enabled</th>
<th>Description</th>
<th>IP Address : Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unnamed RRM</td>
<td>0.0.0.0:16132</td>
</tr>
<tr>
<td>2</td>
<td>Unnamed RRM</td>
<td>0.0.0.0:16132</td>
</tr>
<tr>
<td>3</td>
<td>Unnamed RRM</td>
<td>0.0.0.0:16132</td>
</tr>
<tr>
<td>4</td>
<td>Unnamed RRM</td>
<td>0.0.0.0:16132</td>
</tr>
</tbody>
</table>

Update
Chapter 22: The 9160 G2 As Base Station
RRM Groups Configuration Settings

22.4.2.1 RRM Groups

In this screen the user can set options for a new RRM group. Each RRM must be a member of an RRM group; there may be more than one RRM group configured in the 9160 G2. An RRM group may contain from one to four RRMs.

This screen is very similar to the one in “Connectivity Options: Base Station Mode” on page 225, the difference being that the parameters configured in those radio menus apply to the RA1001A radio resident in the 9160 G2, while the parameters configured here apply to the other, remote 9160 G2s (the RRMs).

Number of Configured RRM Groups
Displays the number of RRM groups configured in this 9160 G2.

RRM Group Number
This parameter indicates the assigned RRM group number. Choosing the RRM Group Number from the drop-down list displays the parameters that can be modified or deleted for that group. New RRM groups can be added by selecting an unassigned number and configuring the parameters for it.

Status
This parameter enables or disables this RRM group.

Description
This textbox allows the user to enter a name for the new RRM group. The value is any text string. The default is Unnamed RRM Group.
Auto-Startup

When this parameter is enabled, the 9160 G2 establishes communication with the RRMs in this RRM group when it boots, and starts polling automatically. When Auto-Startup is disabled, the 9160 G2 establishes communication with the RRMs in this group when it boots, but does not start polling in this RRM group until a start polling command is received from the host. Polling starts if at least one of the RRMs in the RRM group is operating when the 9160 G2 boots.

Shared Channel

If this parameter is enabled, the 9160 G2 checks for other traffic on the radio channel used by this RRM group, before polling.

If this parameter is disabled, the 9160 G2 assumes that it has exclusive use of the radio channel for this RRM group, and polls without checking for radio traffic.

This parameter is required for systems installed in the Netherlands.

22.4.2.2 Polling Protocol Parameters

Warning: These parameters are pre-configured for your system, and should not be changed without a proper understanding of how they affect the radio link.

<table>
<thead>
<tr>
<th>Polling Protocol Parameters:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Poll Windows:</td>
<td>3 (Range 2..4)</td>
</tr>
<tr>
<td>Size of Poll Windows:</td>
<td>8 (Range 5..32)</td>
</tr>
<tr>
<td>Maximum Message Segment Size:</td>
<td>100 (Range 32..116)</td>
</tr>
<tr>
<td>Number of Retries:</td>
<td>3 (Range 1..7)</td>
</tr>
<tr>
<td>Collision Size:</td>
<td>6 (Range 3..10)</td>
</tr>
<tr>
<td>Free Window Factor:</td>
<td>0 (Range 0..7)</td>
</tr>
<tr>
<td>Message Mode Limit:</td>
<td>4 (Range 0..7)</td>
</tr>
<tr>
<td>Collaign Period:</td>
<td>0 (Range 0..60)</td>
</tr>
<tr>
<td>Collaign String:</td>
<td>Teklogix</td>
</tr>
</tbody>
</table>

Number of Poll Windows

This textbox allows the user to specify the number of poll windows in which the RRM listens for mobile computer responses after sending a poll. The allowable values range from 2 to 4. The default value is 3.
Size of Poll Windows
This textbox allows the user to specify the size of the poll windows in which the RMs of this RRM group listen for mobile computer replies. The allowable values range from 5 to 32. The default value is 8.

Maximum Message Segment Size
This textbox allows the user to specify the size of the largest message segment, in bytes, that will be sent over the Psion Teklogix radio network. Larger messages are broken into parts. The allowable values range from 32 to 116. The default value is 100.

Number of Retries
This textbox allows the user to specify the number of times the RRM retransmits a message to a mobile computer, after receiving no acknowledgement from the mobile computer, before it declares the mobile computer offline. The allowable values range from 1 to 7. The default value is 3.

Collision Size
This textbox allows the user to specify the smallest number of characters of noise received by the RRM, that will be interpreted as interfering transmissions from Psion Teklogix equipment. When this threshold is exceeded, the RRM starts collision resolution. The allowable values range from 3 to 10. The default value is 6.

Free Window Factor
This textbox allows the user to specify the probability that the RRM will include a free window in its poll, during which any mobile computer may transmit. The allowable values range from 0 to 7. The default value is 0.

Message Mode Limit
This textbox allows the user to specify the probability of including a message-mode poll in its poll transmission. The allowable values range from 0 to 7. The default value is 4.

Callsign Period
This textbox allows the user to specify the amount of time between transmissions of the callsign. This parameter is in minutes. A value of 0 (zero) indicates that no callsign is transmitted. The allowable values range from 0 to 60. The default value is 0.
Chapter 22: The 9160 G2 As Base Station
RRM Groups Configuration Settings

Callsign String
This textbox allows the user to specify the text to be transmitted as the RRM’s callsign. The text is transmitted as Morse code. The default value is Teklogix.

22.4.2.3 Radio Parameters

<table>
<thead>
<tr>
<th>Radio Parameters:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync Delay:</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>(Range 3..45)</td>
</tr>
<tr>
<td>Remote Tx On:</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>(Range 3..60)</td>
</tr>
<tr>
<td>Active Channel:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Range 1..20)</td>
</tr>
</tbody>
</table>

Because some of the radio parameters are identical for a given group of timeplexed RRMs, they may be configured by the user once on the 9160 G2; the 9160 G2 then passes them to the RRMs in the group. These parameters include the synchronization delay (Sync Delay), the remote transmit on-time (Remote Tx on), and the channel number to be used (Active Channel).

Although the RA1001A narrow band radio in each RRM in the group is configured separately, the 9160 G2 assumes they will be configured identically. To ensure this, the 9160 G2 looks at certain parameters returned by each of the RRMs. These parameters include the radio baud rate and the transmit-on time.

These parameters are compared against the values returned by other RRMs within the same group. Error messages are displayed should these values not match, but the worst case value is chosen for use.

⚠️ Warning: These parameters are pre-configured for your system, and should not be changed without a proper understanding of how they affect the radio link.

Sync Delay
This textbox allows the user to specify the number of delay characters inserted between the RRM’s transmission and the first response window. The allowable values range from 3 to 45. The default value is 22.

Remote Txon
This textbox allows the user to specify the number of fill characters sent by the mobile computer radios before the mobile computers send message data. The allowable values range from 3 to 60. The default value is 13.
Active Channel

This textbox allows the user to specify the radio channel to be used by all the RRMGs in the RRM group. The allowable values range from 1 to 20. The default value is 1.

22.4.2.4 Group Parameters

<table>
<thead>
<tr>
<th>Combination</th>
<th>[Sequence of RRM indices]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination 1:</td>
<td></td>
</tr>
<tr>
<td>Combination 2:</td>
<td></td>
</tr>
</tbody>
</table>

Combination

These textboxes allow the user to specify RRM subgroups called combinations. If the coverage areas of two or more of the RRMGs in this RRM group do not overlap, the non-overlapping RRMGs may poll at the same time. This improves system response time and reduces the amount of signalling on the network. RRMGs that are not assigned to combinations poll individually, after the combinations poll.

As an example, if the RRM group has 3 RRMGs, and RRMGs 1 and 3 don't overlap, RRMGs 1 and 3 may be placed in one subgroup (Combination 1). They will then poll simultaneously. RRM 2 may be placed in another subgroup (Combination 2). Polling alternates between the two subgroups.

To configure a combination, place the numbers of the RRMGs in the textbox for that combination. The numbers correspond to the numbers of the RRMGs named in the RRM list on the Remote Radio Modules menu (see page 241). For instance, “13” in the textbox for Combination 1 places RRMGs 1 and 3 in that subgroup.

Note: When configuring RRM combinations, make sure the configured RRMGs are sequential, and are not missing numbers, which can happen when RRMGs are deleted and added. The combinations use the RRMGs in the order that they appear in the list, not how they are numbered in the list.
22.4.2.5 Remote Radio Modules

<table>
<thead>
<tr>
<th>Remote Radio Modules:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Description</td>
</tr>
<tr>
<td>1</td>
<td>✔ Built-in</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

This menu displays the RRMs that comprise this RRM Group, including each Description, IP address, and Port number as set in the Connectivity Options sub-menu for the 9160 G2s set in RRM operating mode (see “Connectivity Options: RRM Mode” on page 231). Each RRM may be enabled or disabled from this menu.

22.4.3 Radio Link Features Configuration Settings

From the Connectivity options list, entering Radio Link Features will open the configuration settings page for the polling and cellular parameters.
Figure 22.8 Overview Of Radio Link Features Configuration Settings
22.4.3.1 Radio Link Features

Operate in Cellular Mode
To operate as a cellular base station, this parameter should be enabled.

Note: The 9500 Communications Server must also be set to cellular mode.

Poll ID
In Adaptive Polling/Contention protocol for narrow band radios, Poll ID is used to assign a unique address to each base station. As the mobile computers move from one base station to another, this address is transmitted by the base stations to the mobile computers, identifying each 9160 G2 in a multiple base station system.

Polling Protocol Terminal Timeout
This parameter determines the time in minutes that a mobile computer can be inactive before the 9160 G2 declares it offline. Before this happens, the mobile computer will be declared offline by the Percent Polling Protocol Terminal Timeout parameter (see below).

After the mobile computer is removed from the system, it will need to re-initialize in order to communicate with the 9160 G2. This parameter reduces the overhead on the radio link caused when mobile computers which are not communicating are supported. The allowable values range from 1 to 240.

Percent Polling Protocol Terminal Timeout
This parameter determines the time that a mobile computer is allowed to be inactive before the 9160 G2 declares it offline. This time is expressed as a percentage of the Polling Protocol Terminal Timeout parameter (see above). For example, if the Polling Protocol Terminal...
Chapter 22: The 9160 G2 As Base Station

Radio Link Features Configuration Settings

Timeout is 60, and this parameter is set to 75%, then the timeout would be 60 min x 75% = 45 minutes.

An offline mobile computer is still considered part of the system. Messages to offline mobile computers are queued at the 9160 G2. The mobile computer remains offline until it transmits an online message. Values for this parameter range from 50 to 90.

Direct TCP Connections for TekTerm

Enabling this parameter allows the TekTerm program resident in Psion Teklogix mobile computers to connect directly to the 9160 G2, when it is acting as a base station to a host via TCP/IP.

Direct TCP Check Duplicate Terminal Number

When this parameter is enabled, the 9160 G2 will reject Direct TCP mobile computers which try to connect using a terminal number already in use by another mobile computer. When disabled, the most recent mobile computer to connect will take precedence over the other mobile computers using the same terminal number.

22.4.3.2 Automatic Radio Address

<table>
<thead>
<tr>
<th>Automatic Radio Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Address: 1024</td>
</tr>
<tr>
<td>Last Address: 2048</td>
</tr>
<tr>
<td>Ranges (1..3840)</td>
</tr>
</tbody>
</table>

Each Psion Teklogix mobile computer using the radio link has a unique radio address number, which can be assigned automatically by the 9160 G2 by enabling this parameter.

To enable this parameter, the values for the first and last radio address numbers must lie between 1 and 3840. The default values for the range are 1024 ... 2084. To disable the parameter, set the values to 0.

Notes: When enabling this parameter:

1. Direct TCP Connections for TekTerm must be disabled (see page 244).
2. The Auto ID parameter in the mobile computer must be enabled in order for the radio address to be automatically assigned.
3. Do not enable Auto Startup (see page 303) on any of the 9150 or 9160 G2 base stations running 802.IQ with sessions using Automatic Radio Address and Automatic Terminal Number.

Expiration Period
This parameter dictates how long, in days, a particular radio address or terminal number should be inactive, before the 9160 G2 declares it to be “expired”. An expired address or terminal number may be reassigned to another radio or session.

Note: For this feature, it is recommended that you enable SNTP and to have an SNTP server available for accurate expiration times.

22.4.3.3 Automatic Terminal Number
A terminal number is assigned for every application session created in a mobile computer. This number helps to uniquely identify all transmissions to and from that session.

<table>
<thead>
<tr>
<th>Automatic Terminal Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Terminal numbers can be assigned automatically to application sessions. The controller also provides a group number for use with TESS and ANSI sessions. Up to five groups of terminal sessions can be defined, and each group can be given a different range of terminal numbers for automatic assignment. These ranges may not overlap between groups.

These groups apply to TESS and ANSI sessions only. In the mobile computer, TESS or ANSI terminal applications specify which group they belong to, and use the Automatic Terminal Number assignment range that belongs to that group.

All other session types assume an Automatic Terminal Number assignment range of 1 to 3840, and do not use the “group” parameter. Non-ANSI and non-TESS emulations that use Automatic Terminal Number assignment (for example, Remote Sockets) must have their terminal range set starting from 1, and this range must be large enough to accommodate all mobile computers.
Chapter 22: The 9160 G2 As Base Station

Hosts Menu

The Radio Link Features screen provides several parameters for each Automatic Terminal Number group: a range specified by a lower terminal number and an upper terminal number, and a comment. The comment is a string of ASCII text that can be used to describe the group.

Notes: When enabling Automatic Terminal Number:

1. Direct TCP Connections for TekTerm must be disabled (see page 244).
2. The Auto Session parameter in the mobile computer must be enabled in order for the terminal session number to be automatically assigned.

22.4.4 **Hosts Menu**

When the 9160 G2 acts as a base station, it must communicate with a “host”—a 9500 Communications Server, or a host computer using a Psion Teklogix Software Development Kit (SDK). Therefore each master network controller, SDK host, or master base station that communicates with the 9160 G2 must be configured as a host. The Hosts page of the Connectivity options shows the description of the host chosen from the drop-down list (see Figure 22.9 on page 247).

The menu page in this option shows the host names present on the system. Up to six hosts can be supported. Once a host has been configured, selecting the **Host Number** for that host lists the parameters that can be modified or deleted.
Figure 22.9 Overview Of Base Station’s Host Configuration Settings

View the configuration settings for a Base Station’s Host

<table>
<thead>
<tr>
<th>Section</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Settings</td>
<td></td>
</tr>
<tr>
<td>User Management</td>
<td></td>
</tr>
<tr>
<td>Cluster</td>
<td></td>
</tr>
<tr>
<td>Access Points</td>
<td></td>
</tr>
<tr>
<td>Sessions</td>
<td></td>
</tr>
<tr>
<td>Channel Management</td>
<td></td>
</tr>
<tr>
<td>Wireless Neighborhood</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>Interfaces</td>
<td></td>
</tr>
<tr>
<td>Events</td>
<td></td>
</tr>
<tr>
<td>Transmit/Receive</td>
<td></td>
</tr>
<tr>
<td>Client Associations</td>
<td></td>
</tr>
<tr>
<td>Neighboring Access Points</td>
<td></td>
</tr>
<tr>
<td>Manage</td>
<td></td>
</tr>
<tr>
<td>Ethernet Settings</td>
<td></td>
</tr>
<tr>
<td>802.11 Settings</td>
<td></td>
</tr>
<tr>
<td>802.11 Advanced Settings</td>
<td></td>
</tr>
<tr>
<td>VWM</td>
<td></td>
</tr>
<tr>
<td>WDS</td>
<td></td>
</tr>
<tr>
<td>Guest Login</td>
<td></td>
</tr>
<tr>
<td>MAC Filtering</td>
<td></td>
</tr>
<tr>
<td>Load Balancing</td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>QoS</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>SNMP</td>
<td></td>
</tr>
<tr>
<td>Narrow Band</td>
<td></td>
</tr>
<tr>
<td>Radio</td>
<td></td>
</tr>
<tr>
<td>Connectivity Options</td>
<td></td>
</tr>
<tr>
<td>Connectivity</td>
<td></td>
</tr>
<tr>
<td>Base Station</td>
<td></td>
</tr>
<tr>
<td>RRM Groups</td>
<td></td>
</tr>
<tr>
<td>Radio Link Features</td>
<td></td>
</tr>
</tbody>
</table>

Hosts:

- Number of configured Hosts: **6**
- Host Number: **1**
- Status: ![Enabled](), ![Disabled]()
- Description: *Unnamed Host*
- First Terminal: **1**
- Last Terminal: **32**

9010 Configuration:

- ![Online/Offline](), ![Enabled](), ![Disabled]()
- Monitor Poll: ![Enabled](), ![Disabled]()

To Restore Default Configuration...

Click “Default” to re-load the default configuration values for this Host. ![Default]()

Psion Teklogix 9160 G2 Wireless Gateway User Manual
Number Of Configured Hosts

The Hosts page of the Connectivity options shows the number of hosts configured on the system. Up to six hosts can be supported.

Host Number

This parameter indicates the assigned host number. Choosing the Host Number from the drop-down list displays the parameters that can be modified or deleted for that host. New hosts can be added by selecting an unassigned number and configuring the parameters for it. The host number also appears on the RF mobile computer when switching between hosts in a multiple-host environment.

Status

The Status must be Enabled for mobile computers to communicate with this host.

Description

This textbox allows you to name the protocol used by the host. Protocols are the methods by which mobile computers communicate with host computers over various physical media such as Ethernet and radio-link connections.

When the 9160 G2 functions as a base station, it communicates with a 9010/ TCP/IP host using a network connection. The 9010 protocol is a proprietary asynchronous protocol developed by Psion Teklogix which uses TESS (Teklogix Screen Subsystem) or ANSI data streams to communicate with mobile computers. For detailed information, please refer to the appropriate Psion Teklogix User Manual for: 9500 Communications Server, SDK, TESS or ANSI.

First Terminal/Last Terminal

The values entered in these parameters designate the first and last terminals in the range of mobile computers that will communicate with the host. These terminal numbers are mapped to this particular host. Terminal numbers may range from 1 to 3840.

To Restore Default Configuration

At the bottom of the Host menu page, you can click on Default to re-load the default configuration values for this host.
Updating Settings
At any point during the host configuration process, you may Update the settings or Cancel the process by clicking on the respective button on the bottom of the page.

22.4.4.1 9010 Configuration

<table>
<thead>
<tr>
<th>9010 Configuration:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No Online/Offline:</td>
<td>Enabled Disabled</td>
</tr>
<tr>
<td>Monitor Poll:</td>
<td>Enabled Disabled</td>
</tr>
</tbody>
</table>

To Restore Default Configuration...
Click "Default" to re-load the default configuration values for this Host.

No Online/Offline
If this parameter is Enabled, the 9160 G2 base station does not notify the host if the status of a mobile computer changes between offline and online. If this parameter is Disabled, the 9160 G2 does notify the host regarding any mobile computer status changes. The default for this parameter is Disabled.

Monitor Poll
Hosts usually send messages or null polls to the 9160 G2 within a period of approximately 40 seconds. If the parameter is enabled, the 9160 G2 base station monitors messages and polls from this host; if it does not receive a message or poll within 40 seconds, it closes the connection. The default for this parameter is disabled.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>Overview</td>
<td>253</td>
</tr>
<tr>
<td>23.2</td>
<td>Mini-Controller Configuration Menu</td>
<td>254</td>
</tr>
<tr>
<td>23.3</td>
<td>Hosts Menu</td>
<td>254</td>
</tr>
<tr>
<td>23.4</td>
<td>Host Menu Options</td>
<td>258</td>
</tr>
<tr>
<td>23.4.1</td>
<td>3274 Emulation</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>Emulation Options</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>TESS Options</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>Telnet Protocol Options</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Function Key Mappings</td>
<td>273</td>
</tr>
<tr>
<td>23.4.2</td>
<td>5250 Emulation</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>Emulation Options</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>TESS Options</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Telnet Protocol Options</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>Function Key Mappings</td>
<td>288</td>
</tr>
<tr>
<td>23.4.3</td>
<td>ANSI Emulation</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>Emulation Options</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>Telnet Protocol Options</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>Auto-Telnet/Auto-login</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>Function Key Mappings</td>
<td>299</td>
</tr>
</tbody>
</table>
23.1 **Overview**

The network controller in a Psion Teklogix system performs a number of important tasks. One of these tasks is *emulation*: the translation of data between the protocol of the host computer and the protocol used by Psion Teklogix mobile computers.

The data which is sent from a host computer to a mobile computer to provide its display, and returned to the host as a result of operations at the mobile computer, is called a data stream. Host computers can provide data streams of various types to their mobile computers.

Psion Teklogix mobile computers can directly accept only two types of data stream: **TESS** and **ANSI**. TESS (Teklogix Screen Subsystem) is the proprietary data stream used by Psion Teklogix mobile computers. ANSI data streams are a standard type of data stream used by wired ANSI mobile computers. Other types of data stream provided by the host must be converted into TESS or ANSI before Psion Teklogix mobile computers can work with them. This translation is done by emulation software in a network controller.

The 9160 G2 Wireless Gateway is equipped with emulation capabilities, allowing it to act as a mini-controller. When a 9160 G2 is configured as a mini-controller, Psion Teklogix mobile computers can emulate an ANSI, 5250 or 3274 mobile computer via a 9160 G2 rather than through a 9500 Communications Server.

Important: 9160 G2s acting as mini-controllers are designed for small, low-transaction sites. A 9500 Communications Server is required for systems that support more than 50 mobile computers.

Acting as a mini-controller, the 9160 G2 Wireless Gateway can support up to 32 networked base stations and up to 50 mobile computers. A 9160 G2 mini-controller can also manage wireless LAN configurations.

A 9160 G2 configured as a mini-controller can support the following emulations:

- 5250 emulation using TCP/IP over an Ethernet LAN.
- 3274 emulation using TCP/IP over an Ethernet LAN.
- ANSI emulation using TCP/IP over an Ethernet LAN.

Note: The 9160 G2 main parameters should first be set up as described in the earlier chapters of this manual.

The 9160 G2 can also be integrated into a mapRF system, using 802.IQv2 protocol (for details, please refer to the “802.IQ v2 Features Menu” on page 307).

Note: The mini-controller feature is only available after being unlocked via a password used at the console prompt.
23.2 Mini-Controller Configuration Menu

For operation as a mini-controller, the parameters in the Hosts pages should be set appropriately. From the Connectivity options list, entering Hosts will open the Configuration Settings For A Base Station’s Host page. For information on configuring radio protocol parameters, please refer to “Radio Link Features Configuration Settings” on page 241.

23.3 Hosts Menu

The menu page in this option shows the host names present on the system. Up to six hosts can be supported. A “host” must be configured for each host that communicates with the 9160 G2 mini-controller. Once a host has been configured, selecting the Host Number for that host lists the parameters that can be modified or deleted.
Figure 23.1 Overview Of Hosts Configuration Settings
Chapter 23: Mini-Controller Configuration

Hosts Menu

Number Of Configured Hosts

The *Hosts* page of the *Connectivity* options shows the number of hosts configured on the system. Up to six hosts can be supported.

Host Number

This parameter indicates the assigned host number. Choosing the *Host Number* from the drop-down list displays the parameters that can be modified or deleted for that host. New hosts can be added by selecting an unassigned number and configuring the parameters for it. The host number also appears on the RF mobile computer when switching between hosts in a multiple-host environment.

Status

The Status must be **Enabled** for mobile computers to communicate with this host.

Description

This textbox allows you to name the protocol used by the host. Protocols are the methods by which mobile computers communicate with host computers over various physical media such as Ethernet and radio-link connections.

When the 9160 G2 functions as a base station, it communicates with a 9010/TCP/IP host using a network connection. The 9010 protocol is a proprietary asynchronous protocol developed by Psion Teklogix which uses TESS (Teklogix Screen Subsystem) or ANSI data streams to communicate with mobile computers. For detailed information, please refer to the appropriate *Psion Teklogix User Manual* for: 9500 Communications Server, SDK, TESS or ANSI.

First Terminal/Last Terminal

The values entered in these parameters designate the first and last terminals in the range of mobile computers that will communicate with the host. These terminal numbers are mapped to this particular host. Terminal numbers may range from 1 to 3840.

Emulation

This drop-down menu provides a list of host emulations supported by the 9160 G2 Wireless Gateway. Working with Psion Teklogix mobile computers and base stations, the 9160 G2 can emulate IBM 3278-2, 5251-11, and 5555-B01 mobile computers, as well as ANSI mobile computers.
Protocols are the methods by which mobile computers communicate with host computers over various media such as Ethernet and radio-link connections. The 9160 G2 supports the TCP/IP protocol. The supported emulations are:

- 9010/ TCP/IP (See below for details).
- 3274 Emulation (See pages 258 to 273 for Configuration Parameters).
- 5250 Emulation (See pages 274 to 288 for Configuration Parameters).
- ANSI Emulation (See pages 289 to 299 for Configuration Parameters).

When the 9160 G2 Wireless Gateway acts as a base station, it uses the 9010 emulation (a proprietary asynchronous protocol developed by Psion Teklogix) to communicate with a 9500 Communications Server or a host using a Psion Teklogix Software Development Kit (SDK). For information on configuring the 9160 G2 as a base station and 9010 emulation, please refer to Chapter 22: “The 9160 G2 As Base Station”.

When the 9160 G2 Wireless Gateway acts as a mini-controller, it uses the 3274 and 5250 emulation protocols to communicate with IBM hosts, or the ANSI emulation protocol to communicate with ANSI mobile computers.

To Restore Default Configuration

At the bottom of the Host menu page, you can click on Default to re-load the default configuration values for this host.

Updating Settings

At any point during the host configuration process, you may Update the settings or Cancel the process by clicking on the respective button on the bottom of the page.
Chapter 23: Mini-Controller Configuration
Host Menu Options

23.4 Host Menu Options

When you choose an existing Host Number, the 9160 G2 displays that host’s configuration parameters. The 5250, 3274, and ANSI emulations have four sub-menus: the host’s Emulation Options, TESS Options, Telnet Protocol Options, and Function Key Mappings (for an overview of the page see Figure 23.1 on page 255).

23.4.1 3274 Emulation

23.4.1.1 Emulation Options

With IBM 3274, or IBM 5250 emulation, the 9160 G2 mini-controller converts the application data stream from the host to TESS (Teklogix Screen Subsystem) commands. Some of the parameters in this page govern the conversion of the host screens to TESS.

Is Host Fujitsu

If this parameter is enabled, the 9160 G2 mini-controller expects the data from the host to contain commands, etc., native to a Fujitsu host. Enabling this parameter causes the standard IBM formatting codes (for start of field, setting buffers, etc.) to be replaced by the codes used by Fujitsu host computers.

Use International EBCDIC

If this parameter is enabled, the 9160 G2 mini-controller uses the International EBCDIC character set, swapping the positions of the ! and] characters.

Allow null character in fixed fields:

If this parameter is enabled, the 9160 G2 mini-controller allows null characters in the whitespace in fields that have visual video attributes such as reverse video. The default for the 3274 host emulation is disabled.
23.4.1.2 TESS Options

Alarm

When this parameter is enabled, mobile computers beep when the word “ALARM” appears on the application screen in the location specified by the **Command Region** parameter (see page 268). The word “ALARM” should be a display-only field.

Note: The Command Region parameter must be enabled for this parameter to work.

Clear

If this parameter is enabled, the 9160 G2 mini-controller creates an empty entry field for an entry field that is filled with spaces.

Some host applications rely on the video attributes of displayed characters to highlight fields, particularly entry fields. For example, the application screen may define all entry
fields with reverse video and fill the field with spaces. This is effective on mobile computers that support reverse video, but on mobile computers that do not, it can make the field invisible since it is made up entirely of spaces.

By default, all empty entry fields displayed at the Psion Teklogix mobile computer are highlighted by the “entry character” chosen in the mobile computer’s configuration.

Note: This operation is only performed on screens received from the host. Data sent to the host remains unaffected.

Passthru

If this parameter is enabled, the 9160 G2 allows the host to send data directly to the RF mobile computer’s serial port. This is most commonly used for printing.

Preparing Host Screens for Pass-Through

On the screen to be sent through the mobile computer serial port, the word **PASSTHRU** (in capital letters) must appear on the first line, starting on the second column. The actual data to be sent to the mobile computer may start anywhere below the first line.

With 5250 or 3274 emulations, attributes occupy a position in the screen buffer. An attribute placed between column 2 and the end of the word “PASSTHRU” will ‘push’ all following characters one position to the right. Therefore, any required attributes should occupy column 1 of the first line (just preceding the word “PASSTHRU”).

Example:

<table>
<thead>
<tr>
<th>column: 1 2 3 4 5 6 7 8 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>line 1: @ P A S S T H R U @</td>
</tr>
<tr>
<td>line 2: @ P A R T : 1 2 3 4 5</td>
</tr>
</tbody>
</table>

where @ is an attribute.

When the 9160 G2 has finished sending the data to the mobile computer’s printer, it will send an `ENTER` key to the host. The host must wait for the `ENTER` key before sending any more screens (including other PASSTHRU screens) to this mobile computer.

Note: Refer to the User Manual of the relevant mobile computer for information about setting parameters on the mobile computer for pass-through.
Procedures
If this parameter is enabled, the host may send TESS procedures through the 9160 G2 to the mobile computers. A TESS procedure is a group of TESS commands that can be executed by the TESS execute procedure command.

Local
If this parameter is enabled, the 9160 G2 allows the host to provide pages to be loaded as local TESS procedures in the mobile computers.

The local procedures are selected from a menu at the mobile computer. The mobile computers can perform these procedures when they are offline. Later when the mobile computers are online, they send the results of these functions to the host.

Note: The Procedures parameter must also be enabled for Local to work.

Host Print
When this parameter is enabled, the host can send extra data to the mobile computer’s screens, and instruct the mobile computer to print it. This is in contrast to the Local Print feature, where the mobile computer makes the initial print request.

The text that is passed to the printer is formatted into the 24 x 80 application screen. If the host can initiate the print operation, the text is printed. The 9160 G2 identifies the additional text as a print page by the presence of the word “PRINT” (in capital letters) beginning in the 2nd column of line 13 on the 24 x 80 screen. The word “PRINT” should be defined as display-only text.

The print page is positioned below the mobile computer’s display page (see the following figure). The size of the print page is always the same as the mobile computer’s display page (assuming that in the mobile computer’s configuration, the page length is less than 12 lines).

When Host Print is enabled, the 9160 G2 passes the print page to the mobile computer after receiving the application screen from the host.
Notes:

1. Unlike the Passthru option, when using Host Print no escape commands can be sent to the printer.

2. Support for printing must be enabled at the mobile computer in its Printer command under the TESS Features menu; refer to the User Manual of the relevant mobile computer for more information.

Remote Print

When this parameter is enabled, the 9160 G2 sends the print page to a mobile computer whenever the mobile computer requests it (by sending the “F17” function key from the mobile computer, or the “PRINT” key on older mobile computers). The 9160 G2 sends the function response back to the host.

This is in contrast to Host Print, where the host makes the initial print request.

Note: Support for printing must be enabled at the mobile computer. Refer to the User Manual of the relevant mobile computer for more information.

Pages

This parameter determines the number of host screens (or pages) stored at the mobile computer, to a maximum of 79.
The 9160 G2 reduces data transmitted to the mobile computers by using the mobile computer’s capability to store a page of data for each screen it displays. The 9160 G2 maintains an image of each page stored at the mobile computer. After receiving an application screen, the 9160 G2 tries to match the screen with a stored page. If a similar page is already in the mobile computer’s memory, the 9160 G2 instructs the mobile computer to redisplay its copy of the page; only the necessary changes are sent from the controller. If no match is found, the complete page is sent to the mobile computer over the radio link.

Note: There is a corresponding parameter on the mobile computer itself, and the actual number of saved pages will be the smaller of the two values.

Transmit Line

When this feature is enabled, all modified data at the mobile computer is automatically transmitted when the operator enters data into a transmit-upon-entry field.

The value in this textbox specifies the line on the screen which is designated the transmit line. The last entry field above or on the transmit line on the screen will be identified as the transmit-upon-entry field. If any entry fields exist on lines below the transmit line, no entry field will be designated as the transmit-upon-entry field.

A value of 0 (zero) disables this feature. A value of 24 designates the last entry field on each application screen as transmit-upon-entry.

AIAG

This parameter provides auto-locate and fill for input coming from bar code readers. When bar code data is entered at a mobile computer, the mobile computer searches for “AIAG” fields on the current page that can accept the bar code data. The data preloaded into the “AIAG” field by the application program determines whether or not the bar code data is accepted.

At the 9160 G2 mini-controller, a decimal value of an ASCII character from 0 to 255 is set to match the “AIAG Field Identifier” set at the host. A value of 0 disables this feature.

The format of the preloaded data is as follows:

<mode> <AIAG prefix(data)>

The mode character used with the command allows for different operating modes to suit various application operations. The automatic locate and fill operation applies only to data received from a bar code reader. Descriptions of the modes and AIAG prefix are listed in Table 23.1 on page 264. These modes are set at the host.
Chapter 23: Mini-Controller Configuration

Table 23.1 Mode Functions And AIAG Prefix Description

<table>
<thead>
<tr>
<th>Mode</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Display prefix, send prefix to host.</td>
</tr>
<tr>
<td>1</td>
<td>Do not display prefix, send prefix to host.</td>
</tr>
<tr>
<td>2</td>
<td>Display prefix, do not send prefix to host.</td>
</tr>
<tr>
<td>3</td>
<td>Do not display prefix, do not send prefix to host.</td>
</tr>
<tr>
<td>+4</td>
<td>Add 4 to above values to cause transmit to host when all AIAG fields with 4 set are filled. Function 0 is “pressed” if there are any fields with this bit set, and all fields with this bit set have been filled by operator input.</td>
</tr>
<tr>
<td>+8</td>
<td>Add 8 to above values to allow overwrite of previously entered data.</td>
</tr>
<tr>
<td>+16</td>
<td>Add 16 to above values to indicate cursor position priority for search and fill.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIAG Prefix</th>
<th>The text to be matched in the AIAG field.</th>
</tr>
</thead>
</table>

Example:
The information in the sample screen below is defined at and sent from the host. It includes the “AIAG Identifier” – the tag identifying this as an AIAG field – followed by the mode, in this case Mode 0, and finally, the “AIAG Prefix” – I.

Figure 23.3 AIAG Field Sent From The Host

![AIAG Information From Host Diagram]

When the information arrives at the mobile computer screen, the appropriate AIAG field for the scanned information is located using the “AIAG Identifier”. Because Mode 0 was set at
Visible Match Character

By inserting a special ASCII character directly before an entry field, the application program distinguishes a “match field” from an entry field. For example, suppose an angle bracket “>” is defined for visible match fields. Inserting “>” immediately preceding the entry field identifies it as a match field, as illustrated below.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>@</th>
<th>I</th>
</tr>
</thead>
</table>

Part #> ___________

The range for this parameter – 0 to 255 – represents the decimal values of ASCII characters. A value of 0 disables this feature. The ASCII decimal value entered at the 9160 G2 must coincide with the value set by the application program.

To use the Visible Match feature, the host computer preloads data into a match entry field; the data is visible on the mobile computer screen. The preloaded data sent to a mobile computer can consist of exact characters, special match characters or a combination of the two. Refer to Table 23.2 for match characters recognized by Psion Teklogix mobile computers.

If an entry does not match the preloaded data, the entry is displayed, the mobile computer beeps, and the cursor moves to the first position in the match field. The operator can either make another entry in the match field, or move the cursor to a new field. When an entry (even one that doesn’t match the preloaded data) is made in a match field, the entry is sent to the host as part of the mobile computer’s modified data during the next transmission.
Example:
Suppose you want to preload an entry field with a part number. If the part number is known, you can preload the field with that part number. If more flexibility is needed, and the part number always begins with two alphabetic characters followed by a hyphen and four digits, the match string for the field would be: **&–#####**.

Hidden Match Character

Unlike data in a “visible match” field, the preloaded data in a “hidden match” field is *not* displayed at the mobile computer.

Note: Refer to “Visible Match Character” on page 265 for detailed information about field matching.

The range for this parameter – 0 to 255 – represents the decimal values of ASCII characters. A value of 0 disables this feature. The ASCII decimal value entered at the 9160 G2 must coincide with the value set by the application program.
Serial I/O

Serial I/O fields are special entry and fixed fields that accept input from and output to a serial port. The application program distinguishes this field as Serial I/O by preceding the field with a special character.

If this character precedes a fixed field, the data will be sent to the mobile computer’s serial port. If it precedes an entry field, the field accepts data from the mobile computer’s serial port.

The range for this parameter – 0 to 255 – represents the decimal values of ASCII characters. A value of 0 (zero) disables this feature.

Print Line

This parameter allows you to enter the starting line number of the print page in the application screen (see also Entry Line). A value up to 24 causes the display page to be printed; a value of 0 (zero) disables this feature.

Print Form Length

This parameter sets the printer’s form length in lines. The range is 0 to 24.

Barcode

Barcode-input-only fields are special entry fields that only accept input from a bar code reader. The application program distinguishes an entry field as barcode-input-only by preceding the field with a special character.

The range for this parameter – 0 to 255 – represents the decimal values of ASCII characters. A value of 0 (zero) disables this feature.

Entry Line

This parameter contains the number of the first line displayed if there is no entry field in the upper-left portion of the screen, and if an entry field is at or below this line.

The Entry Line parameter allows an automatic offset within the host screen, so that the area displayed by the mobile computer includes an entry field that would normally be out of bounds. Some Psion Teklogix mobile computers only display the upper-left corner of the application screen because of their smaller display size.
Field Overhead
This parameter contains the maximum number of characters allowed between two fixed fields which still allows the 9160 G2 to join them into one field.

Sometimes the 9160 G2 will join two adjacent fixed fields and then send them as one field. This reduces the overhead on the radio link.

For example, if two fields were 4 characters apart and this parameter was ‘5’, then these fields would be joined into one.

Command Region
This parameter defines a region of the host screen which the 9160 G2 will examine for the presence of reserved commands.

The four numbers in the Command Region textboxes represent the row and column addresses of the upper left corner and the lower right corner of the command region. The first textbox of each pair contains the row number; the second contains the column number. The range of row values is 0 to 24; column values are 0 to 80.

To define the last two lines of the host screen as the command region, for example, enter the values 23, 1 and 24, 80.

Currently, the only command supported is ALARM (refer to page 259 for details on this command). When the word “ALARM” is placed anywhere within the command region, the 9160 G2 will send a TESS beep command to the mobile computer.
23.4.1.3 Telnet Protocol Options

Terminal Type
This parameter allows you to choose the type of mobile computer to be emulated by the 9160 G2 for this host. At present the choices of mobile computer for 3274 Emulation are the IBM 3278-2 and IBM 3278-2-E.

Host Port
This parameter allows you to enter a host port value for the selected 3274 Emulation host connection. The default value is 23.

Maximum Sessions per Terminal
This parameter contains the maximum number of telnet sessions which are allowed to originate from each mobile computer. The range is 1 to 127, with a default value of 4.
Chapter 23: Mini-Controller Configuration

3274 Emulation

First Local Terminal Port
This parameter contains the local port number from which the first mobile computer will connect on outbound telnet sessions. The default value is **10000**.

Local IP Address to Bind
This parameter contains the IP address of the network adaptor in the 9160 G2 from which the first mobile computer will connect on outbound telnet sessions.

First Terminal Listen Port
This parameter specifies the first port number at which the 9160 G2 will listen for telnet connection requests to the mobile computers. To **enable** this parameter, the value must be a minimum of **1024**. To **disable** the listen port, the value must be **0**.

The default value is **0** (disabled).

Actively Negotiate with Host
If this parameter is enabled, the 9160 G2 starts negotiations with the host during setup of the telnet connection. Not recommended for most hosts.
Chapter 23: Mini-Controller Configuration

3274 Emulation

Configure LU Names

One LU Name is required for each configured mobile computer. This page allows you to assign LU Names (see also LU Name Prefix, below). The LU Name must be unique and associated with the mobile computer’s Terminal Number. An LU Name can contain a maximum of 10 alphanumeric characters; lower-case characters are converted to upper-case upon entry.

LU Name Prefix

If no LU Name is specified for a mobile computer, the 9160 G2 will append the Terminal Number (as five digits, with leading zeros if necessary) to the LU Prefix to create the full LU Name.

Send IAC Interrupt Process as a System Request

If this parameter is enabled, the 9160 G2 sends the IAC Interrupt Process request to the host as a 3274 System Request.
Send IAC Break as an Attention Key

If this parameter is enabled, the 9160 G2 sends the IAC Break request to the host as a 3274 Attention key.

Auto-telnet

This parameter enables you to disable or enable automatic connection of telnet sessions from mobile computers to this host.

The choices provided are: Disable and Auto-telnet. The default value is Disable.

When Auto-telnet is disabled, telnet sessions from the mobile computers to the host must be initiated manually from the mobile computers.

When Auto-telnet is enabled, the 9160 G2 initiates one telnet session from each mobile computer whose terminal number is mapped to this host. Additional telnet sessions may be initiated from each mobile computer to the host, but they must be initiated manually.

When Auto-telnet is enabled, the 9160 G2 will automatically telnet to the host, both on startup and when the session is closed.

Note: Auto-telnet sessions are only initiated for mobile computers which are “online” (turned on and operating properly on the Psion Teklogix RF network).

Auto-telnet Host

This parameter contains the host name or IP address for the host to which the 9160 G2 connects Auto-telnet sessions.

Note: A host name placed in this textbox must be “resolvable” by the 9160 G2: the 9160 G2 must be able to obtain an IP address for it. For example, the host name may correspond to an entry in the 9160 G2 host table, or the 9160 G2 may be able to query a domain-name server.

Any host name which can be used at the mobile computer’s TCP> prompt may be used here.

Auto-telnet Without User Action

If this is enabled, the controller will immediately open a connection to the host for each mobile computer that is initialized, without the user pressing the [ENTER] key.
23.4.1.4 Function Key Mappings

The Function Key parameter allows you to select a code that will be sent to the host when you press a function key on the mobile computer. Each function key may be chosen from the same range of possible codes; however, each function key has a different default code. The default values are shown on this page.
23.4.2 5250 Emulation

23.4.2.1 Emulation Options

With IBM 5250, or IBM 3274 emulation, the 9160 G2 mini-controller converts the application data stream from the host to TESS (Teklogix Screen Subsystem) commands. Some of the parameters in this page govern the conversion of the host screens to TESS.

Write Error Code

If *advisory text* is selected here, the 9160 G2 sends error codes to the mobile computer screen as advisory text, which is written at the bottom of the screen. If *screen text* is chosen, the 9160 G2 sends the error codes as regular screen text.

Use International EBCDIC

If this parameter is *enabled*, the 9160 G2 will swap the positions of the ! and] characters in the EBCDIC character table.

Allow null character in fixed fields:

If this parameter is *enabled*, the 9160 G2 mini-controller allows null characters in the whitespace in fields that have visual video attributes (such as reverse video). The default for the 5250 host emulation is *enabled*.
23.4.2.2 TESS Options

<table>
<thead>
<tr>
<th>TESS Options:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Underline Remapping:</td>
</tr>
<tr>
<td>Alarm:</td>
</tr>
<tr>
<td>Clear:</td>
</tr>
<tr>
<td>Possthru:</td>
</tr>
<tr>
<td>Procedures:</td>
</tr>
<tr>
<td>Local:</td>
</tr>
<tr>
<td>Host Print:</td>
</tr>
<tr>
<td>Remote Print:</td>
</tr>
<tr>
<td>Pages:</td>
</tr>
<tr>
<td>Transmit Line:</td>
</tr>
<tr>
<td>ATAG:</td>
</tr>
<tr>
<td>Visible Match Character:</td>
</tr>
<tr>
<td>Hidden Match character:</td>
</tr>
<tr>
<td>Serial I/O:</td>
</tr>
<tr>
<td>Print Line:</td>
</tr>
<tr>
<td>Print Form Length:</td>
</tr>
<tr>
<td>Barcode:</td>
</tr>
<tr>
<td>Entry Line:</td>
</tr>
<tr>
<td>Field Overhead:</td>
</tr>
<tr>
<td>Command Region:</td>
</tr>
</tbody>
</table>

Field Underline Remapping

You have the option to change the video attributes of displayed characters in order to highlight entry fields. Options are: None, Blink, Bold, and Reverse.

Alarm

If this parameter is enabled, mobile computers will beep when the word “ALARM” (in capital letters) appears on the application screen, in the location specified by the Command Region parameter (see page 284). The word “ALARM” should be a display-only field.

Note: The Command Region parameter must be enabled for this parameter to work.
Chapter 23: Mini-Controller Configuration
5250 Emulation

Clear

If this parameter is **enabled**, the 9160 G2 mini-controller creates an *empty* entry field for an entry field that is filled with spaces.

Some host applications rely on the video attributes of displayed characters to highlight fields, particularly entry fields. For example, the application screen may define all entry fields with reverse video and fill the field with spaces. This is effective on mobile computers that support reverse video, but on mobile computers that do not, it can make the field invisible since it is made up entirely of spaces.

By default, all empty entry fields displayed at the Psion Teklogix mobile computer are highlighted by the “entry character” chosen in the mobile computer’s configuration. The **Clear** feature creates an empty entry field in place of an entry field filled with spaces.

Note: This operation is only performed on screens received from the host. Data sent to the host remains unaffected.

Passthru

If this parameter is **enabled**, the 9160 G2 allows the host to send data directly to the RF mobile computer’s serial port. This is most commonly used for printing.

Preparing Host Screens for Pass-Through

On the screen to be sent through the mobile computer serial port, the word “PASSTHRU” (in capital letters) must appear on the first line, starting on the second column. The actual data to be sent to the mobile computer may start anywhere below the first line.

With 5250 or 3274 emulations, attributes occupy a position in the screen buffer. An attribute placed between column 2 and the end of the word “PASSTHRU” will push all following characters one position to the right. Therefore, any required attributes should occupy column 1 of the first line (just preceding the word “PASSTHRU”).

Example:

<table>
<thead>
<tr>
<th>column: 1 2 3 4 5 6 7 8 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>line 1: @ P A S T H R U @</td>
</tr>
<tr>
<td>line 2: @ P A R T : 1 2 3 4 5</td>
</tr>
</tbody>
</table>

where @ is an attribute.
Chapter 23: Mini-Controller Configuration
5250 Emulation

When the 9160 G2 is finished sending the data to the mobile computer’s printer, it will send an “ENTER” key to the host. The host must wait for the “ENTER” key before sending any more screens (including other “PASSTHRU” screens) to this mobile computer.

Note: Refer to the User Manual of the relevant mobile computer for information about setting parameters on the mobile computer for pass-through.

Procedures

If this parameter is enabled, the host may send TESS procedures through the 9160 G2 to the mobile computers. A TESS procedure is a group of TESS commands that can be executed by the TESS *execute procedure* command.

Local

If this parameter is enabled, the 9160 G2 allows the host to provide pages to be loaded as local TESS procedures in the mobile computers.

The local procedures are selected from a menu at the mobile computer. The mobile computers can perform these procedures when they are offline. Later when the mobile computers are online, they send the results of these functions to the host.

Note: The Procedures parameter must also be enabled for Local to work.

Host Print

When this parameter is enabled, the host can send extra data to the mobile computer’s screens, and instruct the mobile computer to print it. This is in contrast to the Local Print feature, where the mobile computer makes the initial print request.

The text that is passed to the printer is formatted into the 24 x 80 application screen. If the host can initiate the print operation, the text is printed. The 9160 G2 identifies the additional text as a print page by the presence of the word “PRINT” (in capital letters) beginning in the 2nd column of line 13 on the 24 x 80 screen. The word “PRINT” should be defined as *display-only text.*

The print page is positioned below the mobile computer’s display page (see Figure 23.5 on page 278). The size of the print page is always the same as the mobile computer’s display page (assuming that in the mobile computer’s configuration, the page length is less than 12 lines).

When Host Print is enabled, the 9160 G2 passes the print page to the mobile computer after receiving the application screen from the host.
Chapter 23: Mini-Controller Configuration
5250 Emulation

Figure 23.5 Application Screen With Print Page

<table>
<thead>
<tr>
<th>1</th>
<th>Display Page (8 x 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PRINT</td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Print Page (8 x 40)</td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Unlike the Passthru option, when using Host Print no escape commands can be sent to the printer.

2. Support for printing must be enabled at the mobile computer in its Printer command under the TESS Features menu; refer to the User Manual of the relevant mobile computer for more information.

Remote Print

When this parameter is enabled, the 9160 G2 sends the print page to a mobile computer whenever the mobile computer requests it (by sending the “F17” function key from the mobile computer, or the “PRINT” key on older mobile computers). The 9160 G2 sends the function response back to the host.

This is in contrast to Host Print, where the host makes the initial print request.

Note: Support for printing must be enabled at the mobile computer level. Refer to the User Manual of the relevant mobile computer for more information.

Pages

This parameter determines the number of host screens (or pages) stored at the mobile computer, to a maximum of 79.
The 9160 G2 reduces data transmitted to the mobile computers by using the mobile computer’s capability to store a page of data for each screen it displays. The 9160 G2 maintains an image of each page stored at the mobile computer. After receiving an application screen, the 9160 G2 tries to match the screen with a stored page.

If a similar page is already in the mobile computer’s memory, the 9160 G2 instructs the mobile computer to re-display its copy of the page; only the necessary changes are sent from the controller. If no match is found, the complete page is sent to the mobile computer over the radio link.

Note: There is a corresponding parameter on the mobile computer itself, and the actual number of saved pages will be the smaller of the two values.

Transmit Line

When this feature is enabled, all modified data at the mobile computer will be automatically transmitted when the operator enters data into a transmit-upon-entry field.

The value in this textbox specifies the line on the screen which is designated the transmit line. The last entry field above or on the transmit line on the screen will be identified as the transmit-upon-entry field. If any entry fields exist on lines below the transmit line, no entry field will be designated as the transmit-upon-entry field.

A value of 0 (zero) disables this feature. A value of 24 will cause the last entry field on each application screen to be defined as transmit-upon-entry.

AIAG

This parameter provides auto-locate and fill for input coming from bar code readers. When bar code data is entered at a mobile computer, the mobile computer searches for “AIAG” fields on the current page that can accept the bar code data. The data preloaded into the “AIAG” field by the application program determines whether or not the bar code data is accepted. At the 9160 G2 mini-controller, a decimal value of an ASCII character from 0 to 127 is set to match the “AIAG Field Identifier” set at the host. A value of 0 disables this feature.

The format of the preloaded data is as follows:

<mode> <AIAG prefix(data)>

The mode character used with the command allows for different operating modes to suit various application operations. The automatic locate and fill operation applies only to data received from a bar code reader. Descriptions of the modes and AIAG prefix are listed in the table below. These modes are set at the host.
Chapter 23: Mini-Controller Configuration
5250 Emulation

Table 23.3 Mode Functions And AIAG Prefix Description

<table>
<thead>
<tr>
<th>Mode</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Display prefix, send prefix to host.</td>
</tr>
<tr>
<td>1</td>
<td>Do not display prefix, send prefix to host.</td>
</tr>
<tr>
<td>2</td>
<td>Display prefix, do not send prefix to host.</td>
</tr>
<tr>
<td>3</td>
<td>Do not display prefix, do not send prefix to host.</td>
</tr>
<tr>
<td>+4</td>
<td>Add 4 to above values to cause transmit to host when all AIAG fields with +4 set are filled. Function 0 is “pressed” if there are any fields with this bit set, and all fields with this bit set have been filled by operator input.</td>
</tr>
<tr>
<td>+8</td>
<td>Add 8 to above values to allow overwrite of previously entered data.</td>
</tr>
<tr>
<td>+16</td>
<td>Add 16 to above values to indicate cursor position priority for search and fill.</td>
</tr>
<tr>
<td>AIAG Prefix (data)</td>
<td>The text to be matched in the AIAG field.</td>
</tr>
</tbody>
</table>

Example:
The information in the sample screen below is defined at and sent from the host. It includes the “AIAG Identifier” – the tag identifying this as an AIAG field – followed by the mode, in this case Mode 0, and finally, the “AIAG Prefix” – I.

Figure 23.6 AIAG Field Sent From The Host

When the information arrives at the mobile computer screen, the appropriate AIAG field for the scanned information is located using the “AIAG Identifier”. Because Mode 0 was set at
the host, the “AIAG Prefix” – I – is displayed on the mobile computer screen, and when this
screen is completed, the prefix will be sent back to the host.
Figure 23.7 AIAG Field Sent To The Mobile Computer

Visible Match Character

By inserting a special ASCII character directly before an entry field, the application
program distinguishes a “match field” from an entry field. For example, suppose an angle
bracket “>” is defined for visible match fields. Inserting “>” immediately preceding the
ten entry field identifies it as a match field, as illustrated below.

Part #> ___________

The range for this parameter – 0 to 255 – represents the decimal values of ASCII characters.
A value of 0 disables this feature. The ASCII decimal value entered at the 9160 G2 must co-
incide with the value set by the application program.

To use the Visible Match feature, the host computer preloads data into a match entry field;
the data is visible on the mobile computer screen. The preloaded data sent to a mobile com-
puter can consist of exact characters, special match characters or a combination of the two.
Refer to the table below for match characters recognized by Psion Teklogix mobile
computers.

If an entry does not match the preloaded data, the entry is displayed, the mobile computer
beeps, and the cursor moves to the first position in the match field. The operator can either
make another entry in the match field, or move the cursor to a new field. When an entry
(even one that doesn’t match the preloaded data) is made in a match field, the entry is sent to
the host as part of the mobile computer’s modified data during the next transmission.
Example:
Suppose you want to preload an entry field with a part number. If the part number is known, you can preload the field with that part number. If more flexibility is needed, and the part number always begins with two alphabetic characters followed by a hyphen and four digits, the match string for the field would be: `&–####`.

Hidden Match Character

Unlike data in a “visible match” field, the preloaded data in a “hidden match” field is not displayed at the mobile computer.

Note: Refer to “Visible Match Character” on page 281 for detailed information about field matching.

The range for this parameter – 0 to 255 – represents the decimal values of ASCII characters. A value of 0 disables this feature. The ASCII decimal value entered at the 9160 G2 must coincide with the value set by the application program.
Serial I/O

Serial I/O fields are special entry and fixed fields that accept input from and output to a serial port. The application program distinguishes this field as Serial I/O by preceding the field with a special character.

If this character precedes a fixed field, the data will be sent to the mobile computer’s serial port. If it precedes an entry field, the field accepts data from the mobile computer’s serial port.

The range for this parameter – 0 to 255 – represents the decimal values of ASCII characters. A value of 0 (zero) disables this feature.

Print Line

This parameter allows you to enter the starting line number of the print page in the application screen (see also Entry Line). A value up to 24 causes the display page to be printed; a value of 0 (zero) disables this feature.

Print Form Length

This parameter sets the printer’s form length in lines. The range is 0 to 24.

Barcode

Barcode-input-only fields are special entry fields that only accept input from a bar code reader. The application program distinguishes an entry field as barcode-input-only by preceding the field with a special character.

The range for this parameter – 0 to 255 – represents the decimal values of ASCII characters. A value of 0 (zero) disables this feature.

Entry Line

This parameter contains the number of the first line displayed if there is no entry field in the upper-left portion of the screen, and if an entry field is at or below this line.

The Entry Line parameter allows an automatic offset within the host screen, so that the area displayed by the mobile computer includes an entry field that would normally be out of bounds. Some Psion Teklogix mobile computers only display the upper-left corner of the application screen because of their smaller display size.
Field Overhead

This parameter contains the maximum number of characters allowed between two fixed fields which still allows the 9160 G2 to join them into one field.

Sometimes the 9160 G2 will join two adjacent fixed fields and then send them as one field. This reduces the overhead on the radio link.

For example, if two fields were 4 characters apart and this parameter was ‘5’, then these fields would be joined into one.

Command Region

This parameter defines a region of the host screen which the 9160 G2 will examine for the presence of reserved commands.

The four numbers in the Command Region textboxes represent the row and column addresses of the upper left corner and the lower right corner of the command region. The first textbox of each pair contains the row number; the second contains the column number. The range of row values is 0 to 24; column values are 0 to 80.

To define the last two lines of the host screen as the command region, for example, enter the values 23, 1 and 24, 80.

Currently, the only command supported is ALARM (refer to page 275 for details on this command). When the word “ALARM” is placed anywhere within the command region, the 9160 G2 will send a TESS beep command to the mobile computer.
23.4.2.3 Telnet Protocol Options

Terminal Type
This parameter allows you to choose the type of mobile computer to be emulated by the 9160 G2 for this host. At present the choices of mobile computer for 5250 Emulation are: the IBM 5251-11, IBM 5555-B01, and IBM 3179-2.

Host Port
This parameter allows you to enter a host port value for the selected 5250 Emulation host connection. The default value is 23.

Maximum Sessions per Terminal
This parameter contains the maximum number of telnet sessions which are allowed to originate from each mobile computer. The range is 1 to 127, with a default value of 4.

First Local Terminal Port
This parameter contains the local port number from which the first mobile computer will connect on outbound telnet sessions. The default value is 10000.
Local IP Address to Bind

This parameter contains the IP address of the network adaptor from which the first mobile computer will connect on outbound telnet sessions.

First Terminal Listen Port

This parameter specifies the first port number at which the 9160 G2 will listen for telnet connection requests to the mobile computers. To enable this parameter, the value must be a minimum of 1024. To disable the listen port, the value must be 0. The default value is 0 (disabled).

Actively Negotiate with Host

If this parameter is enabled, the 9160 G2 starts negotiations with the host during setup of the telnet connection. Not recommended for most hosts.

Auto-telnet

This parameter enables you to disable or enable automatic connection of telnet sessions from mobile computers to this host.

The choices provided are: Disable and Auto-telnet. The default value is Disable.

When Auto-telnet is disabled, telnet sessions from the mobile computers to the host must be initiated manually from the mobile computers.

When Auto-telnet is enabled, the 9160 G2 initiates one telnet session from each mobile computer whose terminal number is mapped to this host. Additional telnet sessions may be initiated from each mobile computer to the host, but they must be initiated manually.

When Auto-telnet is enabled, the 9160 G2 will automatically telnet to the host, both on startup and when the session is closed.

Note: Auto-telnet sessions are only initiated for mobile computers which are “online” (turned on and operating properly on the Psion Teklogix RF network).

Auto-telnet Host

This parameter contains the host name or IP address for the host to which the 9160 G2 connects Auto-telnet sessions.

Note: A host name placed in this textbox must be “resolvable” by the 9160 G2: the 9160 G2 must be able to obtain an IP address for it. For example, the host name may correspond to an entry in the 9160 G2 host table, or the 9160 G2 may be able to query a
domain-name server. Any host name which can be used at the mobile computer’s TCP> prompt may be used here.

Auto-telnet Without User Action

If this is enabled, the controller will immediately open a connection to the host for each mobile computer that is initialized, without the user pressing the [ENTER] key.

Enable Virtual Device Names

If this parameter is enabled, the 9160 G2 negotiates with the host to obtain a virtual device name for the telnet connection.

Configure Device Names

One LU Name is required for each configured mobile computer. This page allows you to assign LU Names (see also Device Name Prefix, below). The LU Name must be unique and associated with the mobile computer’s Terminal Number. An LU Name can contain a maximum of 10 alphanumeric characters; lower-case characters are converted to upper-case upon entry.
Device Name Prefix

If no LU Name is specified for a mobile computer, the 9160 G2 will append the Terminal Number (as five digits, with leading zeros if necessary) to the LU Prefix to create the full LU Name.

23.4.2.4 Function Key Mappings

<table>
<thead>
<tr>
<th>Function Key Mappings:</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1: F1</td>
</tr>
<tr>
<td>F2: F2</td>
</tr>
<tr>
<td>F3: F3</td>
</tr>
<tr>
<td>F4: F4</td>
</tr>
<tr>
<td>F5: F5</td>
</tr>
<tr>
<td>F6: F6</td>
</tr>
<tr>
<td>F7: F7</td>
</tr>
<tr>
<td>F8: F8</td>
</tr>
<tr>
<td>F10: F10</td>
</tr>
<tr>
<td>F11: F11</td>
</tr>
<tr>
<td>F12: F12</td>
</tr>
</tbody>
</table>

Function Key n

The *Function Key* parameter allows you to select a code that will be sent to the host when you press a function key on the mobile computer. Each function key may be chosen from the same range of possible codes; however, each function key has a different default code. The default values are shown on this page.
23.4.3 ANSI Emulation

23.4.3.1 Emulation Options

Maximum Screen Size
The Maximum Screen Size allows you to set the maximum required screen size in mobile computers, by rows and columns. This feature ensures the optimal use of memory when using the page saving option (see “Page Saving” on page 291).

The range is a minimum setting of 24 x 80 to a maximum setting of 60 x 132. The default setting is 24 x 80.

Host Timeout
The Host Timeout is the interval (in ticks, or 60ths of a second) between bursts of data received from the host. The range is 0 to 255, with a default value of 15.

If the 9160 G2 does not receive any characters from the host after this timeout has elapsed, it assumes that the host has finished sending data and is waiting for user input (in other words, it assumes that a screen of data has been completed).

Important: The Page Saving parameter (page 291) must be enabled in order to change the value in the Host Timeout parameter.
Escape Timeout

The Escape Timeout is the length of time (in ticks, or 60ths of a second) that the 9160 G2 will hold an “ESC” received from the host, and consider the next received byte to be part of an escape sequence. The range is 0 to 255, with a default value of 12.

When this timeout has elapsed, the host will have to send another “ESC” character to start an escape sequence.

Note: This is especially important when an ESC is at the end of a data packet.

Threshold

The Threshold is the minimum number of bytes of update data for the mobile computer screen which must be received from the host before the 9160 G2 will store the screen as a new “saved page”. The range is 0 to 999, with a default value of 200.

Important: The Page Saving parameter (page 291) must be enabled in order to change the value in the Threshold parameter.

Echo

If this parameter is enabled, the 9160 G2 uses “Smart” Echo. This mode reduces the amount of data sent to the mobile computer by decreasing the number of radio transmissions.

Ordinarily, when a character mode application is being used, each keystroke is sent to the host in one transmission, and the character is echoed by the host in another transmission. When “Smart” Echo is enabled, the 9160 G2 will not send the host echo to the mobile computers if it matches the data sent from the mobile computer. Thus, the number of radio transmissions is reduced.

This mode also reduces or eliminates the delay between typing a character on the keyboard and displaying the character echoed by the host. The maximum number of characters waiting for echo is 25. Any additional characters will be sent to the host but not displayed.

Notes:

1. This parameter also determines whether an ANSI parameter query is sent to the mobile computer.
2. “Smart” Echo also needs to be enabled at the mobile computer (refer to the User Manual of the relevant mobile computer).
Function Key Remapping

If this parameter is enabled, the 9160 G2 remaps the function keys for this host connection as defined in the Function Key Remapping page (page 299).

Arrow Key Remapping

If this parameter is enabled, the 9160 G2 remaps the arrow keys for this host connection as defined in the Function Key Remapping page (page 299).

Page Saving

If this parameter is enabled, the 9160 G2 uses page saving, reducing data transmitted to the mobile computers.

The 9160 G2 maintains an image of each page stored at the mobile computer. After receiving an application screen, the 9160 G2 tries to match the screen with a stored page. If the page is already in the mobile computer, the 9160 G2 instructs the mobile computer to redisplay its stored copy of the page; no data need be sent across the radio link for that page. If the 9160 G2 finds no match for the page, the complete page is sent to the mobile computer. The default value is enabled.

Notes: When page saving is enabled, the number of saved pages is that which is set on the mobile computer. Refer to the User Manual of the relevant mobile computer for details.

If using double byte character sets, such as Chinese or Korean, please refer to the Page Saving Consider Double Byte Character parameter, below.

Page Saving Consider Double Byte Character

When using double byte character sets such as Chinese or Korean, Page Saving (see above) will allow a double byte character to be partially overwritten, which can lead to a single byte of unprintable screen data or a new unintended character made up of two halves of different characters. Also, the mobile computer may shift data on the screen to truncate the bad data.

When Page Saving Consider Double Byte Character is enabled, Page Saving will replace any orphaned double byte character half with a space to prevent modified characters and truncated data from being displayed on the mobile computer. The default value is disabled.

Note: This option should only be used when using double byte character sets.
RLE
If this parameter is enabled, the 9160 G2 uses run-length encoding (RLE) on the data it sends across the radio link. RLE compresses repeated characters going from the host to the mobile computer. If repeated characters are found in the data stream, the first one is sent, followed by a short escape sequence (3 or 4 characters) which tells the mobile computer how many times to repeat this character. In this way RLE compresses the data and decreases the total amount of radio-link traffic.

Convert 7 to 8 Bits
If this parameter is enabled, the 9160 G2 converts 7-bit control sequences to their 8-bit equivalents in ANSI data streams going to the mobile computers. This replaces two-character escape sequences with a single equivalent character, compressing the data.

Lower Character Set (GL)
This should be set to the same character set as selected in the mobile computers. This parameter is only used when page saving is enabled.

Upper Character Set (GR)
This should be set to the same character set as selected in the mobile computers. This parameter is only used when page saving is enabled.

Terminal Initialization Data / Host Initialization Data
These fields are used to enter data which will be sent from the controller to the mobile computer, or from the controller to the host, every time a mobile computer is reset. For example, these can be used to request a host refresh, or to reset the character sets that were set on the mobile computer by the host at login time.

Non-printable data can be entered either as hexadecimal in the form \xnn, or in octal in the form \nnn. For example, the escape character could be entered as \x1b or \033.

These parameters can be up to 256 characters long. If the fields are blank, then no data is sent.
23.4.3.2 Telnet Protocol Options

<table>
<thead>
<tr>
<th>Telnet Protocol Options:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Type:</td>
</tr>
<tr>
<td>Host Port:</td>
</tr>
<tr>
<td>Maximum Sessions per Terminal:</td>
</tr>
<tr>
<td>Close Host sessions on Terminal reset:</td>
</tr>
<tr>
<td>First Local Terminal Port:</td>
</tr>
<tr>
<td>Local IP Address to Bind:</td>
</tr>
<tr>
<td>First Terminal Listen Port:</td>
</tr>
<tr>
<td>TCP Session Request Key:</td>
</tr>
<tr>
<td>Session Cycle Key:</td>
</tr>
<tr>
<td>Last Active Session Key:</td>
</tr>
</tbody>
</table>

Terminal Type
This parameter specifies the type of mobile computer to be emulated by the 9160 G2. The characters entered in the textbox can be any ASCII string acceptable to the host, with a maximum of 32 characters. The default value is VT100.

Host Port
This parameter specifies the value for the host port for the selected ANSI host connection. The default value is 23.

Maximum Sessions per Terminal
This parameter contains the maximum number of telnet sessions which are allowed to originate from each mobile computer. The range is 1 to 127, with a default value of 4.

Close Host Sessions on Terminal Reset
When this parameter is enabled, and a terminal reset message is received, the Host session for that terminal number will be closed. The default value is disabled.

First Local Terminal Port
This parameter specifies the port number from which the 9160 G2 attempts a telnet connection for the first mobile computer. The default value is 10000. Additional telnet sessions are assigned higher port numbers.
Chapter 23: Mini-Controller Configuration

ANSI Emulation

Local IP Address to Bind
This parameter specifies the IP address of the 9160 G2 interface that connects to this host. It is used along with the local port numbers to create a unique socket for each terminal session.

First Terminal Listen Port
This parameter specifies the first port number at which the 9160 G2 will listen for telnet connection requests to the mobile computers. To enable this parameter, the value must be a minimum of 1024. To disable the listen port, the value must be 0.
The default value is 0 (disabled).

TCP Session Request Key
This parameter contains the decimal ASCII character code of the character which will prompt the mobile computer to request a new ANSI terminal session. The range is 0 to 255, with a default value of 1.

Session Cycle Key
This parameter contains the decimal ASCII character code of the character which will prompt the mobile computer to display the next ANSI terminal session. The range is 0 to 255, with a default value of 2.

Last Active Session Key
This parameter contains the decimal ASCII character code of the character which will prompt the mobile computer to display the last ANSI terminal session. The range is 0 to 255, with a default value of 5.
23.4.3.3 Auto-Telnet/Auto-login

Auto-telnet/login Enable

This parameter enables you to disable or enable automatic connection of telnet sessions from mobile computers to this host. The choices provided are: DISABLE; AUTO-TELNET; AUTO-TELNETLOGIN. The default value is DISABLE.

When Auto-telnet is disabled, telnet sessions from the mobile computers to the host must be initiated manually from the mobile computers.

When Auto-telnet is enabled, the 9160 G2 initiates one telnet session from each mobile computer whose terminal number is mapped to this host. Additional telnet sessions may be initiated from each mobile computer to the host, but they must be initiated manually.

Note: Auto-telnet sessions are only initiated for mobile computers which are “online” (turned on and operating properly on the Psion Teklogix RF network).

When Auto-telnet and Auto-login are enabled, the 9160 G2 initiates one telnet session from each mobile computer whose terminal number is mapped to this host. It then logs each session in to the host using the User ID and Password provided in this page.

Note: The User ID and Password is identical for all Auto-telnet sessions automatically logged in to this host.
Auto-telnet Host

This parameter contains the host name or IP address for the host to which the 9160 G2 connects Auto-telnet sessions.

Note: A host name placed in this textbox must be “resolvable” by the 9160 G2: the 9160 G2 must be able to obtain an IP address for it. For example, the host name may correspond to an entry in the 9160 G2 host table, or the 9160 G2 may be able to query a domain-name server.

Any host name which can be used at the mobile computer’s TCP> prompt may be used here.

Auto-telnet Terminal Prompt

This parameter contains the text presented to the user to request a login. The characters can be any ASCII string, or a numeric escape sequence presented in octal or hexadecimal digits.

An octal escape sequence takes one of the forms: \0d, \0dd, or \0ddd, where each ‘d’ can be any digit from 0-7. If ‘ddd’ is greater than decimal 256, the code value of the represented character will be the remainder of the decimal ddd/256.

A hexadecimal escape sequence takes one of the forms: \xh or xhh, where each ‘h’ can be any digit from 0-9, or any alpha value from a-f or A-F.

Note: \0 is considered a character, with a code value of 0.

The allowable value is a maximum of 60 characters in the line. The default is no text, just press <ENTER> to login.

Auto-login User ID

This parameter contains the user ID presented by the 9160 G2 to the host for the Auto-login sessions. The characters can be any ASCII string acceptable to the host, with a maximum of 32 characters.

Auto-login Password

This parameter contains the password presented by the 9160 G2 to the host for the Auto-login sessions. The characters can be any ASCII string acceptable to the host, with a maximum of 32 characters.

Auto-login User ID Prompt

The 9160 G2 compares the text in this textbox to the text presented to it by the host. When they match, the 9160 G2 assumes that the host has just sent its request for a user name, and
it sends the user ID specified in the Auto-Login User ID parameter to the host. The characters can be any ASCII string, with a maximum of 32 characters. The default text is **gin**:

Note: The match string should be as short as possible, yet long enough to uniquely identify the user-ID prompt. Do not include multi-part words separated by space characters, since some hosts send out characters other than space characters to present a space on the screen.

Auto-login Password Prompt

The 9160 G2 compares the text in this textbox to the text presented to it by the host. When they match, the 9160 G2 assumes that the host has just sent its request for a password, and it sends the password specified in the Auto-Login Password parameter to the host. The characters can be any ASCII string, with a maximum of 32 characters. The default text is **word**:

Note: The match string should be as short as possible, yet long enough to uniquely identify the password prompt. Do not include multi-part words separated by space characters, since some hosts send out characters other than space characters to present a space on the screen.

Auto-login Failed Login

The 9160 G2 compares the text in this textbox to the text presented to it by the host. When they match, the 9160 G2 assumes that the host has just sent a string informing the mobile computer of a failed login attempt. The 9160 G2 then presents the Auto-telnet Terminal Prompt on the mobile computer’s screen to request the user to login manually. The characters can be any ASCII string, with a maximum of 32 characters. The default text is **incorrect**.

Note: The match string should be as short as possible, yet long enough to uniquely identify the failed-login prompt. Do not include multi-part words separated by space characters, since some hosts send out characters other than space characters to present a space on the screen.

Auto-telnet Without User Action

If this is enabled, the controller will immediately open a connection to the host for each mobile computer that is initialized, without the user pressing the [ENTER] key. It is recommended that if this is selected, the Auto Telnet Terminal Prompt is changed so that the user is advised to stand by while the connection made.
Auto-telnet Without User Action Timing Delay

When this is enabled, the Auto-telnet Without User Action option can be delayed by a specified time in milliseconds between connect attempts.

Maximum Of Auto-telnet Retries

The number of connection attempts to be made automatically before giving up.

Allow TCP Sessions

When this parameter is enabled, the 9160 G2 allows a mobile computer user to switch prompts or sessions while at the prompt (either Auto-login or TCP). If Allow TCP Sessions is disabled, all new sessions will open as Auto-login sessions.

Requesting sessions (normally <CTRL> a on the mobile computer) can be used at the prompt level to change the type of prompt (if the other type of prompt is available).

Switching sessions at the prompt level is also available (on the mobile computer as <CTRL> b [next session], or <CTRL> e [last session]). When switching sessions at the prompt, the mobile computer state (not logged in) will be correctly adjusted to match that of the switching in session.

The default value is enabled.
23.4.3.4 Function Key Mappings

<table>
<thead>
<tr>
<th>Function Key</th>
<th>Key Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1:</td>
<td>1b,4f,50,00,00,00,00,00,00</td>
</tr>
<tr>
<td>F2:</td>
<td>1b,4f,51,00,00,00,00,00,00</td>
</tr>
<tr>
<td>F3:</td>
<td>1b,4f,52,00,00,00,00,00,00</td>
</tr>
<tr>
<td>F4:</td>
<td>1b,4f,53,00,00,00,00,00,00</td>
</tr>
<tr>
<td>F5:</td>
<td>1b,5b,31,36,7e,00,00,00,00</td>
</tr>
<tr>
<td>F6:</td>
<td>1b,5b,31,37,7e,00,00,00,00</td>
</tr>
<tr>
<td>F7:</td>
<td>1b,5b,31,38,7e,00,00,00,00</td>
</tr>
<tr>
<td>F8:</td>
<td>1b,5b,31,39,7e,00,00,00,00</td>
</tr>
<tr>
<td>F9:</td>
<td>1b,5b,32,30,7e,00,00,00,00</td>
</tr>
<tr>
<td>F10:</td>
<td>1b,5b,32,31,7e,00,00,00,00</td>
</tr>
<tr>
<td>Up:</td>
<td>1b,5b,41,00,00,00,00,00,00</td>
</tr>
<tr>
<td>Left:</td>
<td>1b,5b,44,00,00,00,00,00,00</td>
</tr>
</tbody>
</table>

Function Key n

The *Function Key* parameter allows you to select a code that will be sent to the host when you press a function key on the mobile computer. Each function key may be chosen from the same range of possible codes; however, each function key has a different default code. The default values are shown on the screen above.
24 802.IQ SETTINGS

24.1 802.IQ Features ... 303
 24.1.1 802.IQ v1/v2 Common Features 303
 24.1.2 802.IQ v1 Features ... 306
 24.1.3 802.IQ v2 Features Menu 307
24.2 Updating 802.IQ Settings 307
24.1 802.IQ Features

802.IQ is a Psion Teklogix proprietary enhanced 802.11 protocol that enables mobile computers to operate in a wireless LAN in a network that supports both TCP/IP and 802.1Q protocols simultaneously. 802.IQ protocol is available in two versions: 802.IQ v1 and 802.IQ v2. The 9160 G2 Wireless Gateway can support both versions of the protocol at the same time (mobile computers must use only one).

802.IQ v1 protocol is a wireless LAN routing scheme that provides greater performance in an 802.11 wireless network than is possible with TCP/IP routing. A mobile computer can communicate with the 9160 G2 access point using either TCP/IP or 802.IQ v1 protocol, which makes possible a system with dual operability. For further information and configuration menus for 802.IQ v1, see page 306.

802.IQ v2 protocol is an enhanced version of the 802.IQ v1 protocol that transports packets over the UDP layer. It provides all the 802.IQ v1 functionality, with the added features of software upgrade capability over RF, the ability to add third-party access points between controllers and mobile computers, and integration into the mapRF system, if desired. For information on configuring an 802.IQ v2 mini-controller, see page 307.

24.1.1 802.IQ v1/v2 Common Features

⚠️ Important: 802.IQ should only be enabled on wired 9160 G2s.

Do not configure 802.IQ on wired 9160 G2s bridging networks, since 802.IQ beacons would be sent through the WDS link from one network to the other (see Chapter 20: “Wireless Distribution System”).

Auto-Startup

This parameter enables 802.IQ immediately when the 9160 G2 is rebooted. When the 9160 G2 is operating as a base station under a network controller or a 9160 G2 mini-controller, this parameter must be disabled.

The default value is disabled.

⚠️ Important: If Auto Startup is set incorrectly, mobile computers may not operate correctly.

Beacon Period

An 802.IQ beacon is a broadcast sent out to all 802.IQ-enabled mobile computers. The beacon allows mobile computers to determine when they have roamed between base stations. It enables a mobile computer to determine whether or not the base station or controller...
was rebooted and, if so, how to recover. If the controller was rebooted, the mobile computer closes all sessions and fully re-initializes. If the base station was rebooted, or if the mobile computer moved to a different 9160 G2, a warm initialize is done (no data will be lost).

The *Beacon Period* parameter acceptable value ranges from 1 to 20 seconds. The default value is 2.

Terminal Offline Timeout

This parameter sets the time (in minutes) before the 802.IQ task on the 9160 G2 will send an offline message to the cellular master declaring the mobile computer offline.

The acceptable value ranges from 1 to 240. The default value is 5.
Figure 24.1 Overview Of 802.IQ Configuration Settings

<table>
<thead>
<tr>
<th>Modify 802.IQ settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.IQ v1/v2 Common Features:</td>
</tr>
<tr>
<td>Auto-Startup:</td>
</tr>
<tr>
<td>Beacon Period: 2 (Range 1..20)</td>
</tr>
<tr>
<td>Terminal Offline Timeout: 5 (Range 1..240)</td>
</tr>
<tr>
<td>802.IQ v1 Features:</td>
</tr>
<tr>
<td>Enabled:</td>
</tr>
<tr>
<td>Initial RTT: 1000 (Range 10..10000)</td>
</tr>
<tr>
<td>Protocol Type ID: 2457 (Range 1501..65535)</td>
</tr>
<tr>
<td>Forward 802.IQ packets only:</td>
</tr>
<tr>
<td>802.IQ v1 Beacon Interfaces:</td>
</tr>
<tr>
<td>Wired: ☐</td>
</tr>
<tr>
<td>WLAN0: ☐</td>
</tr>
<tr>
<td>WLAN1: ☐</td>
</tr>
<tr>
<td>WDS0: ☐</td>
</tr>
<tr>
<td>WDS1: ☐</td>
</tr>
<tr>
<td>WDS2: ☐</td>
</tr>
<tr>
<td>WDS3: ☐</td>
</tr>
<tr>
<td>802.IQ v2 Features:</td>
</tr>
<tr>
<td>Enabled:</td>
</tr>
<tr>
<td>Beacon UDP port: 0080 (Range 5001..65535)</td>
</tr>
<tr>
<td>Update</td>
</tr>
</tbody>
</table>
24.1.2 802.IQ v1 Features

The 802.IQ v1 Features menus are entered from the 802.IQ tab of the Connectivity options (see Figure 24.1 on page 305).

Enabled
This parameter enables or disables the 802.IQ v1 feature. The default value is disabled.

Initial RTT
The parameter Initial RTT (Round-Trip Time) is used to help determine the elapsed time, in milliseconds, between an access point transmission and a terminal acknowledgement. The access point continuously adjusts the acceptable round trip time, calculating the average elapsed time over a number of transmissions for each mobile computer. If an acknowledgement takes longer to receive than the average round trip time calculated, the access point will resend the transmission.

Because access point(s) cannot calculate an average round trip time without a number of transmissions, a starting point or “Initial Round Trip Time” is required. The access point uses the time assigned to the “Initial RTT” parameter as a starting value for round trip calculations. Once the access point begins transmitting and receiving data to and from the mobile computer, this value will be adjusted to reflect the actual average round trip time between transmissions and acknowledgements.

The acceptable value ranges from 10 to 10000. The default value is 1000.

Protocol Type ID
This parameter identifies the 802.IQ protocol type, in order to avoid conflicts with other generated Ethernet-type packets that use the same protocol type.

The acceptable value ranges from 1536 to 65535. The default value is 2457.

Important: The Protocol Type ID default value is rarely changed. If the protocol type is changed, all mobile computer devices must be changed to match.

Forward 802.IQ Packets Only
When bridging packets between the wireless and wired systems, this parameter enables the 9160 G2 to automatically filter out and discard all non-802.IQ v1 packets. The default setting is disabled.
24.1.3 802.IQ v2 Features Menu

The 802.IQ v2 Features menus are entered from the 802.IQ tab of the Connectivity options (see Figure 24.1 on page 305).

Enabled
This parameter enables or disables the 802.IQv2 protocol.
The default value is disabled.

Beacon UDP Port
This parameter identifies the UDP port for beacon broadcasts. If more than one 802.IQv2 controller is on the network, the parameter must be changed to separate the systems. The parameter must also match the corresponding parameter on the mobile computer. The range of values is 5001 to 65535. The default value is 8888.

24.2 Updating 802.IQ Settings
To update the 802.IQ settings:
1. Navigate to the 802.IQ Settings page.
2. Configure the settings as required.
3. Click the Update button to apply the changes.
NETWORK TIME PROTOCOL SERVER

25.1 Navigating To Time Settings 311
25.2 Enabling Or Disabling A Network Time Protocol (NTP) Server .. 312
25.3 Updating Settings .. 312
Chapter 25: Network Time Protocol Server
Navigating To Time Settings

The Network Time Protocol (NTP) is an Internet standard protocol that synchronizes computer clock times on your network. NTP servers transmit Coordinated Universal Time (UTC, also known as Greenwich Mean Time) to their client systems. NTP sends periodic time requests to servers, using the returned time stamp to adjust its clock, including adjustments for time zone. The timestamp will be used to indicate the date and time of each event in log messages. See http://www.ntp.org for more general information on NTP. The following sections describe how to configure the 9160 G2 Wireless Gateway to use a specified NTP server.

25.1 Navigating To Time Settings
To enable an NTP server, navigate to the Services > Time tab, and update the fields as described below.

Figure 25.1 Time Settings
25.2 Enabling Or Disabling A Network Time Protocol (NTP) Server

To configure your access point to use a network time protocol (NTP) server, first enable the use of NTP, and then select the NTP server you want to use. (To shut down NTP service on the network, disable NTP on the access point.

Table 25.1 NTP Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Time</td>
<td>The current local time is shown at every update.</td>
</tr>
<tr>
<td>Network Time Protocol (NTP)</td>
<td>NTP provides a way for the access point to obtain and maintain its time from a server on the network. Using an NTP server gives your AP the ability to provide the correct time of day in log messages and session information. For more information on NTP, see http://www.ntp.org. Choose to either enable or disable the use of a network time protocol (NTP) server: • To enable the NTP server, click Enabled. • To disable the NTP server, click Disabled.</td>
</tr>
<tr>
<td>NTP Server</td>
<td>If NTP is enabled, select the NTP server you want to use. You can specify the NTP server by host name or IP address, although using the IP address is not recommended as these can change more readily.</td>
</tr>
<tr>
<td>Time Zone</td>
<td>A list of time zones (for instance, “EST (-05:00)”) is presented on the drop-down list, along with the choice of setting your own customized value. If Custom is selected, two textboxes appear next to the select box, where you may enter your choice of abbreviation and offset from UTC. Custom offset from UTC is given as hours and minutes east of UTC. For instance, -0800 is eight hours west of UTC (i.e. Pacific Standard Time), while +0930 is nine hours, thirty minutes east (i.e. Australian Central Standard Time). Daylight Saving Time adjustments are not available.</td>
</tr>
</tbody>
</table>

25.3 Updating Settings

To update time settings:

1. Navigate to the Time tab page.
2. Configure the time settings as required.
3. Click the Update button to apply the changes.
BACK UP & RESTORE CONFIGURATION

26.1 Navigating To The AP’s Configuration Settings 315
26.2 Resetting Factory Default Configuration 316
26.3 Saving The Current Configuration To A Backup File 316
26.4 Restoring The Configuration From A Previously Saved File 316
26.5 Rebooting The Access Point 317
26.6 Upgrading The Firmware .. 317
 26.6.1 Update ... 318
 26.6.2 Verifying The Firmware Upgrade 319
You can save a copy of the current settings on the 9160 G2 Wireless Gateway to a backup configuration file. The backup file can be used at a later date to restore the access point to the previously saved configuration.

26.1 Navigating To The AP’s Configuration Settings

To manage the configuration of an access point, navigate to the **Maintenance > Configuration** tab and use the interface as described below.

Figure 26.1 Overview Of AP Configuration
Chapter 26: Back Up & Restore Configuration

26.2 Resetting Factory Default Configuration

If you are experiencing problems with the 9160 G2 Wireless Gateway and have tried all other troubleshooting measures, use the Reset Configuration function. This will restore factory defaults and clear all settings, including settings such as a new password or wireless settings.

1. Click the Maintenance > Configuration tab.
2. Click the Reset button.

Factory defaults are restored.

Note: Keep in mind that if you do reset the configuration from this page, you are doing so for this access point only; not for other access points in the cluster.

For information on the factory default settings, see “Default Settings For The 9160 G2 Wireless Gateway” on page 27.

26.3 Saving The Current Configuration To A Backup File

To save a copy of the current settings on an access point to a backup configuration file (.cbk format):

1. Click the download configuration link.
 A File Download or Open dialog is displayed.
2. Choose the Save option on this first dialog.
 This brings up a file browser.
3. Use the file browser to navigate to the directory where you want to save the file, and click OK to save the file.
 You can keep the default file name (config.cbk) or rename the backup file, but be sure to save the file with a .cbk extension.

26.4 Restoring The Configuration From A Previously Saved File

To restore the configuration on an access point to previously saved settings:

1. Select the backup configuration file you want to use, either by typing the full path and file name in the Restore textbox or click Browse and select the file.
 (Only those files that were created with the Backup function and saved as .cbk backup configuration files are valid to use with Restore; for example, config.cbk.)

 Important: It is only possible to restore the configuration file to a 9160 of the same model as the one from which the configuration file was obtained.
For example, a 9160 G2 model “9160 Wireless Gateway” will not restore a configuration file saved from a 9160 G2 model “9160 Wireless Gateway (Dual Radio)”.

2. Click the Restore button.

The access point will reboot.

Note: When you click Restore, the access point will reboot. A “reboot” confirmation dialog and follow-on “rebooting” status message will be displayed. Please wait for the reboot process to complete (a minute or two). After a moment, try accessing the Administration Web pages as described in the next step; they will not be accessible until the AP has rebooted.

When the access point has rebooted, access the Administration Web pages either by clicking again on one of the tabs (if the UI is still displayed) or by typing the IP address of the access point into your browser. Now you should see the configuration settings restored to the original settings you retrieved from the Backup file.

26.5 Rebooting The Access Point

For maintenance purposes or as a troubleshooting measure, you can reboot the 9160 G2 Wireless Gateway as follows.

1. Click the Maintenance > Configuration tab.
2. Click the Restore button.

The access point will reboot.

26.6 Upgrading The Firmware

As new versions of the 9160 G2 Wireless Gateway firmware become available, you can upgrade the firmware on your devices to take advantage of new features and enhancements.

Important: Do not upgrade the firmware from a wireless client that is associated with the access point you are upgrading. Doing so will cause the upgrade to fail. Furthermore, all wireless clients will be disassociated and no new associations will be allowed.

If you encounter this scenario, the solution is to use a wired client to gain access to the access point:

• Create a wired Ethernet connection from a PC to the access point.
• Bring up the Administration UI.

Repeat the upgrade process with the wired client.
Chapter 26: Back Up & Restore Configuration

Update

Note: You must do this for each access point; you cannot upgrade firmware automatically across the cluster.
Keep in mind that a successful firmware upgrade restores the access point configuration to the factory defaults. (See “Default Settings For The 9160 G2 Wireless Gateway” on page 27.)

To upgrade the firmware on a particular access point:

1. Navigate to *Maintenance > Upgrade* on the Administration Web pages for that access point.

 ![Upgrade firmware](image)

 Information about the current firmware version is displayed and an option to upgrade a new firmware image is provided.

2. If you know the path to the New Firmware Image file, enter it in the *New Firmware Image* textbox. Otherwise, click the *Browse* button and locate the firmware image file.

 Note: The firmware upgrade file supplied must be in the format:

 `<FileName>.upgrade.tar`

 Do not attempt to use `<FileName>.bin files or files of other formats for the upgrade—these will not work.*

26.6.1 **Update**

1. Click *Update* to apply the new firmware image.

 Upon clicking Update for the firmware upgrade, a popup confirmation window is displayed that describes the upgrade process.

2. Click *OK* to confirm the upgrade, and start the process.
Important: The firmware upgrade process begins once you click Update and then OK in the popup confirmation window.

The upgrade process may take several minutes during which time the access point will be unavailable. Do not power down the access point while the upgrade is in process. When the upgrade is complete, the access point will restart and resume normal operation using the factory default configuration settings.

26.6.2 Verifying The Firmware Upgrade

To verify that the firmware upgrade completed successfully, check the firmware version shown on the Upgrade tab (and also on the Basic Settings tab). If the upgrade was successful, the updated version name or number will be indicated.
SPECIFICATIONS

27.1 Physical Description ... 323
27.2 Environmental Requirements 323
27.3 AC Power Requirements 323
27.4 Power Over Ethernet Requirements 323
27.5 Processor And Memory .. 324
27.6 Network Interfaces .. 324
27.7 Radios ... 324
Note: Performance specifications are nominal and subject to change without notice.

27.1 Physical Description

- **Enclosure:** Jet black in colour, FR2000 bay blend material
- **Dimensions:** ≤ 30 x 20 x 12.5 cm (11.8 x 7.9 x 4.9 in.)
- **Weight:** ≤ 2.25 kg (5.0 lbs.) (excludes radios, antennas, and options)

27.2 Environmental Requirements

- **Operating Temperature:** 0°C to 45°C (32°F to 113°F)
- **Operating Rel. Humidity:** 10% to 90%
- **Storage Temperature:** 0°C to 70°C (32°F to 158°F)
- **Dust and Rain:** IP42 or greater
- **Vibration:** EH0002 (Shipping vibration only)
- **Reliability:** MTBF 25,000 Hours (MIL-HDBK-217F)

27.3 AC Power Requirements

AC universal input via a standard IEC320 connector. Disables Power over Ethernet (802.3af discovery) when connected.

- **Input voltage:** 100 - 240 VAC nominal
- **Current:** 5.0 A maximum

Warning: A ground wire, not exceeding 3 m in length, must be connected between the ground screw (located on the quick-release mount) and a suitable earth ground bonding point on any 9160 G2 connected to an antenna that is installed outdoors.

27.4 Power Over Ethernet Requirements

Compliant with IEEE 802.3af (disabled when AC power is connected).

- **Input voltage:** 37 - 57 VDC
- **On-board**
27.5 **Processor And Memory**

Intel IXP420 processor running at 266 MHz
8 MB Flash ROM
32 MB SDRAM

27.6 **Network Interfaces**

On-Board Ethernet: 10BaseT/100BaseT (10/100 Mb/s) card with auto-negotiation, half and full duplex.
Data rate is auto-sensed.

27.7 **Radios**

Mini-PCI card 802.11A/G radio without integrated antenna
Mini-PCI card 802.11G radio without integrated antenna

<table>
<thead>
<tr>
<th>Transmitter Power</th>
<th>100 mW for FCC countries; 50 mW for ETSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>2.4 - 2.5 GHz (802.11b/g); 5.15 - 5.825 GHz (802.11a)</td>
</tr>
<tr>
<td>Data Rate</td>
<td>802.11b: 1, 2, 5.5, 11 Mb/s</td>
</tr>
<tr>
<td></td>
<td>802.11a/g: 6, 9, 12, 18, 24, 36, 48, 54 Mb/s</td>
</tr>
<tr>
<td>No. of Channels</td>
<td>FCC: 11 (802.11b/g) and 12 (802.11a)</td>
</tr>
<tr>
<td></td>
<td>ETSI: 13 (802.11b/g) and 19 (802.11a)</td>
</tr>
<tr>
<td></td>
<td>China: 13 (802.11b/g) and 4 (802.11a)</td>
</tr>
</tbody>
</table>

Note: All 802.11a channels are non-overlapping. There are non-overlapping channels in the 2.4 GHz band.

RA1001A - Narrow Band Radio
Psion Teklogix Proprietary Narrowband Modulation (2/4 level FSK)
<table>
<thead>
<tr>
<th>Type III PC Card Form Factor</th>
<th>1W or 0.5W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Power</td>
<td></td>
</tr>
<tr>
<td>Frequency Range</td>
<td>403-422 MHz, 419-435 MHz, 435-451 MHz,</td>
</tr>
<tr>
<td></td>
<td>450-470 MHz, 464-480 MHz,</td>
</tr>
<tr>
<td></td>
<td>480-496 MHz, 496-512 MHz</td>
</tr>
<tr>
<td>Rx Sensitivity</td>
<td>< -110dBm @ 19.2kbps (4 level FSK)</td>
</tr>
<tr>
<td>Data Rates</td>
<td>4800 bps, 9600 bps, 19.2 kbps</td>
</tr>
</tbody>
</table>
APPENDIX A

PORT PINOUTS AND CABLE DIAGRAMS

A.1 Console Port

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Function</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>TD</td>
<td>Transmit Data</td>
<td>Out</td>
</tr>
<tr>
<td>2</td>
<td>RD</td>
<td>Receive Data</td>
<td>In</td>
</tr>
<tr>
<td>5</td>
<td>SG</td>
<td>Signal Ground</td>
<td></td>
</tr>
<tr>
<td>4*</td>
<td>DTR</td>
<td>Data Terminal Ready</td>
<td>Out</td>
</tr>
<tr>
<td>7*</td>
<td>RTS</td>
<td>Request to Send</td>
<td>Out</td>
</tr>
</tbody>
</table>

* always pulled high

A.2 Serial Cable Descriptions

<table>
<thead>
<tr>
<th>Cable No.</th>
<th>Function</th>
<th>Connection</th>
<th>Standard Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>19387</td>
<td>9160 G2 to Console</td>
<td>Direct</td>
<td>6 feet</td>
</tr>
</tbody>
</table>
Appendix A: Port Pinouts And Cable Diagrams

Serial Cable Descriptions

Console Port Cable No. 19387

Appendix A: Port Pinouts And Cable Diagrams

RJ-45 Connector Pinouts (10BaseT/100BaseT Ethernet)

A.3 RJ-45 Connector Pinouts (10BaseT/100BaseT Ethernet)

<table>
<thead>
<tr>
<th>9160 G2 using AC</th>
<th>9160 G2 using Power over Ethernet*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TD+</td>
</tr>
<tr>
<td>2</td>
<td>TD–</td>
</tr>
<tr>
<td>3</td>
<td>RD+</td>
</tr>
<tr>
<td>4</td>
<td>Not used</td>
</tr>
<tr>
<td>5</td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>RD–</td>
</tr>
<tr>
<td>7</td>
<td>Not used</td>
</tr>
<tr>
<td>8</td>
<td>Not used</td>
</tr>
</tbody>
</table>

* The 9160 G2 can also accept 48 VDC power bias on the data line pairs (1,2) and (3,6) from such systems providing power over Ethernet.

Note: Usually, a straight-through connection is needed to connect Twisted-Pair (10BaseT or 100BaseT) to the hub.
APPENDIX B

SECURITY SETTINGS ON WIRELESS CLIENTS/RADIUS SERVER

B.1 Network Infrastructure; Choosing Between Built-in Or External Authentication Server .. 7
 B.1.1 Using The Built-in Authentication Server (EAP-PEAP) .. 8
 B.1.2 Using An External RADIUS Server With EAP-TLS Certificates Or EAP-PEAP .. 8
B.2 Make Sure The Wireless Client Software Is Up-to-Date ... 8
B.3 Accessing The Microsoft Windows Wireless Client Security Settings ... 9
B.4 Configuring A Client To Access An Unsecure Network (No Security) .. 11
B.5 Configuring Static WEP Security On A Client ... 12
B.6 Configuring IEEE 802.1x Security On A Client. .. 15
 B.6.1 IEEE 802.1x Client Using EAP/PEAP .. 15
 B.6.2 IEEE 802.1x Client Using EAP/TLS Certificate ... 18
B.7 Configuring WPA/WPA2 Enterprise (RADIUS) Security On A Client ... 22
 B.7.1 WPA/WPA2 Enterprise (RADIUS) Client Using EAP/PEAP .. 22
 B.7.2 WPA/WPA2 Enterprise (RADIUS) Client Using EAP-TLS Certificate .. 26
B.8 Configuring WPA/WPA2 Personal (PSK) Security On A Client ... 29
B.9 Configuring An External RADIUS Server To Recognize The 9160 G2 ... 31
B.10 Obtaining A TLS-EAP Certificate For A Client .. 35
B.11 Configuring RADIUS Server For VLAN tags ... 40
 B.11.1 Configuring A RADIUS Server ... 40
Appendix B: Security Settings on Wireless Clients/RADIUS Server
Appendix B: Security Settings on Wireless Clients/Radius Server

Network Infrastructure; Choosing Between Built-in Or External Authentication Server

Typically, users will configure security on their wireless clients for access to many different networks (access points). The list of “Available Networks” will change depending on the location of the client and which APs are online and detectable in that location. Once an AP has been detected by the client and security is configured for it, it remains in the client’s list of networks but shows as either reachable or unreachable depending on the situation. For each network (AP) you want to connect to, configure security settings on the client to match the security mode being used by that network.

We describe security setup on a client that uses Microsoft® Windows® client software for wireless connectivity. The Windows client software is used as the example because of its widespread availability on Windows computers and laptops. These procedures will vary slightly if you use different software on the client (such as Funk Odyssey®), but the configuration information you need to provide is the same.

Note: The recommended sequence for security configuration is (1) set up security on the access point, and (2) configure security on each of the wireless clients.

We expect that initially, you will connect to an access point that has no security set (“None”) from an unsecure wireless client. With this initial connection, you can go to the access point Administration Web pages and configure a security mode (Security). When you re-configure the access point with a security setting and click Update, your wireless client will be disassociated and you will lose connectivity to the AP Administration Web pages. In some cases, you may need to make additional changes to the AP security settings before configuring the client. Therefore, you must have a backup Ethernet (wired) connection.

The following sections describe how to set up each of the supported security modes on wireless clients of a network served by the 9160 G2 Wireless Gateway.

B.1 Network Infrastructure; Choosing Between Built-in Or External Authentication Server

Network security configurations including Public Key Infrastructures (PKI), Remote Authentication Dial-in User Server (RADIUS) servers, and Certificate Authority (CA) can vary a great deal from one organization to the next in terms of how they provide Authentication, Authorization, and Accounting (AAA). Ultimately, the particulars of your infrastructure will determine how clients should configure security to access the wireless

1The exception to this is if the access point is set to prohibit the broadcast of its network name. In this case the SSID will not show up in the list of Available Networks on the client. Instead, the client must have the exact network name configured in the network connection properties before it will be able to connect.
network. Rather than try to predict and address the details of every possible scenario, this document provides general guidelines about each type of client configuration supported by the 9160 G2 Wireless Gateway.

B.1.1 Using The Built-in Authentication Server (EAP-PEAP)

If you do not have a RADIUS server or PKI infrastructure in place and/or are unfamiliar with many of these concepts, we strongly recommend setting up the 9160 G2 Wireless Gateways with security that uses the Built-in Authentication Server on the AP. This will mean setting up the AP to use either IEEE 802.1x or WPA/WPA2 Enterprise (RADIUS) security mode. (The built-in authentication server uses EAP-PEAP authentication protocol.)

- If the 9160 G2 Wireless Gateway is set up to use IEEE 802.1x mode and the Built-in Authentication Server, then configure wireless clients as described in “IEEE 802.1x Client Using EAP/PEAP” on page B-15.
- If the 9160 G2 Wireless Gateway is configured to use WPA/WPA2 Enterprise (RADIUS) mode and the Built-in Authentication Server, configure wireless clients as described in “WPA/WPA2 Enterprise (RADIUS) Client Using EAP/PEAP” on page B-22.

B.1.2 Using An External RADIUS Server With EAP-TLS Certificates Or EAP-PEAP

We make the assumption that if you have an external RADIUS server and PKI/CA setup, you will know how to configure client security options appropriate to your security infrastructure beyond the fundamental suggestions given here. Topics covered here that particularly relate to client security configuration in a RADIUS - PKI environment are:

- “Configuring An External RADIUS Server To Recognize The 9160 G2” on page B-31.
- “Obtaining A TLS-EAP Certificate For A Client” on page B-35.

Details on how to configure an EAP-PEAP client with an external RADIUS server are not covered in this document.

B.2 Make Sure The Wireless Client Software Is Up-to-Date

Before starting out, please keep in mind that service packs, patches, and new releases of drivers and other supporting technologies for wireless clients are being generated at a fast pace. A common problem encountered in client security setup is not having the right driver or updates to it on the client. For example, if you are setting up WPA on the client, make sure you have a driver installed that supports WPA, which is a relatively new technology.
Even many client cards currently available do not ship from the factory with the latest drivers.

B.3 Accessing The Microsoft Windows Wireless Client Security Settings

Generally, on Windows XP there are two ways to get to the security properties for a wireless client:

1. From the *Wireless Connection* icon on the Windows task bar:
 - Right-click on the Wireless connection icon in your Windows task bar and select *View available wireless networks*.
 - Select the SSID of the network to which you want to connect and click *Advanced* to bring up the *Wireless Network Connection Properties* dialog.

OR

1. From the Windows *Start* menu at the left end of the task bar:
 - From the Windows *Start* menu on the task bar, choose *Start, My Network Places* to bring up the Network Connections window.
 - From the *Network Tasks* menu on the left, click *View Network Connections* to bring up the *Network Connections* window.
 - Select the *Wireless Network Connection* you want to configure, right-mouse click and choose *View available wireless networks*.
 - Select the SSID of the network to which you want to connect and click *Advanced* to bring up the Wireless Network Connection Properties dialog.

The *Wireless Networks* tab (which should be automatically displayed) lists *Available networks* and *Preferred networks*.
Accessing The Microsoft Windows Wireless Client Security Settings

2. From the list of Available networks, select the SSID of the network to which you want to connect and click Configure.

This brings up the Wireless Network Connection Properties dialog with the Association and Authentication tabs for the selected network.
Use this dialog for configuring all the different types of client security described in the following sections. Make sure that the Wireless Network Properties dialog you are working in pertains to the Network Name (SSID) for the network you want to reach on the wireless client you are configuring.

B.4 Configuring A Client To Access An Unsecure Network (No Security)

If the access point or wireless network to which you want to connect is configured as “None”, that is no security, you need to configure the client accordingly. A client using no security to connect is configured with Network Authentication Open to that network and Data Encryption Disabled, as described below.

If you do have security configured on a client for properties of an unsecure network, the security settings actually can prevent successful access to the network because of the mismatch between client and access point security configurations.
To configure the client to not use any security, bring up the client Network Properties dialog, and configure the following settings.

![Wireless network properties dialog](image)

Set Network Authentication to Open

Set Data Encryption to Disabled

<table>
<thead>
<tr>
<th>Table B.1 Association Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Authentication</td>
</tr>
<tr>
<td>Data Encryption</td>
</tr>
</tbody>
</table>

B.5 Configuring Static WEP Security On A Client

Static *Wired Equivalent Privacy* (WEP) encrypts data moving across a wireless network based on a static (non-changing) key. The encryption algorithm is a “stream” cipher called RC4. The access point uses a key to transmit data to the client stations. Each client must use that same key to decrypt data it receives from the access point. Different clients can use different keys to transmit data to the access point. (Or they can all use the same key, but this is less secure because it means one station can decrypt the data being sent by another.)
If you configured the 9160 G2 Wireless Gateway to use Static WEP security mode. . .

Choose Open or Shared
Choose WEP as the Data Encryption mode
Enter a network key that matches the WEP key on the access point in the position set to the transfer key index (and re-type to confirm)
Optionally set a different transfer key index to send data from client back to access point
Disable auto key option
Appendix B: Security Settings on Wireless Clients/RADIUS Server

Configuring Static WEP Security On A Client

Table B.2 Association Settings

<table>
<thead>
<tr>
<th>Network Authentication</th>
<th>Open or Shared, depending on how you configured this option on the access point.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: When the Authentication Algorithm on the access point is set to Both, clients set to either Shared or Open can associate with the AP. Clients configured to use WEP in Shared mode must have a valid WEP key in order to associate with the AP. Clients configured to use WEP as an Open system can associate with the AP even without a valid WEP key (but a valid key will be required to actually view and exchange data). For more information, see Online Help on the access point.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Encryption</th>
<th>WEP</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Network Key</th>
<th>Provide the WEP key you entered on the access point Security settings in the Transfer Key Index position.</th>
</tr>
</thead>
<tbody>
<tr>
<td>For example, if the Transfer Key Index on the access point is set to 1, then for the client Network Key specify the WEP Key you entered as WEP Key 1 on the access point.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Index</th>
<th>Set key index to indicate which of the WEP keys specified on the access point Security page will be used to transfer data from the client back to the access point.</th>
</tr>
</thead>
<tbody>
<tr>
<td>For example, you can set this to 1, 2, 3, or 4 if you have all four WEP keys configured on the access point.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The key is provided for me automatically</th>
<th>Disable this option (click to uncheck the box).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Enable IEEE 802.1x authentication for this network</th>
<th>Make sure that IEEE 802.1x authentication is disabled (box should be unchecked).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Setting the encryption mode to WEP should automatically disable authentication.)</td>
<td></td>
</tr>
</tbody>
</table>

Table B.3 Authentication Settings

<table>
<thead>
<tr>
<th>Enable IEEE 802.1x authentication for this network</th>
<th>Make sure that IEEE 802.1x authentication is disabled (box should be unchecked).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Setting the encryption mode to WEP should automatically disable authentication.)</td>
<td></td>
</tr>
</tbody>
</table>

Click OK on the Wireless Network Properties dialog to close it and save your changes.

Connecting To The Wireless Network With A Static WEP Client

Static WEP clients should now be able to associate and authenticate with the access point. As a client, you will not be prompted for a WEP key. The WEP key configured on the client security settings is automatically used when you connect.
B.6 Configuring IEEE 802.1x Security On A Client

IEEE 802.1x is the standard defining port-based authentication and infrastructure for doing key management. Extensible Authentication Protocol (EAP) messages are sent over an IEEE 802.11 wireless network using a protocol called EAP Encapsulation Over LANs (EAPOL). IEEE 802.1x provides dynamically-generated keys that are periodically refreshed. An RC4 stream cipher is used to encrypt the frame body and cyclic redundancy checking (CRC) of each 802.11 frame.

B.6.1 IEEE 802.1x Client Using EAP/PEAP

The Built-In Authentication Server on the 9160 G2 Wireless Gateway uses Protected Extensible Authentication Protocol (EAP) referred to here as “EAP/PEAP”.

• If you are using the Built-in Authentication server with “IEEE 802.1x” security mode on the 9160 G2 Wireless Gateway, then you will need to set up wireless clients to use PEAP.

• Additionally, you may have an external RADIUS server that uses EAP/PEAP. If so, you will need to:
 1. Add the 9160 G2 Wireless Gateway to the list of RADIUS server clients.
 AND
 2. Configure your IEEE 802.1x wireless clients to use PEAP.

Note: The following example assumes that you are using the Built-in Authentication server that comes with the 9160 G2 Wireless Gateway. If you are setting up EAP/PEAP on a client of an AP that is using an external RADIUS server, the client configuration process will differ somewhat from this example, especially with regard to certificate validation.

If you configured the 9160 G2 Wireless Gateway to use IEEE 802.1x security mode...
Appendix B: Security Settings on Wireless Clients/RADIUS Server
IEEE 802.1x Client Using EAP/PEAP

... then configure IEEE 802.1x security with PEAP authentication on each client as follows:

1. Choose Open Data Encryption mode
2. Choose WEP
3. Choose Protected EAP (PEAP)

... then, click Enable (click to check) IEEE 8021x authentication

4. Enable auto key option
1. Configure the following settings on the **Association** tab on the **Network Properties** dialog.

Table B.4 Association Settings

<table>
<thead>
<tr>
<th>Property</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Authentication</td>
<td>Open</td>
</tr>
<tr>
<td>Data Encryption</td>
<td>WEP</td>
</tr>
<tr>
<td>Note: An RC4 stream cipher is used to encrypt the frame body and cyclic redundancy checking (CRC) of each IEEE 802.11 frame. This is the same encryption algorithm as is used for Static WEP; therefore, the data encryption method configured on the client for this mode is WEP.</td>
<td></td>
</tr>
<tr>
<td>This key is provided for me automatically</td>
<td>Enable (click to check) this option.</td>
</tr>
</tbody>
</table>

2. Configure this setting on the **Authentication** tab.

Table B.5 Authentication Settings

<table>
<thead>
<tr>
<th>Property</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAP Type</td>
<td>Choose Protected EAP (PEAP).</td>
</tr>
</tbody>
</table>

... then click Configure
3. Click **Properties** to bring up the *Protected EAP Properties* dialog and configure the following settings.

Table B.6 Protected EAP Properties Settings

<table>
<thead>
<tr>
<th>Validate Server Certificate</th>
<th>Disable this option (click to uncheck the box).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note:</td>
<td>This example assumes you are using the Built-in Authentication server on the AP. If you are setting up EAP/PEAP on a client of an AP that is using an external RADIUS server, you might certificate validation and choose a certificate, depending on your infrastructure.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Select Authentication Method</th>
<th>Choose Secured password (EAP-MSCHAP v2).</th>
</tr>
</thead>
</table>

4. Click **Configure** to bring up the *EAP MSCHAP v2 Properties* dialog.

 On this dialog, disable (click to uncheck) the option to *Automatically use my Windows logon name... etc.*

 Click **OK** on all dialogs (starting with the *EAP MSCHAP v2 Properties* dialog) to close and save your changes.

Logging On To The Wireless Network With An IEEE 802.1x PEAP Client

IEEE 802.1x PEAP clients should now be able to associate with the access point. Client users will be prompted for a user name and password to authenticate with the network.

B.6.2 IEEE 802.1x Client Using EAP/TLS Certificate

Extensible Authentication Protocol (EAP) Transport Layer Security (TLS), or EAP-TLS, is an authentication protocol that supports the use of smart cards and certificates. You have the option of using EAP-TLS with both WPA/WPA2 Enterprise (RADIUS) and IEEE 802.1x modes if you have an external RADIUS server on the network to support it.

Note: If you want to use IEEE 802.1x mode with EAP-TLS certificates for authentication and authorization of clients, you must have an external RADIUS server and a Public Key Authority Infrastructure (PKI), including a Certificate Authority (CA), server configured on your network. It is beyond the scope of this document to describe these configuration of the RADIUS server, PKI, and CA server. Consult the documentation for those products.

Some good starting points available on the Web for the Microsoft Windows PKI software are:

IEEE 802.1x Client Using EAP/TLS Certificate

“How to Configure a Certificate Server” at

To use this type of security, you must do the following:

1. Add the 9160 G2 Wireless Gateway to the list of RADIUS server clients. (See “Configuring An External RADIUS Server To Recognize The 9160 G2” on page B-31.)
2. Configure the 9160 G2 Wireless Gateway to use your RADIUS server (by providing the RADIUS server IP address as part of the “IEEE 802.1x” security mode settings).
3. Configure wireless clients to use IEEE 802.1x security and “Smart Card or other Certificate” as described in this section.
4. Obtain a certificate for this client as described in “Obtaining A TLS-EAP Certificate For A Client” on page B-35.

If you configured the 9160 G2 Wireless Gateway to use IEEE 802.1x security mode with an external RADIUS server...

... then configure IEEE 802.1x security with certificate authentication on each client as follows:
Appendix B: Security Settings on Wireless Clients/RADIUS Server

IEEE 802.1x Client Using EAP/TLS Certificate

1. Choose Open Data Encryption mode
2. Choose Smart Card/Certificate
 . . . then, click Properties
3. Enable (click to check) IEEE 8021x authentication
4. Enable auto key option
5. Validate server certificate
6. Select (check) the name of certificate on this client (downloaded from RADIUS server in a prerequisite procedure)
1. Configure the following settings on the *Association* tab on the *Network Properties* dialog.

Table B.7 Association Settings

<table>
<thead>
<tr>
<th>Network Authentication</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Encryption</td>
<td>WEP</td>
</tr>
<tr>
<td>Note: An RC4 stream cipher is used to encrypt the frame body and cyclic redundancy checking (CRC) of each IEEE 802.11 frame. This is the same encryption algorithm as is used for Static WEP; therefore, the data encryption method configured on the client for this mode is WEP.</td>
<td></td>
</tr>
<tr>
<td>This key is provided for me automatically</td>
<td>Enable (click to check) this option.</td>
</tr>
</tbody>
</table>

2. Configure these settings on the *Authentication* tab.

Table B.8 Authentication Settings

| Enable IEEE 802.1x authentication for this network | Enable (click to check) this option. |
| EAP Type | Choose Smart Card or other Certificate. |

3. Click *Properties* to bring up the *Smart Card or other Certificate Properties* dialog and enable the *Validate server certificate* option.

Table B.9 Smart Card Or Other Certificate Properties Settings

| Validate Server Certificate | Enable this option (click to check the box). |
| Certificates | In the certificate list shown, select the *certificate* for this client. |

Click **OK** on all dialogs to close and save your changes.

4. To complete the client configuration you must now obtain a certificate from the RADIUS server and install it on this client. For information on how to do this see “Obtaining A TLS-EAP Certificate For A Client” on page B-35.

Connecting To The Wireless Network With An IEEE 802.1x Client Using A Certificate

IEEE 802.1x clients should now be able to connect to the access point using their TLS certificates. The certificate you installed is used when you connect, so you will not be prompted for logon information. The certificate is automatically sent to the RADIUS server for authentication and authorization.
Appendix B: Security Settings on Wireless Clients/RADIUS Server
Configuring WPA/WPA2 Enterprise (RADIUS) Security On A Client

B.7 Configuring WPA/WPA2 Enterprise (RADIUS) Security On A Client

Wi-Fi Protected Access 2 (WPA2) with Remote Authentication Dial-In User Service (RADIUS) is an implementation of the Wi-Fi Alliance IEEE 802.11h standard, which includes Advanced Encryption Standard (AES), Counter mode/CBC-MAC Protocol (CCMP), and Temporal Key Integrity Protocol (TKIP) mechanisms. This mode requires the use of a RADIUS server to authenticate users.

This security mode also provides backwards-compatibility for wireless clients that support only the original WPA.

When you configure WPA/WPA2 Enterprise (RADIUS) security mode on the access point, you have a choice of whether to use the Built-in Authentication Server or an external RADIUS server that you provide.

The 9160 G2 Wireless Gateway Built-in Authentication Server supports Protected Extensible Authentication Protocol (EAP) known as “EAP/PEAP” and Microsoft Challenge Handshake Authentication Protocol Version 2 (MSCHAP V2), which provides authentication for point-to-point (PPP) connections between a Windows-based computer and network devices such as access points.

So, if you configure the network (access point) to use security mode and choose the Built-in Authentication server, you must configure client stations to use WPA/WPA2 Enterprise (RADIUS) and EAP/PEAP.

If you configure the network (access point) to use this security mode with an external RADIUS server, you must configure the client stations to use WPA/WPA2 Enterprise (RADIUS) and whichever security protocol your RADIUS server is configured to use.

B.7.1 WPA/WPA2 Enterprise (RADIUS) Client Using EAP/PEAP

The Built-In Authentication Server on the 9160 G2 Wireless Gateway uses Protected Extensible Authentication Protocol (EAP) known as “EAP/PEAP”.

- If you are using the Built-in Authentication server with “WPA/WPA2 Enterprise (RADIUS)” security mode on the 9160 G2 Wireless Gateway, then you will need to set up wireless clients to use PEAP.

- Additionally, you may have an external RADIUS server that uses EAP/PEAP. If so, you will need to:
 1. Add the 9160 G2 Wireless Gateway to the list of RADIUS server clients.
 2. Configure your “WPA/WPA2 Enterprise (RADIUS)” wireless clients to use PEAP.
Note: The following example assumes you are using the Built-in Authentication server that comes with the 9160 G2 Wireless Gateway. If you are setting up EAP/PEAP on a client of an AP that is using an external RADIUS server, the client configuration process will differ somewhat from this example especially with regard to certificate validation.

If you configured the 9160 G2 Wireless Gateway to use WPA/WPA2 Enterprise (RADIUS) security mode and to use either the Built-in Authentication Server or an external RADIUS server that uses EAP/PEAP . . .

. . . first set up user accounts on the access point (go to User Management tab). . . .

. . . then configure WPA security with PEAP authentication on each client as follows.
Appendix B: Security Settings on Wireless Clients/RADIUS Server

WPA/WPA2 Enterprise (RADIUS) Client Using EAP/PEAP

1. Choose either TKIP or AES for the Data Encryption mode.
2. Choose WPA
3. Choose Protected EAP (PEAP)
 ... then, click Properties
 ... then click Configure
4. Disable Validate server certificate
5. Choose Secured password (EAP-MSCHAP v2)
 ... then click Configure
6. Disable this option
1. Configure the following settings on the Association and Authentication tabs on the Network Properties dialog.

Table B.10 Association Settings

<table>
<thead>
<tr>
<th>Network Authentication</th>
<th>WPA</th>
</tr>
</thead>
</table>
| Data Encryption | TKIP or AES depending on how this option is configured on the access point.
 Note: When the Cipher Suite on the access point is set to Both, then TKIP clients with a valid TKIP key and AES clients with a valid CCMP (AES) key can associate with the access point. For more information, see Online Help on the access point. |

2. Configure this setting on the Authentication tab.

Table B.11 Authentication Settings

| EAP Type | Choose Protected EAP (PEAP) |

3. Click Properties to bring up the Protected EAP Properties dialog and configure the following settings.

Table B.12 Protected EAP Properties Settings

| Validate Server Certificate | Disable this option (click to uncheck the box).
 Note: This example assumes you are using the Built-in Authentication server on the AP. If you are setting up EAP/PEAP on a client of an AP that is using an external RADIUS server, you might certificate validation and choose a certificate, depending on your infrastructure. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Authentication Method</td>
<td>Choose Secured password (EAP-MSCHAP v2).</td>
</tr>
</tbody>
</table>

4. Click Configure to bring up the EAP MSCHAP v2 Properties dialog.

On this dialog, disable (click to uncheck) the option to Automatically use my Windows logon name . . . etc. so that upon logon you will be prompted for user name and password.

Click OK on all dialogs (starting with the EAP MSCHAP v2 Properties dialog) to close and save your changes.
Appendix B: Security Settings on Wireless Clients/RADIUS Server

WPA/WPA2 Enterprise (RADIUS) Client Using EAP-TLS Certificate

Logging On To The Wireless Network With A WPA/WPA2 Enterprise (RADIUS) PEAP Client

“WPA/WPA2 Enterprise (RADIUS)” PEAP clients should now be able to associate with the access point. Client users will be prompted for a user name and password to authenticate with the network.

B.7.2 WPA/WPA2 Enterprise (RADIUS) Client Using EAP-TLS Certificate

Extensible Authentication Protocol (EAP) Transport Layer Security (TLS), or EAP-TLS, is an authentication protocol that supports the use of smart cards and certificates. You have the option of using EAP-TLS with both WPA/WPA2 Enterprise (RADIUS) and IEEE 802.1x modes if you have an external RADIUS server on the network to support it.

Note: If you want to use IEEE 802.1x mode with EAP-TLS certificates for authentication and authorization of clients, you must have an external RADIUS server and a Public Key Authority Infrastructure (PKI), including a Certificate Authority (CA), server configured on your network. It is beyond the scope of this document to describe these configuration of the RADIUS server, PKI, and CA server. Consult the documentation for those products.

Some good starting points available on the Web for the Microsoft Windows PKI software are:

“How to Install/Uninstall a Public Key Certificate Authority for Windows 2000” at http://support.microsoft.com/default.aspx?scid=kb;en-us;231881, and

How to “Configure a Certificate Server” at http://support.microsoft.com/default.aspx?scid=kb;en-us;318719#3

To use this type of security, you must do the following:

1. Add the 9160 G2 Wireless Gateway to the list of RADIUS server clients. (See “Configuring An External RADIUS Server To Recognize The 9160 G2” on page B-31.)
2. Configure the 9160 G2 Wireless Gateway to use your RADIUS server (by providing the RADIUS server IP address as part of the “WPA/WPA2 Enterprise [RADIUS]” security mode settings).
3. Configure wireless clients to use WPA security and “Smart Card or other Certificate” as described in this section.
4. Obtain a certificate for this client as described in “Obtaining A TLS-EAP Certificate For A Client” on page B-35.
If you configured the 9160 G2 Wireless Gateway to use WPA/WPA2 Enterprise (RADIUS) security mode with an external RADIUS server . . .

Choose WPA
Choose either TKIP or AES for the Data Encryption mode
Choose Smart Card or other Certificate and enable Authenticate as computer

. . . then configure WPA security with certificate authentication on each client as follows.

Choose WPA
Choose either TKIP or AES for the Data Encryption mode
Choose Smart Card or other Certificate and enable Authenticate as computer
Appendix B: Security Settings on Wireless Clients/RADIUS Server

WPA/WPA2 Enterprise (RADIUS) Client Using EAP-TLS Certificate

1. Configure the following settings on the Association tab on the Network Properties dialog.

Table B.13 Association Settings

<table>
<thead>
<tr>
<th>Network Authentication</th>
<th>WPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Encryption</td>
<td>TKIP or AES depending on how this option is configured on the access point.</td>
</tr>
</tbody>
</table>

*Note: When the Cipher Suite on the access point is set to “Both”, then TKIP clients with a valid TKIP key and AES clients with a valid CCMP (AES) key can associate with the access point. For more information, see Online Help on the access point.

2. Configure these settings on the Authentication tab.

Table B.14 Authentication Settings

<table>
<thead>
<tr>
<th>Enable IEEE 802.1x authentication for this network</th>
<th>Enable (click to check) this option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAP Type</td>
<td>Choose Smart Card or other Certificate.</td>
</tr>
</tbody>
</table>

3. Click Properties to bring up the Smart Card or other Certificate Properties dialog and enable the Validate server certificate option.
Click **OK** on all dialogs to close and save your changes.

4. To complete the client configuration you must now obtain a certificate from the RADIUS server and install it on this client. For information on how to do this see “Obtaining A TLS-EAP Certificate For A Client” on page B-35.

Logging On To The Wireless Network With A WPA Client Using A Certificate

WPA clients should now be able to connect to the access point using their TLS certificates. The certificate you installed is used when you connect, so you will not be prompted for logon information. The certificate is automatically sent to the RADIUS server for authentication and authorization.

B.8 Configuring WPA/WPA2 Personal (PSK) Security On A Client

Wi-Fi Protected Access (WPA) with **Pre-Shared Key** (PSK) is a Wi-Fi Alliance subset of IEEE 802.11i, which includes **Temporal Key Integrity Protocol** (TKIP), **Advanced Encryption Algorithm** (AES), and **Counter mode/CBC-MAC Protocol** (CCMP) mechanisms. PSK employs a pre-shared key for an initial check of client credentials.

If you configured the 9160 G2 Wireless Gateway to use WPA/WPA2 Personal (PSK) security mode . . .

Table B.15 Smart Card Or Other Certificate Properties Settings

<table>
<thead>
<tr>
<th></th>
<th>Enable this option (click to check the box).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificates</td>
<td>In the certificate list shown, select the certificate for this client.</td>
</tr>
</tbody>
</table>

Click **OK** on all dialogs to close and save your changes.
... then configure WPA/WPA2 Personal (PSK) security on each client as follows.

Choose WPA-PSK.

Choose either TKIP or AES for the Data Encryption mode.

Enter a network key that matches the one specified on the access point (and confirm by re-typing).

Table B.16 Association Settings

<table>
<thead>
<tr>
<th>Network Authentication</th>
<th>WPA-PSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Encryption</td>
<td>TKIP or AES depending on how this option is configured on the access point. Note: When the Cipher Suite on the access point is set to Both, then TKIP clients with a valid TKIP key and AES clients with a valid CCMP (AES) key can associate with the access point. For more information, see Online Help on the access point.</td>
</tr>
<tr>
<td>Network Key</td>
<td>Provide the key you entered on the access point Security settings for the cipher suite you are using. For example, if the key on the access point is set to use a TKIP key of '012345678', then a TKIP client specify this same string as the network key.</td>
</tr>
<tr>
<td>The key is provided for me automatically</td>
<td>This box should be disabled automatically based on other settings.</td>
</tr>
</tbody>
</table>

Table B.17 Authentication Settings

| Enable IEEE 802.1x authentication for this network | Make sure that IEEE 802.1x authentication is disabled (unchecked). (Setting the encryption mode to WEP should automatically disable authentication.) |

Click **OK** on the Wireless Network Properties dialog to close it and save your changes.

Connecting To The Wireless Network With A WPA-PSK Client

WPA-PSK clients should now be able to associate and authenticate with the access point. As a client, you will not be prompted for a key. The TKIP or AES key you configured on the client security settings is automatically used when you connect.

B.9 Configuring An External RADIUS Server To Recognize The 9160 G2

An external *Remote Authentication Dial-in User Server* (RADIUS) running on the network can support EAP-TLS smart card/certificate distribution to clients in a *Public Key Infrastructure* (PKI), as well as EAP-PEAP user account setup and authentication. By *external* RADIUS server, we mean an authentication server external to the access point itself. This is to distinguish between the scenario in which you use a network RADIUS server versus one in which you use the *Built-in Authentication Server* on the 9160 G2 Wireless Gateway.

This section provides an example of configuring an external RADIUS server for the purposes of authenticating and authorizing TLS-EAP certificates from wireless clients of a particular 9160 G2 Wireless Gateway configured for either “WPA/WPA2 Enterprise (RADIUS)” or “IEEE 802.1x” security modes. The intention of this section is to provide some idea of what this process will look like; procedures will vary depending on the RADIUS server you use and how you configure it. For this example, we use the Internet Authentication Service that comes with Microsoft Windows 2003 server.

Note: This document does not describe how to set up Administrative users on the RADIUS server. In this example, we assume you already have RADIUS server user accounts configured. You will need a RADIUS server user name and password for both this procedure and the following one that describes how to obtain and install a certificate on the wireless client. Please consult the documentation for your RADIUS server for information on setting up user accounts.

The purpose of this procedure is to identify your 9160 G2 Wireless Gateway as a “client” to the RADIUS server. The RADIUS server can then handle authentication and authorization of wireless clients for the AP. This procedure is required *per access point*. If you have more than one access point with which you plan to use an external RADIUS server, you need to follow these steps for each of those APs.

Keep in mind that the information you need to provide to the RADIUS server about the access point corresponds to settings on the access point (Security) and vice versa. You should have already provided the RADIUS server IP Address to the AP; in the steps that
Appendix B: Security Settings on Wireless Clients/RADIUS Server

Configuring An External RADIUS Server To Recognize The 9160 G2

Follow you will provide the access point IP address to the RADIUS server. The RADIUS Key provided on the AP is the “shared secret” you will provide to the RADIUS server.

![Modify Internal Network security settings](image)

Note: The RADIUS server is identified by its IP address and UDP port numbers for the different services it provides. On the current release of the 9160 G2 Wireless Gateway, the RADIUS server User Datagram Protocol (UDP) ports used by the access point are not configurable. (The 9160 G2 Wireless Gateway is hard-coded to use RADIUS server UDP port 1812 for authentication and port 1813 for accounting.)
1. Log on to the system hosting your RADIUS server and bring up the Internet Authentication Service.

![Internet Authentication Service](image)

2. In the left panel, right click on RADIUS Clients node and choose New > Radius Client from the popup menu.

3. On the first screen of the New RADIUS Client wizard, provide information about the 9160 G2 Wireless Gateway to which you want your clients to connect:
 - A logical (friendly) name for the access point. (You might want to use DNS name or location.)
 - IP address for the access point. Click Next.
4. For the Shared secret enter the RADIUS Key you provided to the access point (on the Security page). Re-type the key to confirm.
5. Click **Finish**. The access point is now displayed as a client of the Authentication Server.

B.10 Obtaining A TLS-EAP Certificate For A Client

Note: If you want to use IEEE 802.1x mode with EAP-TLS certificates for authentication and authorization of clients, you must have an external RADIUS server and a Public Key Authority Infrastructure (PKI), including a Certificate Authority (CA) server, configured on your network. It is beyond the scope of this document to describe these configuration of the RADIUS server, PKI, and CA server. Consult the documentation for those products.

Some good starting points available on the Web for the Microsoft Windows PKI software are:

Appendix B: Security Settings on Wireless Clients/RADIUS Server

Obtaining A TLS-EAP Certificate For A Client

Wireless clients configured to use either “WPA/WPA2 Enterprise (RADIUS)” or “IEEE 802.1x” security modes with an external RADIUS server that supports TLS-EAP certificates must obtain a TLS certificate from the RADIUS server.

This is an initial one-time step that must be completed on each client that uses either of these modes with certificates. In this procedure, we use the Microsoft Certificate Server as an example.

To obtain a certificate for a client, follow these steps.

1. Go to the following URL in a Web browser:

 https://IPAddressOfServer/certsrv/

 Where IPAddressOfServer is the IP address of your external RADIUS server, or of the Certificate Authority (CA), depending on the configuration of your infrastructure.

2. Click Yes to proceed to the secure Web page for the server.
The Welcome screen for the Certificate Server is displayed in the browser.

3. Click Request a certificate to get the logon prompt for the RADIUS server.
4. Provide a valid user name and password to access the RADIUS server.

Note: The user name and password you need to provide here is for access to the RADIUS server, for which you will already have user accounts configured at this point. This document does not describe how to set up Administrative user accounts on the RADIUS server. Please consult the documentation for your RADIUS server for these procedures.
Appendix B: Security Settings on Wireless Clients/RADIUS Server

Obtaining A TLS-EAP Certificate For A Client

5. Click **User Certificate** on the next page displayed.

6. Click **Yes** on the dialog displayed to install the certificate.

7. Click **Submit** to complete and click **Yes** to confirm the submittal on the popup dialog.
8. Click **Install this certificate** to install the newly issued certificate on your client station. (Also, click **Yes** on the popup windows to confirm the install and to add the certificate to the Root Store.)

![Certificate Issued](image1)

A success message is displayed indicating the certificate is now installed on the client.

![Root Certificate Store](image2)
Appendix B: Security Settings on Wireless Clients/RADIUS Server

Configuring RADIUS Server For VLAN tags

B.11 Configuring RADIUS Server For VLAN tags

A VLAN is a grouping of ports on a switch or a grouping of ports on different switches. Dynamic VLANs allow you to assign a user to a VLAN, and switches dynamically use this information to configure the port on the switch automatically.

Selection of the VLAN is usually based on the identity of the user. The RADIUS server informs the NAS (for example the access point) of the selected VLAN as part of the authentication. This setup enables users of Dynamic VLANs to move from one location to another without intervention and without having to make any changes to the switches.

In the case of the 9160 G2 Wireless Gateway, if the user has selected to use an external RADIUS server (configured on the Security page), then an External RADIUS server will try to authenticate the user. A user’s authentication credentials are passed to a RADIUS server. If these credentials are found to be valid, the NAS configures the port to the VLAN indicated by the RADIUS authentication server.

B.11.1 Configuring A RADIUS Server

A RADIUS server needs to be configured to use Tunnel attributes in Access-Accept messages, in order to inform the access point about the selected VLAN. These attributes are defined in RFC 2868 and their use for dynamic VLAN is specified in RFC 3580.

In the case of FreeRADIUS server, the following options may be set in the users file to add the necessary attributes.

```
example-user Auth-Type :=EAP, User-Password == "password"
    Tunnel-Type = 13,
    Tunnel-Medium-Type = 6,
    Tunnel-Private-Group-ID = 7
```

Tunnel-Type and Tunnel-Medium-Type use the same values for all stations. Tunnel-Private-Group-ID is the selected VLAN ID, however it can be different for each user.
APPENDIX C

TROUBLESHOOTING

C.1 Wireless Distribution System (WDS) Problems And Solutions ... 43
C.2 Cluster Recovery .. 44
 C.2.1 Reboot Or Reset Access Point .. 44
Appendix C: Troubleshooting
This section provides information about how to solve common problems you might encounter in the course of updating network configurations on networks served by multiple, clustered access points.

C.1 Wireless Distribution System (WDS) Problems And Solutions
If you are having trouble configuring a WDS link, be sure you have read the notes and cautions in “Configuring WDS Settings” on page 206. These notes are reprinted here for your convenience. The most common problem Administrators encounter with WDS setups is forgetting to set both access points in the link to the same radio channel and IEEE 802.11 mode. That prerequisite, as well as others, is listed in the notes below.

Notes:

When using WDS, be sure to configure WDS settings on both access points participating in the WDS link.

You can have only one WDS link between any pair of access points. That is, a remote MAC address may appear only once on the WDS page for a particular access point.

Both access points participating in a WDS link must be on the same Radio channel and using the same IEEE 802.11 mode. (See “Configuring Radio Settings” on page 169 for information on configuring the Radio mode and channel.) For more information on IEEE 802.11h, see “802.11h Regulatory Domain Control” on page 148.

Ensure Spanning Tree Protocol (STP) is enabled to prevent endless loops and path redundancy with either WDS bridges or combinations of Wired (Ethernet) connections and WDS bridges. If STP is enabled, you can use WDS to create backup links. If STP is disabled, keep these rules in mind:

- Any two access points can be connected by only a single path; either a WDS bridge (wireless) or an Ethernet connection (wired), but not both.
- Do not create “backup” links.
- If you can trace more than one path between any pair of APs going through any combination of Ethernet or WDS links, you have a loop.
- You can only extend or bridge either the Internal or Guest network, but not both.
C.2 Cluster Recovery

In cases where the access points in a cluster become out of sync or an access point cannot join or be removed from a cluster, the following methods for cluster recovery are recommended.

C.2.1 Reboot Or Reset Access Point

These recovery methods are given in the order you should try them. In all but the last case (stop clustering), you only need to reset or reboot the particular access point whose configuration is out of sync with other cluster members or cannot remove/join the cluster.

- Physically reboot the access point by cycling the power (pressing the Power button Off, then On).
- Reset the access point from its Administration UI. To do this, go to http://IPAddressOfAccessPoint, navigate to Reset Configuration, and click the Reset button. (IP addresses for APs are on the Cluster > Access Points page for any cluster member.)
IEEE 802 (IEEE Std. 802-2001) is a family of standards for peer-to-peer communication over a LAN. These technologies use a shared-medium, with information broadcast for all stations to receive. The basic communications capabilities provided are packet-based. The basic unit of transmission is a sequence of data octets (8-bits), which can be of any length within a range that is dependent on the type of LAN.

Included in the 802 family of IEEE standards are definitions of bridging, management, and security protocols.

IEEE 802.1x (IEEE Std. 802.1x-2001) is a standard for passing EAP packets over an 802.11 wireless network using a protocol called EAP Encapsulation Over LANs (EAPOL). It establishes a framework that supports multiple authentication methods.

IEEE 802.1x authenticates users not machines.

IEEE 802.2 (IEEE Std. 802.2.1998) defines the LLC layer for the 802 family of standards.
802.3

IEEE 802.3 (IEEE Std. 802.3-2002) defines the MAC layer for networks that use CSMA/CA. Ethernet is an example of such a network.

802.11

IEEE 802.11 (IEEE Std. 802.11-1999) is a medium access control (MAC) and physical layer (PHY) specification for wireless connectivity for fixed, portable, and moving stations within a local area. It uses direct sequence spread spectrum (DSSS) in the 2.4 GHz ISM band and supports raw data rates of 1 and 2 Mbps. It was formally adopted in 1997 but has been mostly superseded by 802.11b.

IEEE 802.11 is also used generically to refer to the family of IEEE standards for wireless local area networks.

802.11a

IEEE 802.11a (IEEE Std. 802.11a-1999) is a PHY standard that specifies operating in the 5 GHz U-NII band using orthogonal frequency division multiplexing (OFDM). It supports data rates ranging from 6 to 54 Mbps.

802.11a Turbo

IEEE 802.11a Turbo is a proprietary variant of the 802.11a standard from Atheros Communications. It supports accelerated data rates ranging from 6 to 108 Mbps. Atheros Turbo 5 GHz is IEEE 802.11a Turbo mode. Atheros Turbo 2.4 GHz is IEEE 802.11g Turbo mode.

802.11b

IEEE 802.11b (IEEE Std. 802.11b-1999) is an enhancement of the initial 802.11 PHY to include 5.5 Mbps and 11 Mbps data rates. It uses direct sequence spread spectrum (DSSS) or frequency hopping spread spectrum (FHSS) in the 2.4 GHz ISM band as well as complementary code keying (CCK) to provide the higher data rates. It supports data rates ranging from 1 to 11 Mbps.

802.11d

IEEE 802.11d defines standard rules for the operation of IEEE 802.11 wireless LANs in any country without reconfiguration. PHY requirements such as frequency hopping...
tables, acceptable channels, and power levels for each country are provided. Enabling support for IEEE 802.11d on the access point causes the AP to broadcast which country it is operating in as a part of its beacons. Client stations then use this information. This is particularly important for AP operation in the 5GHz IEEE 802.11a bands because use of these frequencies varies a great deal from one country to another.

802.11e

IEEE 802.11e is a developing *IEEE* standard for *MAC* enhancements to support *QoS*. It provides a mechanism to prioritize traffic within *802.11*. It defines allowed changes in the Arbitration Interframe Space, a minimum and maximum Contention Window size, and the maximum length (in µsec) of a burst of data.

IEEE 802.11e is still a draft *IEEE* standard (most recent version is D5.0, July 2003). A currently available subset of 802.11e is the *Wireless Multimedia Enhancements (WMM)* standard.

802.11f

IEEE 802.11f (*IEEE Std. 802.11f-2003*) is a standard that defines the inter access point protocol (*IAPP*) for access points (wireless hubs) in an extended service set (*ESS*). The standard defines how access points communicate the associations and reassociations of their mobile stations.

802.11g

IEEE 802.11g (*IEEE Std. 802.11g-2003*) is a higher speed extension (up to 54 Mbps) to the *802.11b PHY*, while operating in the 2.4 GHz band. It uses orthogonal frequency division multiplexing (OFDM). It supports data rates ranging from 1 to 54 Mbps.

802.11h

IEEE 802.11h is a standard used is to resolve the issue of interference which was prevalent in 802.11a. The two schemes used to minimize interference in 802.11h are Transmit Power Control (*TPC*) and Dynamic Frequency Selection (*DFS*). DFS detects other APs on the same frequency and redirects these to another channel. TCP reduces the network frequency output power of the AP, thus reducing the chance of any interference. This is a required standard in Europe, Japan, and the U.S.
IEEE 802.11i is a comprehensive IEEE standard for security in a wireless local area network (WLAN) that describes Wi-Fi Protected Access 2 (WPA2). It defines enhancements to the MAC Layer to counter some of the weaknesses of WEP. It incorporates stronger encryption techniques than the original Wi-Fi Protected Access (WPA), such as Advanced Encryption Standard (AES).

The original WPA, which can be considered a subset of 802.11i, uses Temporal Key Integrity Protocol (TKIP) for encryption. WPA2 is backwards-compatible with products that support the original WPA.

IEEE 802.11i / WPA2 was finalized and ratified in June of 2004.

IEEE 802.11j standardizes chipsets that can use both the 4.9 and 5 GHz radio bands according to rules specified by the Japanese government to open both bands to indoor, outdoor and mobile wireless LAN applications. The regulations require companies to adjust the width of those channels. IEEE 802.11j allows wireless devices to reach some previously unavailable channels by taking advantage of new frequencies and operating modes. This is partially an attempt to mitigate the crowding on the airwaves, and has tangential relationships to IEEE 802.11h.

IEEE 802.11k is a developing IEEE standard for wireless networks (WLANs) that helps auto-manage network Channel selection, client Roaming, and Access Point (AP) utilization. 802.11k capable networks will automatically load balance network traffic across APs to improve network performance and prevent under or over-utilization of any one AP. 802.11k will eventually complement the 802.11e quality of service (QoS) standard by ensuring QoS for multimedia over a wireless link.

802.1p

802.1p is an extension of the IEEE 802 standard and is responsible for QoS provision. The primary purpose of 802.1p is to prioritize network traffic at the data link/ MAC layer. 802.1p offers the ability to filter multicast traffic to ensure it doesn’t increase over layer 2 switched networks. It uses tag frames for the prioritization scheme.
To be compliant with this standard, layer 2 switches must be capable of grouping incoming LAN packets into separate traffic classes.

802.1Q

IEEE 802.1Q is the *IEEE* standard for *Virtual Local Area Networks (VLANs)* specific to wireless technologies. (See http://www.ieee802.org/1/pages/802.1Q.html.)

The standard addresses the problem of how to break large networks into smaller parts to prevent broadcast and multicast data traffic from consuming more bandwidth than is necessary. 802.11Q also provides for better security between segments of internal networks. The 802.1Q specification provides a standard method for inserting VLAN membership information into Ethernet frames.

A

Access Point

An *access point* is the communication hub for the devices on a *WLAN*, providing a connection or bridge between wireless and wired network devices. It supports a *Wireless Networking Framework* called *Infrastructure Mode*.

When one access point is connected to a wired network and supports a set of wireless stations, it is referred to as a basic service set (*BSS*). An extended service set (*ESS*) is created by combining two or more BSSs.

Ad hoc Mode

Ad hoc mode is a *Wireless Networking Framework* in which stations communicate directly with each other. It is useful for quickly establishing a network in situations where formal infrastructure is not required.

Ad hoc mode is also referred to as *peer-to-peer mode* or an independent basic service set (*IBSS*).
Appendix D: Glossary

AES

The Advanced Encryption Standard (AES) is a symmetric 128-bit block data encryption technique developed to replace DES encryption. AES works at multiple network layers simultaneously.

Further information is available on the NIST Web site.

Atheros XR (Extended Range)

Atheros Extended Range (XR) is a proprietary method for implementing low rate traffic over longer distances. It is meant to be transparent to XR enabled clients and access points and is designed to interoperate with the 802.11 standard in 802.11g and 802.11a modes. There is no support for Atheros XR in 802.11b, Atheros Turbo 5 GHz, or Atheros Dynamic Turbo 5 GHz.

B

Basic Rate Set

The basic rate set defines the transmission rates that are mandatory for any station wanting to join this wireless network. All stations must be able to receive data at the rates listed in this set.

Beacon

Beacon frames provide the “heartbeat” of a WLAN, announcing the existence of the network, and enabling stations to establish and maintain communications in an orderly fashion. It carries the following information (some of which is optional):

- The Timestamp is used by stations to update their local clock, enabling synchronization among all associated stations.
- The Beacon interval defines the amount of time between transmitting beacon frames. Before entering power save mode, a station needs the beacon interval to know when to wake up to receive the beacon.
- The Capability Information lists requirements of stations that want to join the WLAN. For example, it indicates that all stations must use WEP.
- The Service Set Identifier (SSID).
• The *Basic Rate Set* is a bitmap that lists the rates that the *WLAN* supports.
• The optional *Parameter Sets* indicates features of the specific signalling methods in use (such as frequency hopping spread spectrum, direct sequence spread spectrum, etc.).
• The optional *Traffic Indication Map* (TIM) identifies stations, using power saving mode, that have data frames queued for them.

Bridge

A connection between two local area networks (*LANs*) using the same protocol, such as Ethernet or *IEEE 802.1x*.

Broadcast

A *Broadcast* sends the same message at the same time to everyone. In wireless networks, broadcast usually refers to an interaction in which the access point sends data traffic in the form of *IEEE 802.1x Frames* to all client stations on the network.

Some wireless security modes distinguish between how unicast, multicast, and broadcast frames are encrypted or whether they are encrypted.

See also *Unicast* and *Multicast*.

Broadcast Address

See *IP Address*.

BSS

A *basic service set* (BSS) is an *Infrastructure Mode Wireless Networking Framework* with a single access point. Also see extended service set (*ESS*) and independent basic service set (*IBSS*).

BSSID

In *Infrastructure Mode*, the *Basic Service Set Identifier* (BSSID) is the 48-bit *MAC* address of the wireless interface of the *Access Point*.
C

CCMP

Counter mode/CBC-MAC Protocol (CCMP) is an encryption method for 802.11h that uses AES. It employs a CCM mode of operation, combining the Cipher Block Chaining Counter mode (CBC-CTR) and the Cipher Block Chaining Message Authentication Code (CBC-MAC) for encryption and message integrity.

AES-CCMP requires a hardware coprocessor to operate.

CGI

The Common Gateway Interface (CGI) is a standard for running external programs from an HTTP server. It specifies how to pass arguments to the executing program as part of the HTTP request. It may also define a set of environment variables.

A CGI program is a common way for an HTTP server to interact dynamically with users. For example, an HTML page containing a form can use a CGI program to process the form data after it is submitted.

Channel

The Channel defines the portion of the radio spectrum the radio uses for transmitting and receiving. Each 802.11 standard offers a number of channels, dependent on how the spectrum is licensed by national and transnational authorities such as the Federal Communications Commission (FCC), the European Telecommunications Standards Institute (ETSI), the Korean Communications Commission, or the Telecom Engineering Center (TELEC).

CSMA/CA

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) is a low-level network arbitration/contention protocol. A station listens to the media and attempts to transmit a packet when the channel is quiet. When it detects that the channel is idle, the station transmits the packet. If it detects that the channel is busy, the station waits a random amount of time and then attempts to access the media again.

CSMA/CA is the basis of the IEEE 802.11e Distributed Control Function (DCF). See also RTS and CTS.
The CSMA/CA protocol used by 802.11 networks is a variation on CSMA/CD (used by Ethernet networks). In CSMA/CD the emphasis is on collision detection whereas with CSMA/CA the emphasis is on collision avoidance.

CTS

A clear to send (CTS) message is a signal sent by an IEEE 802.11 client station in response to an request to send (RTS) message. The CTS message indicates that the channel is clear for the sender of the RTS message to begin data transfer. The other stations will wait to keep the air waves clear. This message is a part of the IEEE 802.11 CSMA/CA protocol. (See also RTS.)

DCF

The Distribution Control Function is a component of the IEEE 802.11e Quality of Service (QoS) technology standard. The DCF coordinates channel access among multiple stations on a wireless network by controlling wait times for channel access. Wait times are determined by a random backoff timer which is configurable by defining minimum and maximum contention windows. See also EDCF.

DHCP

The Dynamic Host Configuration Protocol (DHCP) is a protocol specifying how a central server can dynamically provide network configuration information to clients. A DHCP server “offers” a “lease” (for a pre-configured period of time—see Lease Time) to the client system. The information supplied includes the client's IP addresses and netmask plus the address of its DNS servers and Gateway.

DNS

The Domain Name Service (DNS) is a general-purpose query service used for translating fully-qualified names into Internet addresses. A fully-qualified name consists of the hostname of a system plus its domain name. For example, www is the host name of a Web server and www.psionteklogix.com is the fully-qualified name of that server. DNS translates the domain name www.psionteklogix.com to some IP address, for example 66.93.138.219.
A domain name identifies one or more IP addresses. Conversely, an IP address may map to more than one domain name.

A domain name has a suffix that indicates which top level domain (TLD) it belongs to. Every country has its own top-level domain, for example .de for Germany, .fr for France, .jp for Japan, .tw for Taiwan, .uk for the United Kingdom, .us for the U.S.A., and so on. There are also .com for commercial bodies, .edu for educational institutions, .net for network operators, and .org for other organizations as well as .gov for the U.S. government and .mil for its armed services.

DOM

The Document Object Model (DOM) is an interface that allows programs and scripts to dynamically access and update the content, structure, and style of documents. The DOM allows you to model the objects in an HTML or XML document (text, links, images, tables), defining the attributes of each object and how they can be manipulated.

Further details about the DOM can be found at the [W3C](https://www.w3.org).

DTIM

The Delivery Traffic Information Map (DTIM) message is an element included in some Beacon frames. It indicates which stations, currently sleeping in low-power mode, have data buffered on the Access Point awaiting pick-up. Part of the DTIM message indicates how frequently stations must check for buffered data.

Dynamic IP Address

See IP Address.

E

EAP

The Extensible Authentication Protocol (EAP) is an authentication protocol that supports multiple methods, such as token cards, Kerberos, one-time passwords, certificates, public key authentication, and smart cards.
Variations on EAP include EAP Cisco Wireless (LEAP), Protected EAP (PEAP), EAP-TLS, and EAP Tunnelled TLS (EAP-TTLS).

EDCF

Enhanced Distribution Control Function is an extension of *DCF*. EDCF, a component of the IEEE Wireless Multimedia (WMM) standard, provides prioritized access to the wireless medium.

ESS

An *extended service set* (ESS) is an *Infrastructure Mode Wireless Networking Framework* with multiple access points, forming a single subnetwork that can support more clients than a basic service set (*BSS*). Each access point supports a number of wireless stations, providing broader wireless coverage for a large space, for example, an office.

Ethernet

Ethernet is a local-area network (*LAN*) architecture supporting data transfer rates of 10 Mbps to 1 Gbps. The Ethernet specification is the basis for the *IEEE 802.3* standard, which specifies the physical and lower software layers. It uses the *CSMA/CA* access method to handle simultaneous demands.

Ethernet supports data rates of 10 Mbps, *Fast Ethernet* supports 100 Mbps, and *Gigabit Ethernet* supports 1 Gbps. Its cables are classified as “*XbaseY*”, where *X* is the data rate in Mbps and *Y* is the category of cabling. The original cable was *10base5* (Thicknet or “Yellow Cable”). Some others are *10base2* (Cheapernet), *10baseT* (Twisted Pair), and *100baseT* (Fast Ethernet). The latter two are commonly supplied using *CAT5* cabling with *RJ-45* connectors. There is also *1000baseT* (Gigabit Ethernet).

ERP

The *Extended Rate Protocol* refers to the protocol used by *IEEE 802.11g* stations (over 20 Mbps transmission rates at 2.4GHz) when paired with Orthogonal Frequency Division Multiplexing (OFDM). Built into ERP and the IEEE *802.11g* standard is a scheme for effective interoperability of IEEE 802.11g stations with IEEE 802.11b nodes on the same channel.
Legacy IEEE 802.11b devices cannot detect the ERP-OFDM signals used by IEEE 802.11g stations, and this can result in collisions between data frames from IEEE 802.11b and IEEE 802.11g stations.

If there is a mix of 802.11b and 802.11g nodes on the same channel, the IEEE 802.11g stations detect this via an ERP flag on the access point and enable request to send (RTS) and clear to send (CTS) protection before sending data.

See also CSMA/CA protocol.

F

Frame

A Frame consists of a discrete portion of data along with some descriptive meta-information packaged for transmission on a wireless network. Each frame includes a source and destination MAC address, a control field with protocol version, frame type, frame sequence number, frame body (with the actual information to be transmitted) and frame check sequence for error detection. A Frame is similar in concept to a Packet, the difference being that a packet operates on the Network layer (layer 3 in the OSI model) whereas a frame operates on the Data-Link layer (layer 2 in the OSI model).

G

Gateway

A gateway is a network node that serves as an entrance to another network. A gateway also often provides a proxy server and a firewall. It is associated with both a router, which use headers and forwarding tables to determine where packets are sent, and a switch or bridge, which provides the actual path for the packet in and out of the gateway.

Before a host on a LAN can access the Internet, it needs to know the address of its default gateway.
HTML

An HTML document starts with an `<html>` tag and ends with a `</html>` tag. A properly formatted document also contains a `<head> ... </head>` section, which contains the metadata to define the document, and a `<body> ... </body>` section, which contains its content. Its markup is derived from the Standard Generalized Markup Language (SGML).

HTML documents are sent from server to browser via HTTP. Also see XML.

HTTP

The Hypertext Transfer Protocol (HTTP) defines how messages are formatted and transmitted on the World Wide Web. An HTTP message consists of a URL and a command (GET, HEAD, POST, etc.), a request followed by a response.

HTTPS

The Secure Hypertext Transfer Protocol (HTTPS) is the secure version of HTTP, the communication protocol of the World Wide Web. HTTPS is built into the browser. If you are using HTTPS you will notice a closed lock icon at the bottom corner of your browser page.

All data sent via HTTPS is encrypted, thus ensuring secure transactions take place.

I

IAPP

The Inter Access Point Protocol (IAPP) is an IEEE standard (802.11f) that defines communication between the access points in a “distribution system”. This includes the exchange of information about mobile stations and the maintenance of bridge forwarding tables, plus securing the communications between access points.
Appendix D: Glossary

IBSS

An independent basic service set (IBSS) is an Ad hoc Mode Wireless Networking Framework in which stations communicate directly with each other.

IEEE

The Institute of Electrical and Electronic Engineers (IEEE) is an international standards body that develops and establishes industry standards for a broad range of technologies, including the 802 family of networking and wireless standards. (See 802, 802.1x, 802.11, 802.11a, 802.11b, 802.11e, 802.11f, 802.11g, and 802.11h.)

For more information about IEEE task groups and standards, see http://standards.ieee.org/.

Infrastructure Mode

Infrastructure Mode is a Wireless Networking Framework in which wireless stations communicate with each other by first going through an Access Point. In this mode, the wireless stations can communicate with each other or can communicate with hosts on a wired network. The access point is connected to a wired network and supports a set of wireless stations.

An infrastructure mode framework can be provided by a single access point (BSS) or a number of access points (ESS).

Intrusion Detection

The Intrusion Detection System (IDS) inspects all inbound network activity and reports suspicious patterns that may indicate a network or system attack from someone attempting to break into the system. It reports access attempts using unsupported or known insecure protocols.

IP

The Internet Protocol (IP) specifies the format of packets, also called datagrams, and the addressing scheme. IP is a connectionless, best-effort packet switching protocol. It provides packet routing, fragmentation and re-assembly. It is combined with higher-level protocols, such as TCP or UDP, to establish the virtual connection between destination and source.
The current version of IP is IPv4. A new version, called IPv6 or IPng, is under development. IPv6 is an attempt to solve the shortage of IP addresses.

IP Address

Systems are defined by their *IP address*, a four-byte (octet) number uniquely defining each host on the Internet. It is usually shown in form 192.168.2.254. This is called dotted-decimal notation.

An IP address is partitioned into two portions: the network prefix and a host number on that network. A *Subnet Mask* is used to define the portions. There are two special host numbers:

- The *Network Address* consists of a host number that is all zeroes (for example, 192.168.2.0).
- The *Broadcast Address* consists of a host number that is all ones (for example, 192.168.2.255).

There are a finite number of IP addresses that can exist. Therefore, a local area network typically uses one of the IANA-designated address ranges for use in private networks. These address ranges are:

- 10.0.0.0 to 10.255.255.255
- 172.16.0.0 to 172.31.255.255
- 192.168.0.0 to 192.168.255.255

A *Dynamic IP Address* is an IP address that is automatically assigned to a host by a DHCP server or similar mechanism. It is called dynamic because you may be assigned a different IP address each time you establish a connection.

A *Static IP Address* is an IP address that is hard-wired for a specific host. A static address is usually required for any host that is running a server, for example, a Web server.

IPSec

IP Security (IPSec) is a set of protocols to support the secure exchange of packets at the IP layer. It uses shared public keys. There are two encryption modes: Transport and Tunnel.

- *Transport* mode encrypts only the data portion (payload) of each packet, but leaves the headers untouched.
- The more secure *Tunnel* mode encrypts both the header and the payload.
Appendix D: Glossary

ISP

An Internet Service Provider (ISP) is a company that provides access to the Internet to individuals and companies. It may provide related services such as virtual hosting, network consulting, Web design, etc.

J

Jitter

Jitter is the difference between the latency (or delay) in packet transmission from one node to another across a network. If packets are not transmitted at a consistent rate (including Latency), QoS for some types of data can be affected. For example, inconsistent transmission rates can cause distortion in VoIP and streaming media. QoS is designed to reduce jitter along with other factors that can impact network performance.

L

Latency

Latency, also known as delay, is the amount of time it takes to transmit a Packet from sender to receiver. Latency can occur when data is transmitted from the access point to a client and vice versa. It can also occur when data is transmitted from access point to the Internet and vice versa. Latency is caused by fixed network factors such as the time it takes to encode and decode a packet, and also by variable network factors such as a busy or overloaded network. QoS features are designed to minimize latency for high priority network traffic.

LAN

A Local Area Network (LAN) is a communications network covering a limited area, for example, the computers in your home that you want to network together or a couple of floors in a building. A LAN connects multiple computers and other network devices such as storage and printers. Ethernet is the most common technology implementing a LAN.

Wireless Ethernet (802.11) is another very popular LAN technology (also see WLAN).
LDAP

The Lightweight Directory Access Protocol (LDAP) is a protocol for accessing on-line directory services. It is used to provide an authentication mechanism. It is based on the X.500 standard, but less complex.

Lease Time

The Lease Time specifies the period of time the DHCP Server gives its clients an IP Address and other required information. When the lease expires, the client must request a new lease. If the lease is set to a short span, you can update your network information and propagate the information provided to the clients in a timely manner.

LLC

The Logical Link Control (LLC) layer controls frame synchronization, flow control, and error checking. It is a higher level protocol over the PHY layer, working in conjunction with the MAC layer.

MAC

The Media Access Control (MAC) layer handles moving data packets between NICs across a shared channel. It is a higher level protocol over the PHY layer. It provides an arbitration mechanism in an attempt to prevent signals from colliding.

It uses a hardware address, known as the MAC address, that uniquely identifies each node of a network. IEEE 802 network devices share a common 48-bit MAC address format, displayed as a string of twelve (12) hexadecimal digits separated by colons, for example FE:DC:BA:09:87:65.

MDI and MDI-X

Medium Dependent Interface (MDI) and MDI crossover (MDIX) are twisted pair cabling technologies for Ethernet ports in hardware devices. Built-in twisted pair cabling and auto-sensing enable connection between like devices with the use of a standard Ethernet cable. (For example, if a wireless access point supports MDI/MDIX, one can successfully connect
a PC and that access point with an Ethernet cable rather than having to use a crossover cable).

MIB

Management Information Base (MIB) is a virtual database of objects used for network management. **SNMP** agents along with other SNMP tools can be used to monitor any network device defined in the MIB.

MSCHAP V2

Microsoft Challenge Handshake Authentication Protocol Version 2 (MSCHAP V2) provides authentication for **PPP** connections between a Windows-based computer and an **Access Point** or other network access device.

MTU

The *Maximum Transmission Unit* is the largest physical packet size, measured in bytes, that a network can transmit. Any messages larger than the MTU are fragmented into smaller packets before being sent.

Multicast

A **Multicast** sends the same message to a select group of recipients. Sending an e-mail message to a mailing list is an example of multicasting. In wireless networks, multicast usually refers to an interaction in which the access point sends data traffic in the form of **IEEE 802.1x Frames** to a specified set of client stations (**MAC** addresses) on the network.

Some wireless security modes distinguish between how unicast, multicast, and broadcast frames are encrypted or whether they are encrypted.

See also **Unicast** and **Broadcast**.

N

NAT

Network Address Translation is an Internet standard that masks the internal IP addresses being used in a **LAN**. A NAT server running on a gateway maintains a translation table that
maps all internal IP addresses in outbound requests to its own address and converts all inbound requests to the correct internal host.

NAT serves three main purposes: it provides security by obscurity by hiding internal IP addresses, enables the use of a wide range of internal IP addresses without fear of conflict with the addresses used by other organizations, and it allows the use of a single Internet connection.

Network Address

See *IP Address*.

NIC

A *Network Interface Card* is an adaptor or expansion board inserted into a computer to provide a physical connection to a network. Most NICs are designed for a particular type of network, protocol, and media, for example, *Ethernet* or wireless.

NTP

The *Network Time Protocol* assures accurate synchronization of the system clocks in a network of computers. NTP servers transmit *Coordinated Universal Time* (UTC, also known as *Greenwich Mean Time*) to their client systems. An NTP client sends periodic time requests to servers, using the returned time stamp to adjust its clock.

O

OSI

The *Open Systems Interconnection* (OSI) reference model is a framework for network design. The OSI model consists of seven layers:

- Layer 1, the Physical layer, identifies the physical medium used for communication between nodes. In the case of wireless networks, the physical medium is air, and radio frequency (RF) waves are a components of the physical layer.
- Layer 2, the Data-Link layer, defines how data for transmission will be structured and formatted, along with low-level protocols for communication and addressing. For example, protocols such as *CSMA/CA* and components like *MAC* addresses, and *Frames* are all defined and dealt with as a part of the Data-Link layer.
Appendix D: Glossary

Packet

- Layer 3, the Network layer, defines the how to determine the best path for information traversing the network. Packets and logical IP Addresses operate on the network layer.
- Layer 4, the Transport layer, defines connection oriented protocols such as TCP and UDP.
- Layer 5, the Session layer, defines protocols for initiating, maintaining, and ending communication and transactions across the network. Some common examples of protocols that operate on this layer are network file system (NFS) and structured query language (SQL). Also part of this layer are communication flows like single mode (device sends information bulk), half-duplex mode (devices take turns transmitting information in bulk), and full-duplex mode (interactive, where devices transmit and receive simultaneously).
- Layer 6, the Presentation layer, defines how information is presented to the application. It includes meta-information about how to encrypt/decrypt and compress/decompress the data. JPEG and TIFF file formats are examples of protocols at this layer.
- Layer 7, the Application layer, includes protocols like hypertext transfer protocol (HTTP), simple mail transfer protocol (SMTP), and file transfer protocol (FTP).

Packet

Data and media are transmitted among nodes on a network in the form of packets. Data and multimedia content is divided up and packaged into packets. A packet includes a small chunk of the content to be sent along with its destination address and sender address. Packets are pushed out onto the network and inspected by each node. The node to which it is addressed is the ultimate recipient.

Packet Loss

Packet Loss describes the percentage of packets transmitted over the network that did not reach their intended destination. A 0 percent package loss indicates no packets were lost in transmission. QoS features are designed to minimize packet loss.

PHY

The Physical Layer (PHY) is the lowest layer in the network layer model (see OSI). The Physical Layer conveys the bit stream - electrical impulse, light or radio signal -- through the network at the electrical and mechanical level. It provides the hardware means of sending and receiving data on a medium, including defining cables, NICs, and physical aspects.
Ethernet and the 802.11 family are protocols with physical layer components.

PID

The Process Identifier (PID) is an integer used by Linux to uniquely identify a process. A PID is returned by the fork() system call. It can be used by wait() or kill() to perform actions on the given process.

Port Forwarding

Port Forwarding creates a ‘tunnel’ through a firewall, allowing users on the Internet access to a service running on one of the computers on your LAN, for example, a Web server, an FTP or SSH server, or other services. From the outside user’s point of view, it looks like the service is running on the firewall.

PPP

The Point-to-Point Protocol is a standard for transmitting network layer datagrams (IP packets) over serial point-to-point links. PPP is designed to operate both over asynchronous connections and bit-oriented synchronous systems.

PPPoE

Point-to-Point Protocol over Ethernet (PPPoE) is a specification for connecting the users on a LAN to the Internet through a common broadband medium, such as a single DSL or cable modem line.

PPtP

Point-to-Point Tunnelling Protocol (PPtP) is a technology for creating a Virtual Private Network (VPN) within the Point-to-Point Protocol (PPP). It is used to ensure that data transmitted from one VPN node to another are secure.

Proxy

A proxy is server located between a client application and a real server. It intercepts requests, attempting to fulfill them itself. If it cannot, it forwards them to the real server. Proxy servers have two main purposes: improve performance by spreading requests over several machines and filter requests to prevent access to specific servers or services.
PSK

Pre-Shared Key (PSK), see Shared Key.

Public Key

A public key is used in public key cryptography to encrypt a message which can only be decrypted with the recipient's private or secret key. Public key encryption is also called asymmetric encryption, because it uses two keys, or Diffie-Hellman encryption. Also see Shared Key.

Q

QoS

Quality of Service (QoS) defines the performance properties of a network service, including guaranteed throughput, transit delay, and priority queues. QoS is designed to minimize Latency, Jitter, Packet Loss, and network congestion, and provide a way of allocating dedicated bandwidth for high priority network traffic.

The IEEE standard for implementing QoS on wireless networks is currently in-work by the 802.11e task group. A subset of 802.11e features is described in the WMM specification.

R

RADIUS

The Remote Authentication Dial-In User Service (RADIUS) provides an authentication and accounting system. It is a popular authentication mechanism for many ISPs.

RC4

A symmetric stream cipher provided by RSA Security. It is a variable key-size stream cipher with byte-oriented operations. It allows keys up to 2048 bits in length.

Roaming

In IEEE 802.11 parlance, roaming clients are mobile client stations or devices on a wireless network (WLAN) that require use of more than one Access Point (AP) as they move out of
and into range of different base station service areas. IEEE 802.11f defines a standard by which APs can communicate information about client associations and disassociations in support of roaming clients.

Router

A router is a network device which forwards packets between networks. It is connected to at least two networks, commonly between two local area networks (LANs) or between a LAN and a wide-area network (WAN), for example, the Internet. Routers are located at gateways—places where two or more networks connect.

A router uses the content of headers and its tables to determine the best path for forwarding a packet. It uses protocols such as the Internet Control Message Protocol (ICMP), Routing Information Protocol (RIP), and Internet Router Discovery Protocol (IRDP) to communicate with other routers to configure the best route between any two hosts. The router performs little filtering of data it passes.

RSSI

The Received Signal Strength Indication (RSSI) an 802.1x value that calculates voltage relative to the received signal strength. RSSI is one of several ways of measuring and indicating radio frequency (RF) signal strength. Signal strength can also be measured in mW (milliwatts), dBms (decibel milliwatts), and a percentage value.

RTP

Real-Time Transport Protocol (RTP) is an Internet protocol for transmitting real-time data like audio and video. It does not guarantee delivery but provides support mechanisms for the sending and receiving applications to enable streaming data. RTP typically runs on top of the UDP protocol, but can support other transport protocols as well.

RTS

A request to send (RTS) message is a signal sent by a client station to the access point, asking permission to send a data packet and to prevent other wireless client stations from grabbing the radio waves. This message is a part of the IEEE 802.11 CSMA/CA protocol. (See also RTS Threshold and CTS.)
Appendix D: Glossary

RTS Threshold

The *RTS threshold* specifies the packet size of a request to send (*RTS*) transmission. This helps control traffic flow through the access point, and is especially useful for performance tuning on an access point with a many clients.

S

Shared Key

A *shared key* is used in conventional encryption where one key is used both for encryption and decryption. It is also called *secret-key* or *symmetric-key* encryption.

Also see *Public Key*.

SNMP

The *Simple Network Management Protocol* (*SNMP*) was developed to manage and monitor nodes on a network. It is part of the *TCP/IP* protocol suite.

SNMP consists of managed devices and their agents, and a management system. The agents store data about their devices in *Management Information Bases* (*MIBs*) and return this data to the SNMP management system when requested.

SNMP Traps

SNMP traps enable the asynchronous communication from network devices to managed agents. Setting SNMP traps saves on network resources and eliminates redundant SNMP requests.

SSID

The *Service Set Identifier* (*SSID*) is a thirty-two character alphanumeric key that uniquely identifies a wireless local area network. It is also referred to as the *Network Name*. There are no restrictions on the characters that may be used in an SSID.

Static IP Address

See *IP Address*.
STP

The Spanning Tree Protocol (STP) is an IEEE 802.1 standard protocol (related to network management) for MAC bridges that manages path redundancy and prevents undesirable loops in the network created by multiple active paths between client stations. Loops occur when there are multiple routes between access points. STP creates a tree that spans all of the switches in an extended network, forcing redundant paths into a standby or blocked state. STP allows only one active path at a time between any two network devices (this prevents the loops) but establishes the redundant links as a backup if the initial link should fail. If STP costs change, or if one network segment in the STP becomes unreachable, the spanning tree algorithm reconfigures the spanning tree topology and re-establishes the link by activating the standby path. Without STP in place, it is possible that both connections may be simultaneously live, which could result in an endless loop of traffic on the LAN.

Subnet Mask

A Subnet Mask is a number that defines which part of an IP address is the network address and which part is a host address on the network. It is shown in dotted-decimal notation (for example, a 24-bit mask is shown as 255.255.255.0) or as a number appended to the IP address (for example, 192.168.2.0/24).

The subnet mask allows a router to quickly determine if an IP address is local or needs to be forwarded by performing a bitwise AND operation on the mask and the IP address. For example, if an IP address is 192.168.2.128 and the netmask is 255.255.255.0, the resulting network address is 192.168.2.0.

The bitwise AND operator compares two bits and assigns 1 to the result only if both bits are 1. The following table shows the details of the netmask:

<table>
<thead>
<tr>
<th>IP address</th>
<th>192.168.2.128</th>
<th>11000000 10101000 00000010 10000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netmask</td>
<td>255.255.255.0</td>
<td>11111111 11111111 11111111 00000000</td>
</tr>
<tr>
<td>Resulting network address</td>
<td>192.168.2.0</td>
<td>11000000 10101000 00000010 00000000</td>
</tr>
</tbody>
</table>

Supported Rate Set

The supported rate set defines the transmission rates that are available on this wireless network. A station may be able to receive data at any of the rates listed in this set. All stations must be able to receive data at the rates listed in the Basic Rate Set.
Appendix D: Glossary

TCP

SVP

SpectraLink Voice Priority (SVP) is a QoS approach to Wi-Fi deployments. SVP is an open specification that is compliant with the IEEE 802.11b standard. SVP minimizes delay and prioritizes voice packets over data packets on the Wireless LAN, thus increasing the probability of better network performance.

TCP

The Transmission Control Protocol (TCP) is built on top of Internet Protocol (IP). It adds reliable communication (guarantees delivery of data), flow-control, multiplexing (more than one simultaneous connection), and connection-oriented transmission (requires the receiver of a packet to acknowledge receipt to the sender). It also guarantees that packets will be delivered in the same order in which they were sent.

TCP/IP

The Internet and most local area networks are defined by a group of protocols. The most important of these is the Transmission Control Protocol over Internet Protocol (TCP/IP), the de facto standard protocols. TCP/IP was originally developed by Defense Advanced Research Projects Agency (DARPA, also known as ARPA, an agency of the US Department of Defense).

Although TCP and IP are two specific protocols, TCP/IP is often used to refer to the entire protocol suite based upon these, including ICMP, ARP, UDP, and others, as well as applications that run upon these protocols, such as telnet, FTP, etc.

TKIP

The Temporal Key Integrity Protocol (TKIP) provides an extended 48-bit initialization vector, per-packet key construction and distribution, a Message Integrity Code (MIC, sometimes called “Michael”), and a re-keying mechanism. It uses a RC4 stream cipher to encrypt the frame body and CRC of each 802.11 frame before transmission. It is an important component of the WPA and 802.11h security mechanisms.
ToS

TCP/IP packet headers include a 3-to-5 bit Type of Service (ToS) field set by the application developer that indicates the appropriate type of service for the data in the packet. The way the bits are set determines whether the packet is queued for sending with minimum delay, maximum throughput, low cost, or mid-way “best-effort” settings depending upon the requirements of the data. The ToS field is used by the 9160 G2 Wireless Gateway to provide configuration control over Quality of Service (QoS) queues for data transmitted from the AP to client stations.

UDP

The User Datagram Protocol (UDP) is a transport layer protocol providing simple but unreliable datagram services. It adds port address information and a checksum to an IP packet.

UDP neither guarantees delivery nor does it require a connection. It is lightweight and efficient. All error processing and retransmission must be performed by the application program.

Unicast

A Unicast sends a message to a single, specified receiver. In wireless networks, unicast usually refers to an interaction in which the access point sends data traffic in the form of IEEE 802.1x Frames directly to a single client station MAC address on the network.

Some wireless security modes distinguish between how unicast, multicast, and broadcast frames are encrypted or whether they are encrypted.

See also Multicast and Broadcast.

URL

A Uniform Resource Locator (URL) is a standard for specifying the location of objects on the Internet, such as a file or a newsgroup. URLs are used extensively in HTML documents to specify the target of a hyperlink which is often another HTML document (possibly stored
on another computer). The first part of the URL indicates what protocol to use and the second part specifies the IP address or the domain name where that resource is located.

For example, ftp://ftp.devicescape.com/downloads/myfile.tar.gz specifies a file that should be fetched using the FTP protocol; http://www.devicescape.com/index.html specifies a Web page that should be fetched using the HTTP protocol.

UTC

Coordinated Universal Time (UTC) is also known as Greenwich Mean Time.

V

VLAN

A virtual LAN (VLAN) is a software-based, logical grouping of devices on a network that allow them to act as if they are connected to a single physical network, even though they may not be. The nodes in a VLAN share resources and bandwidth, and are isolated on that network. The 9160 G2 Wireless Gateway supports the configuration of a wireless VLAN. This technology is leveraged on the access point for the “virtual” guest network feature.

VPN

A Virtual Private Network (VPN) is a network that uses the Internet to connect its nodes. It uses encryption and other mechanisms to ensure that only authorized users can access its nodes and that data cannot be intercepted.

W

WAN

A Wide Area Network (WAN) is a communications network that spans a relatively large geographical area, extending over distances greater than one kilometer. A WAN is often connected through public networks, such as the telephone system. It can also be connected through leased lines or satellites.

The Internet is essentially a very large WAN.
WDS

A **Wireless Distribution System** (WDS) allows the creation of a completely wireless infrastructure. Typically, an **Access Point** is connected to a wired **LAN**. WDS allows access points to be connected wirelessly. The access points can function as wireless repeaters or bridges.

WEP

Wired Equivalent Privacy (WEP) is a data encryption protocol for **802.11** wireless networks. All wireless stations and access points on the network are configured with a static 64-bit (40-bit secret key + 24-bit initialization vector (IV)) or 128-bit (104-bit secret key + 24-bit IV) **Shared Key** for data encryption. It uses a **RC4** stream cipher to encrypt the frame body and CRC of each **802.11** frame before transmission.

Wi-Fi

A test and certification of interoperability for **WLAN** products based on the **IEEE 802.11** standard promoted by the **Wi-Fi Alliance**, a non-profit trade organization.

WINS

The **Windows Internet Naming Service** (WINS) is a server process for resolving Windows-based computer names to IP addresses. It provides information that allows these systems to browse remote networks using the **Network Neighborhood**.

Wireless Networking Framework

There are two ways of organizing a wireless network:

- Stations communicate directly with one another in an **Ad hoc Mode** network, also known as an independent basic service set (**IBSS**).
- Stations communicate through an **Access Point** in an **Infrastructure Mode** network. A single access point creates an infrastructure basic service set (**BSS**) whereas multiple access points are organized in an extended service set (**ESS**).

WLAN

Wireless Local Area Network (WLAN) is a **LAN** that uses high-frequency radio waves rather than wires to communicate between its nodes.
Appendix D: Glossary

WMM

Wireless Multimedia (WMM) is an IEEE technology standard designed to improve the quality of audio, video and multimedia applications on a wireless network. Both access points and wireless clients (laptops, consumer electronics products) can be WMM-enabled. WMM features are based on is a subset of the WLAN IEEE 802.11e draft specification. Wireless products that are built to the standard and pass a set of quality tests can carry the “Wi-Fi certified for WMM” label to ensure interoperability with other such products. For more information, see the WMM page on the Wi-Fi Alliance Web site: http://www.wi-fi.org/OpenSection/wmm.asp.

WPA

Wi-Fi Protected Access (WPA) is a Wi-Fi Alliance version of the draft IEEE 802.11h standard. It provides more sophisticated data encryption than WEP and also provides user authentication. WPA includes TKIP and 802.1x mechanisms.

WPA2

Wi-Fi Protected Access (WPA2) is an enhanced security standard, described in IEEE 802.11h, that uses Advanced Encryption Standard (AES) for data encryption.

The original WPA uses Temporal Key Integrity Protocol (TKIP) for data encryption. WPA2 is backwards-compatible with products that support the original WPA.

WPA2, like the original WPA, supports an Enterprise and Personal version. The Enterprise version requires use of IEEE 802.1x security features and Extensible Authentication Protocol (EAP) authentication with a RADIUS server.

The Personal version does not require IEEE 802.1x or EAP. It uses a Pre-Shared Key (PSK) password to generate the keys needed for authentication.

WRAP

Wireless Robust Authentication Protocol (WRAP) is an encryption method for 802.11h that uses AES but another encryption mode (OCB) for encryption and integrity.
The Extensible Markup Language (XML) is a specification developed by the W3C. XML is a simple, flexible text format derived from Standard Generalized Markup Language (SGML), designed especially for electronic publishing.
INDEX

A
access point clustering 55
Ethernet (wired) settings 135
guest network 153
load balancing 179
MAC filtering 175
monitoring 119
QoS 185
radio 165
security 91
user management 65
WDS bridging 201
wireless settings 145
Active Channel
RA1001A parameters 230
RRM Group 240
Actively Negotiate with Host
3274 Telnet Protocol 270
5250 Telnet Protocol 286
Adaptive polling/contention protocol 222
administrator
password on Basic Settings 49
platform 30
AIAG
3274 Emulation 263
5250 Emulation 279
Alarm
3274 Emulation 259
5250 Emulation 275
Allow
TCP Sessions, ANSI Telnet 298
Allow null character
3274 Emulation 258
5250 Emulation 274
ANSI, connecting terminals 23
ANSI Emulation 289–299
antenna requirements 19, 20
approvals xv
Arrow Key Remapping, ANSI Emulation 291
associated wireless clients 128
Atheros Turbo modes 8, 167
authentication for security modes 94
authentication server
for IEEE 802.1x security mode 108
for WPA Enterprise security mode 113
Auto-login, ANSI Telnet
Auto-telnet/login Enable 295
failed login 297
Password 297, 296
User ID 296
Automatic Radio Address Assignment
Range, Radio Link Features 244
Automatic Terminal Number, Radio Link Features 245, 246
Auto-Startup
(base station) 234
RRM group 237
802.1Q 303
Auto-Startup, base station mode 226
Auto-telnet
3274 Telnet Protocol 272
5250 Telnet Protocol 286
Auto-telnet, ANSI Telnet
Auto-telnet/login Enable 295
Host 296
Terminal Prompt 296
Auto-telnet Host
3274 Telnet Protocol 272
5250 Telnet Protocol 286
Auto-telnet Without User Action
ANSI Telnet Protocol 297
3274 Telnet Protocol 272
5250 Telnet Protocol 287
Auto-telnet Without User Action Timing
Delay
ANSI Telnet Protocol 298
B
backup
Index

links, WDS 205
user accounts database 70
Barcode
3274 Emulation 267
5250 Emulation 283
base station
Auto-Startup 226, 234
Base Station Number 233
configuration 219–249
Connectivity Menus 231–249
First Terminal 256
First Terminal, 9010 /TCP/IP host 248
Host Number 248, 256
Hosts 246–249
IP Address 233
Last Terminal, 9010 /TCP/IP host 248
Last Terminal host 256
Message Size 234
Monitor Poll, 9010/TCP/IP host 249
Name 233
narrow band radio menus 222–231
No Online/Offline, 9010/TCP/IP host 249
Operating Mode 226
overview 221
Shared Channel 227
9010 /TCP/IP host 248, 256
base station configuration 249
basic settings, viewing 41
Beacon
Interfaces, 802.IQv1 307
Period 802.IQ 303
UDP Port, 802.IQv2 307
beacon interval, configuring 169
bridges, WDS 203
Broadcast SSID 100
C
cables
coaxial 20
console port No. 19387 B-2
serial descriptions B-1
Callsign
Period RRM group 238
Period, narrow band radio 229
String RRM group 239
String, narrow band radio 229
captive portal 156
cellular
base 222, 243
switching 221
certificate
obtaining TLS-EAP certificate for client C-35
security for IEEE 802.1x client C-18
security for WPA/WPA2 Enterprise (RADIUS) client C-26
channel, configuring radio 169
channel management of clustered APs
advanced settings 79
example 76
navigating to 75
proposed channel assignments 79
understanding 75
viewing/setting locks 78
Clear
3274 Emulation 259
5250 Emulation 276
client
associations 128
link integrity monitoring 129
platform 31
security C-5
session, definition 63
sessions 62
See also stations 169
Close Host Sessions on Terminal Reset
ANSI Telnet Protocol 293
cluster
adding an access point 60
auto-sync 58
channel management 73
definition 56
formation 58
neighbors 83, 85
security 58
size 56
size and membership 58
stopping clustering 61
troubleshooting D-44
types of access points supported 56
understanding 55
Collision
Size
narrow band radio 228
RRM group 238

Combination, RRM Group 240

Command Region
- 3274 Emulation 268
- 5250 Emulation 284
configuration mini-controller 251–299

Configure Device Names
- 3274 Telnet Protocol 287

Configure LU Names
- 3274 Telnet Protocol 271

connecting
- ANSI-compatible terminals 23
- console 23
- Ethernet 21
- video display terminal 23

Connectivity Menus 246, 249

Connectivity Options
- Base Station Mode 225
- RRM Mode 231
connectors
- RJ-45 B-3

console
- connecting to 23
- port cable No. 19387 B-2

pinouts B-1

Convert 7 to 8 Bits
- ANSI Emulation 292

D

- data rate, serial 23
- DCF as related to QoS 190
- Random Backoff Timer 191
- DEC VT220, connecting 23
- default configuration, restoring 248, 257
- default settings, for 9160 G2 Wireless Gateway 27
- Depth, Event Logs 124

Device Name Prefix
- 5250 Telnet Protocol 288
- DHCP, understanding in relation to self-managed APs 32
directional antenna 19

Direct TCP Check Duplicate Terminal Number, Radio Link Features 244

Direct TCP Connections for TekTerm, Radio Link Features 244

DNS Hostname, Ethernet Settings 138
- DSCP
 - Priority 193
tags 192
- DTIM period, configuring 169

E

EAP-PEAP
- configuring on IEEE 802.1x client C-15
- configuring on WPA/WPA2 Enterprise (RADIUS) client C-22

Echo, ANSI Emulation 290
electrical safety approvals xv

Emissions Information, Canada xv

Emulation
- mini-controller configuration 256

emulations
- ANSI 289–299

overview 253
- 3274/Telnet 258–273
- 5250 274–288
- 9010/TCP/IP 249

Enable Virtual Device Names, 5250 Telnet Protocol 287

Enabling Or Disabling Persistence, Event Logs 123

encryption in different security modes 94

Entry Line
- 3274 Emulation 267
- 5250 Emulation 283

environmental requirements 17
- operating relative humidity 323
- operating temperature 323

overview 17

storage temperature 323

Escape Timeout, ANSI Emulation 290

Ethernet
- adaptor cards 324
- base station 233
cable lengths 22
connections 21, 38
settings 135, 159
status indicator LED 22
- 10BaseT 21

pinouts B-3

100Base-FX fiber optic 22
- 100BaseT 21

pinouts B-3
Index

Events	122
events	122
log	122
monitoring	122
Expiration Period, Radio Link Features	245
extended service set with WDS bridging	203
external devices	20

F

factory defaults described	27
features overview	10
fiber optic Ethernet port	22
Field Overhead	3274 Emulation 268
	5250 Emulation 284
Field Underline Remapping	5250 Emulation 275
Firefox	23
First Local Terminal Port	ANSI Telnet Protocol 293
	3274 Telnet Protocol 270
	5250 Telnet Protocol 285
First Terminal	248, 256
First Terminal Listen Port	ANSI Telnet Protocol 294
	3274 Telnet Protocol 270
	5250 Telnet Protocol 286
Flash ROM	324
Forward 802.1Q Packets Only, 802.1Q	306
fragmentation threshold, configuring	169
Free Window Factor	RRM group 238
	Window Factor, narrow band radio 229
Function Key n	Function Key Mapping screens
ANSI	299
3274	273
5250	288
Function Key Remapping, ANSI Emulation	291

G

General Parameters, narrow band radio	225
Group Parameters, RRM Group	240
Guest Access, Ethernet Settings	138
guest interface	configuring 155
explanation 155	
features overview	12
VLANs	156
Guest Interface Settings, Ethernet Settings	143
Guest Network security	102

H

hardware connections	38
Hidden Match Character	3274 Emulation 266
	5250 Emulation 282
Host	Port
	ANSI Telnet Protocol 293
	3274 Telnet Protocol 269
	5250 Telnet Protocol 285
Print	3274 Emulation 261
	5250 Emulation 277
Timeout, ANSI Emulation	289
Host Initialization Data, ANSI Emulation	292
HOST MENU	mini-controller 258
Host Number, base station configuration	248, 256
HOSTS	mini-controller configuration 254
Hosts (base station configuration)	246–249

I

icons on UI	50
IEEE 802.1x	security mode
	client configuration C-15
	configuring 108
	when to use 95
IEEE 802.11	radio mode, configuring 169
	rate set, configuring 169
	standards support 10
IEEE 802.11a	configuring 169
configuring 169
IEEE 802.11g 169
Initial RTT; 802.IQv1 306
input voltage (power requirements) 18, 323
installation
antennas 21
environmental requirements 17, 323
LAN 21
power cable 21
safety xvii
interfaces, network 324
interframe spaces as related to QoS 190
Internal Interface Settings, Ethernet Settings 140
Internet Explorer 23
IP Address (base station) 233
IP addresses
navigating to 61
understanding policies for self-managed APs 32
viewing for access points 55, 62, 85
9160 G2 21
Is Host Fujitsu
3274 Emulation 258

K
key management, security 94

L
LAN installations 21
Last Active Session Key
ANSI Telnet Protocol 294
LEDs 22
link integrity monitoring 129
load balancing, configuring 182
Local
3274 Emulation 261
5250 Emulation 277
Local IP Address to Bind
ANSI Telnet Protocol 294
3274 Telnet Protocol 270
5250 Telnet Protocol 286
location, describing 60
logon administration Web pages 40
Log Relay Host For Kernel Messages, Event Logs 124
loops, WDS 203
Lower Character Set (GL), ANSI Emulation 292
LU Name Prefix
3274 Telnet Protocol 271

M
MAC filtering, configuring 178
maintenance requirements 18
Management Information Bases (MIBs) 213
mapRF 802.1Qv2 303
Maximum
Message Segment Size
RRM group 238
Message Segment Size, narrow band radio 228
Screen Size, ANSI Emulation 289
Sessions per Terminal
ANSI Telnet Protocol 293
3274 Telnet Protocol 269
5250 Telnet Protocol 285
Maximum Of Auto-telnet Retries
ANSI Telnet Protocol 298
memory 324
Message
Mode Limit
RRM group 238
Mode Limit, narrow band radio 229
Size (base station) 234
MIBs See Management Information Bases 213
Microsoft Internet Explorer 23
mini-controller
configuration 251–299
emulations 253
networks 253
modulation levels, narrow band radio 230
Monitor Poll, 9010/TCP/IP emulation 249

N
narrow band radio
Active Channel parameter 230
configuration settings 222, 231
Connectivity Options, Base Station Mode 225
Connectivity Options, RRM Mode 231
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polling Protocol Parameters</td>
<td>227</td>
</tr>
<tr>
<td>Port parameter</td>
<td>231</td>
</tr>
<tr>
<td>Radio Parameters</td>
<td>230</td>
</tr>
<tr>
<td>2 level modulation</td>
<td>230</td>
</tr>
<tr>
<td>4 level modulation</td>
<td>230</td>
</tr>
<tr>
<td>Neighbor 85</td>
<td></td>
</tr>
<tr>
<td>neighboring access points 129</td>
<td></td>
</tr>
<tr>
<td>networking, features overview 13</td>
<td></td>
</tr>
<tr>
<td>network interfaces</td>
<td>324</td>
</tr>
<tr>
<td>No Online/Offline, 9010/TCP/IP</td>
<td></td>
</tr>
<tr>
<td>emulation</td>
<td>249</td>
</tr>
<tr>
<td>NTP server</td>
<td></td>
</tr>
<tr>
<td>configuring access point to use 312</td>
<td></td>
</tr>
<tr>
<td>Number of Poll Windows</td>
<td></td>
</tr>
<tr>
<td>RRM group 237</td>
<td></td>
</tr>
<tr>
<td>Poll Windows, narrow band radio 227</td>
<td></td>
</tr>
<tr>
<td>Retries</td>
<td></td>
</tr>
<tr>
<td>RRM group 238</td>
<td></td>
</tr>
<tr>
<td>Retries, narrow band radio 228</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>omnidirectional antenna 19</td>
<td></td>
</tr>
<tr>
<td>online/offline messages 249</td>
<td></td>
</tr>
<tr>
<td>Operate in Cellular Mode, Radio Link Features 243</td>
<td></td>
</tr>
<tr>
<td>operating relative humidity 323</td>
<td></td>
</tr>
<tr>
<td>temperature 323</td>
<td></td>
</tr>
<tr>
<td>Operating Mode, base station 226</td>
<td></td>
</tr>
<tr>
<td>orchestrator features overview 12</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>packet bursting</td>
<td></td>
</tr>
<tr>
<td>as related to QoS 191</td>
<td></td>
</tr>
<tr>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>3274 Emulation 262</td>
<td></td>
</tr>
<tr>
<td>5250 Emulation 278</td>
<td></td>
</tr>
<tr>
<td>Page Saving</td>
<td></td>
</tr>
<tr>
<td>ANSI Emulation 291</td>
<td></td>
</tr>
<tr>
<td>Page Saving Consider Double Byte Char-acter, ANSI Emulation 291</td>
<td></td>
</tr>
<tr>
<td>parameters</td>
<td></td>
</tr>
<tr>
<td>changing with a web browser 23</td>
<td></td>
</tr>
<tr>
<td>Passthru</td>
<td></td>
</tr>
<tr>
<td>3274 Emulation 260</td>
<td></td>
</tr>
<tr>
<td>5250 Emulation 276</td>
<td></td>
</tr>
<tr>
<td>password</td>
<td></td>
</tr>
<tr>
<td>network setting for administrator 49</td>
<td></td>
</tr>
<tr>
<td>on Basic Settings 49</td>
<td></td>
</tr>
<tr>
<td>PEAP</td>
<td></td>
</tr>
<tr>
<td>configuring on IEEE 802.1x client C-15</td>
<td></td>
</tr>
<tr>
<td>configuring on WPA/WPA2 Enterprise (RADIUS) client C-22</td>
<td></td>
</tr>
<tr>
<td>Percent Polling Protocol Terminal Time- out, Radio Link Features 243</td>
<td></td>
</tr>
<tr>
<td>physical</td>
<td></td>
</tr>
<tr>
<td>description 323</td>
<td></td>
</tr>
<tr>
<td>specifications 323</td>
<td></td>
</tr>
<tr>
<td>pinouts</td>
<td></td>
</tr>
<tr>
<td>plain-text security mode</td>
<td></td>
</tr>
<tr>
<td>client configuration C-11</td>
<td></td>
</tr>
<tr>
<td>** configuring 102**</td>
<td></td>
</tr>
<tr>
<td>when to use 94</td>
<td></td>
</tr>
<tr>
<td>platform</td>
<td></td>
</tr>
<tr>
<td>administrator requirements 30</td>
<td></td>
</tr>
<tr>
<td>client requirements 31</td>
<td></td>
</tr>
<tr>
<td>Poll ID, Radio Link Features 243</td>
<td></td>
</tr>
<tr>
<td>Polling Protocol Parameters</td>
<td></td>
</tr>
<tr>
<td>RA1001A 227</td>
<td></td>
</tr>
<tr>
<td>RRM Group 237</td>
<td></td>
</tr>
<tr>
<td>Polling Protocol Terminal Timeout, Radio Link Features 243</td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td></td>
</tr>
<tr>
<td>RA1001A parameters 231</td>
<td></td>
</tr>
<tr>
<td>ports</td>
<td></td>
</tr>
<tr>
<td>hardware 37</td>
<td></td>
</tr>
<tr>
<td>location 20</td>
<td></td>
</tr>
<tr>
<td>pinouts</td>
<td></td>
</tr>
<tr>
<td>console port B-1</td>
<td></td>
</tr>
<tr>
<td>RJ-45 connector (10BaseT) B-3</td>
<td></td>
</tr>
<tr>
<td>power</td>
<td></td>
</tr>
<tr>
<td>connections 38</td>
<td></td>
</tr>
<tr>
<td>requirements 18, 323</td>
<td></td>
</tr>
<tr>
<td>Power Over Ethernet specifications 323</td>
<td></td>
</tr>
<tr>
<td>Print Form Length</td>
<td></td>
</tr>
<tr>
<td>3274 Emulation 267</td>
<td></td>
</tr>
<tr>
<td>5250 Emulation 283</td>
<td></td>
</tr>
<tr>
<td>Print Line</td>
<td></td>
</tr>
<tr>
<td>3274 Emulation 267</td>
<td></td>
</tr>
<tr>
<td>5250 Emulation 283</td>
<td></td>
</tr>
<tr>
<td>Procedures</td>
<td></td>
</tr>
<tr>
<td>3274 Emulation 261</td>
<td></td>
</tr>
<tr>
<td>5250 Emulation 277</td>
<td></td>
</tr>
<tr>
<td>processor 324</td>
<td></td>
</tr>
<tr>
<td>progress bar for cluster auto-sync 58</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td></td>
</tr>
<tr>
<td>Type ID, 802.IQv1 306</td>
<td></td>
</tr>
</tbody>
</table>
Index

protocol
 adaptive polling/contention 222
radio
 adaptive polling/contention 222
 cellular switching 221
timeplexing 221

Q
QoS See quality of service 185
quality of service 185
queues, configuring for QoS 194

R
radio
 Automatic Radio Address Assignment 244
 Range 244
 Automatic Terminal Number 245, 246
 beacon interval 169
 channel managed of clustered APs 73
 configuring one or two radio AP 169
 configuring settings 169
 DTIM period 169
Expiration Period 245
 fragmentation threshold 169
 IEEE 802.11 mode 169
 installation and antennas 18
 installed configuration 9
 maximum stations 169
Percent Polling Protocol Terminal Timeout 243
Poll ID 243
Polling Protocol Terminal Timeout 243
 protocols (adaptive polling, IEEE 802.11) 222
 rate sets 169
 RA1001A narrow band 324
 RTS threshold 169
 specifications 324
 status indicator LEDs 22
 SuperAG 169
 transmit power 169
 Turbo broadcast mode, not recommended 8, 167
 turning on or off 169
 802.11A/G radio 324
 802.11G radio 324
Radio Card Status
 narrow band radio configuration menu 224
Radio Link Features, configuration settings 241–246
Radio Parameters
 RA1001A 230
 RRM Group 239
RADIUS server
 configuring to acknowledge access points C-31
 See also authentication server
 RA1001A narrow band radio configuration 223
 specifications 324
 RA1001A Radio Parameters 224
Remote Print
 3274 Emulation 262
 5250 Emulation 278
Remote Radio Modules, RRM Group 241
Remote Txon
 narrow band radio 230
 RRM group 239
Retries, Number of 228
 RJ-45 connector pinouts (10BaseT Ethernet) B-3
RLE, ANSI Emulation 292
 rogue access points 129
 RRM Group
 Active Channel 240
 Auto-Startup 237
 Callsign Period 238
 Callsign String 239
 Collision Size 238
 Combination 240
 Free Window Factor 238
 Maximum Message Segment Size 238
 Message Mode Limit 238
 Number of Poll Windows 237
 Number of Retries 238
 Polling Protocol Parameters 237
 Remote Radio Modules 241
 Remote Txon 239
 RRM Group Number 236
 Shared Channel 237
 Size of Poll Windows 238
 Sync Delay 239
 RRM Groups configuration settings 234

Psion Teklogix 9160 G2 Wireless Gateway User Manual 7
RRM mode 231
RTS threshold, configuring 169

S
safety
 approvals xv
 instructions xvii
SDRAM 324
security
 authentication server C-31
 certificates on client C-35
 configuring 91–118
 configuring on the access point 100
 configuring on wireless clients C-5
 features overview 11
 guest network 102
 IEEE 802.1x 108
 plain-text (configuring for none) 102
 pros and cons of different modes 93
 static WEP 103
 WPA/WPA2 Enterprise (RADIUS) 113
 WPA/WPA2 Personal (PSK) 111
Send IAC Break as an Attention Key, 3274 Telnet Protocol 272
Send IAC Interrupt Process as a System Request 271
serial
 data rate 23
 Serial I/O
 3274 Emulation 267
 5250 Emulation 283
 status indicator LED 22
Session Cycle Key, ANSI Telnet Protocol 294
session monitoring
 about 62
 navigating to 62
 refreshing information 64
 viewing session information 64
Sessions 62
Severity, Event Logs 123
Shared Channel
 RRM group 237
Shared Channel, base station 227
Simple Network Management Protocol (SNMP) 213
Size of Poll Windows
 narrow band radio 228
 RRM group 238
 small form pluggable module 22
SNMP See Simple Network Management Protocol 213
software upgrade
 802.IQv2 303
specifications
 physical 323
 RA1001A narrow band radio 324
 802.11A/G radio 324
 802.11G radio 324
 standards 10
 starting the network 50
 static WEP security mode
 configuring 103
 on WDS links 205
 when to use 95
 Station Isolation 100
 stations
 configuring maximum allowed 169
 See also client
 status indicators (LEDs) 22
supported platforms
 administrator 30
 client 31
Sync Delay
 narrow band radio 230
 RRM group 239
 synchronization of cluster 58
T
TCP Session Request Key, ANSI Telnet Protocol 294
TekTerm, Radio Link Features 244
Terminal
 Offline Timeout
 802.IQ 304
 Type
 ANSI Telnet Protocol 293
 3274 Telnet Protocol 269
 5250 Telnet Protocol 285
terminal
 connecting a video display 23
Terminal Initialization Data, ANSI Emulation 292
terminal range, Hosts menu 256
terminal range, Hosts menu 256
terminal range, Hosts menu (9010 emulation) 248
Index

terminal range, Hosts menu (9010 emulation) 248
text conventions 7
Threshold
ANSI Emulation 290
time, configuring AP to use NTP server 312
timplexing 221
Time settings 311
Time Zone 312
TLS-EAP
configuring on IEEE 802.1x client C-18
configuring on WPA/WPA2 Enterprise (RADIUS) client C-26
obtaining certificate for client C-35
ToS as related to QoS 188
transmit/receive information 127
Transmit Line
3274 Emulation 263
5250 Emulation 279
transmit power, configuring 169
troubleshooting startup problems 42
Turbo broadcast mode, not recommended 8, 167
Type of Service See ToS 188

U
UI colors and style 50
Upgrade Firmware 9
Upper Character Set (GR), ANSI Emulation 292
Use International EBCDIC
3274 Emulation 258
5250 Emulation 274
user
accounts
backing up and restoring 70
for built-in authentication server 65
authentication
configuring on IEEE 802.1x client C-15
configuring on WPA/WPA2 Enterprise (RADIUS) client C-22

V
video display terminal, connecting 23
Visible Match Character
3274 Emulation 265
5250 Emulation 281
VLAN
for internal and guest interface 156
Priority 193
Voice over IP
improved service with QoS 185
voltage, input 18, 323
VWN (Virtual Wireless Networks), Ethernet Settings 140

W
wait time for cluster auto-sync 58
WDS
configuring 206
example 209
explanation 203
rules 207
web browser 23
WEP security mode
client configuration C-12
configuring 103
when to use 95
Wi-Fi compliance 10
wired settings 135, 159
wireless
eighborhood 83
overview of AP features 7
settings 145
WPA/WPA2 Enterprise (RADIUS) security mode client configuration C-22
WPA/WPA2 Personal (PSK) security mode client configuration C-29
WPA Enterprise security mode
configuring 113
when to use 97
WPA Personal security mode
configuring 111
when to use 96
Write Error Code, 5250 Emulation 274

10BaseT Ethernet 21, B-3
100Base-FX fiber optic port 22
100BaseT Ethernet 21, B-3
3274/Telnet 258–273
Protocol 271
5250 Emulation 274–288
802.1Q
Auto-Startup 303

Psion Teklogix 9160 G2 Wireless Gateway User Manual 9
Index

Beacon Period 303
protocol overview 303
Terminal Offline Timeout 304
802.1Qv1
Beacon Interfaces 307
description 303
Features Menu 307
Forward 802.1Q Packets Only 306
Initial RTT 306
Protocol Type ID 306
802.1Qv2
Beacon UDP Port 307
description 303
Features Menu 307
802.1p tags 192
802.11A/G radio 324
802.11 Advanced Settings (Radio Settings page) 167, 173
802.11G radio 324
802.11 Settings (Wireless Settings page)) 147, 152
9010 / TCP/IP, base station configuration 248, 256
9010 Configuration 249
9010 Emulation 249
9500 Communications Server, cellular mode 243