Copyright

Copyright (c) 2006 by Symbol Technologies, Inc. All rights reserved.

No part of this publication can be modified or adapted in any way, for any purposes without permission in writing from Symbol. The material in this manual is subject to change without notice.

Symbol reserves the right to make changes to any product to improve reliability, function, or design.

No license is granted, either expressly or by implication, estoppel, or otherwise under any Symbol Technologies, Inc., intellectual property rights. An implied license only exists for equipment, circuits, and subsystems contained in Symbol products.

Symbol, the Symbol logo are registered trademarks of Symbol Technologies, Inc.

IBM is a registered trademark of International Business Machine Corporation. Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation. Novell and LAN Workplace are registered trademarks of Novell Inc. Toshiba is a trademark of Toshiba Corporation. All other product names referred to in this guide might be trademarks or registered trademarks of their respective companies and are hereby acknowledged.

Patents

This product is covered by one or more of the patents listed on the website: www.symbol.com/patents
About This Guide

Introduction

This guide provides configuration and setup information for the CB3000 model client bridge.

Document Conventions

The following document conventions are used in this document:

- **NOTE** Indicate tips or special requirements

- **CAUTION** Indicates conditions that can cause equipment damage or data loss.
Notational Conventions

The following notational conventions are used in this document:

- Italics are used to highlight specific items in the general text, and to identify chapters and sections in this and related documents.
- Bullets (•) indicate:
 - action items
 - lists of alternatives
 - lists of required steps that are not necessarily sequential
- Sequential lists (those describing step-by-step procedures) appear as numbered lists.

Service Information

If a problem with is encountered with the CB3000, contact Symbol Customer Support. Before calling, have the model number and serial number at hand.

If the problem cannot be solved over the phone, you may need to return your equipment for servicing. If that is necessary, you will be given specific directions.

Symbol Technologies is not responsible for any damages incurred during shipment if the approved shipping container is not used. Shipping the units improperly can possibly void the warranty. If the original shipping container was not kept, contact Symbol to have another sent to you.
Chapter 1. Introduction

General Overview ... 1-1
Within the Network .. 1-2
Feature Summary .. 1-2
CB3000 Operational Principles 1-3
CB3000 Network Operating Modes 1-3
 Infrastructure Mode ... 1-3
 Ad Hoc (Peer-to-Peer) Mode 1-4
Media Access Control (MAC) Layer Bridging 1-5
DHCP Support ... 1-5
Modulation ... 1-5
 Direct Sequence Spread Spectrum (DSSS) 1-5
 Orthogonal Frequency Division Multiplexing (OFDM) .. 1-6
Web Management Support 1-6
Wireless Security Support 1-6
 About WEP Security .. 1-6
Chapter 2. Getting Started
- Prerequisite Requirements .. 2-2
- Verifying the Package Contents ... 2-2
- Observing Placement and Range Guidelines 2-2
- Cabling the CB3000 ... 2-3
- Logging into the CB3000 ... 2-5
 - Discovery Tool Login ... 2-5
 - Web Interface Login ... 2-7
- Viewing CB3000 Information ... 2-9
- CB3000 Antenna Selection .. 2-10

Chapter 3. Network Configuration
- Understanding and Configuring Wireless Settings 3-1
 - Available Networks ... 3-2
 - Network Configurations .. 3-3
 - Configuring Infrastructure Settings ... 3-3
 - Configuring Ad Hoc Settings .. 3-5
 - Security Encryption Configurations .. 3-8
 - Configuring Open Security Settings .. 3-8
 - Configuring WEP Security Settings ... 3-9
 - Configuring WPA1 (TKIP) Security Settings 3-10
 - Configuring WPA2 (CCMP) Security Settings 3-12
 - Configuring Secure 802.1x Security Settings 3-14
- Understanding and Configuring Ethernet Settings 3-17
- Client Management ... 3-18
- Configuring a Wired Ethernet ACL .. 3-20

Chapter 4. Management Options
- Statistics and Logs ... 4-2
 - Viewing Wireless Statistics ... 4-3
 - Viewing RF Statistics .. 4-5
Chapter 5. Administrative Options

Changing the Password ... 5-1
Rebooting or Restoring a Device ... 5-2
 Rebooting the Device .. 5-3
 Restoring the Device .. 5-4
Importing or Exporting the Configuration File 5-5
 Using FTP .. 5-6
 Using HTTP ... 5-7
Loading Firmware ... 5-8
Troubleshooting Options ... 5-11

Appendix A. CB3000 Specifications

Appendix B. SNMP MIB Support

Appendix C. Customer Support
This chapter introduces the Symbol CB3000 Client Bridge, describing its operational environment and its primary operating principles and features.

It includes the following sections:

- **General Overview**
- **CB3000 Operational Principles**

1.1 General Overview

The CB3000 Client Bridge is an IEEE 802.11a/b/g compliant wireless LAN Ethernet adapter. The CB3000 extends wireless networking capabilities to printers, scales, medical equipment, manufacturing machinery, bar code readers, time clocks, point-of-sale and other data collection devices. The CB3000 provides a reliable, cost-effective interface between devices utilizing Ethernet ports and Symbol’s wireless LAN switches and access points.

Multiple devices can share one CB3000 using a 10BaseT Ethernet hub. This feature saves equipment costs when several devices require wireless Ethernet connectivity. The CB3000 has an on-board TCP/IP stack to
provide a reliable transport mechanism. The CB3000 can initiate a permanent client connection to your server or accept datagrams from multiple sources. Use the CB3000 to network devices that do not have a PC Card slot or PCI card slot (printers, scanners, Internet appliances etc.).

The CB3000 uses frequency modulation to transmit digital data to the devices within its own subnet. The transmission begins with a carrier signal that provides the center frequency. The digital data is superimposed on the carrier signal (modulation). The radio signal propagates into the air as electromagnetic waves.

The receiving antenna, in the path of the airwaves, absorbs the waves as electric signals. The receiving device demodulates the signal by removing the carrier signal. The CB3000 uses the environment as a transmission medium. The CB3000 is able to utilize both 2.4 and 5.2 GHz frequency ranges.

1.1.1 Within the Network

A CB3000 establishes an average communication range with its associated device(s) called a Basic Service Set (BSS) or cell. When in a particular cell, the devices can locate and communicate with the CB3000. Each cell has a basic service set identifier (BSS_ID). In IEEE 802.11, the CB3000 MAC address represents the BSS_ID.

![Figure 1.1 CB3000 within the Network](image)

The CB3000 appears as an individual mobile unit to an associated access point when operating in Infrastructure mode. For more information on CB3000 Infrastructure mode operation, see Infrastructure Mode on page 1-3.

1.1.2 Feature Summary

The CB3000 Client Bridge has the following feature set:

- Device driver free installation
- Multi-functional status LEDs
- Updatable device firmware
- IEEE 802.11a/b/g device interoperability
- Automatic rate selection
- Robust statistical displays
- Advanced event logging capabilities
- Configuration file import/export capability
• Roaming support
• Upgradable device firmware
• DHCP client support
• Password-protected management interface
• 64 and 128-bit WEP encryption for network security
• WPA1 (TKIP) and WPA2 (CCMP) for advanced data protection
• Secure 802.1x authentication
• Discovery Tool support.

1.2 CB3000 Operational Principles

To improve CB3000 management and performance, users need to understand basic network operating mode functionality and configuration options. These topics are described in the following sections:

• CB3000 Network Operating Modes
• Media Access Control (MAC) Layer Bridging
• DHCP Support
• Modulation
• Web Management Support
• Wireless Security Support

1.2.1 CB3000 Network Operating Modes

The CB3000 can be configured to operate in two different modes depending on the needs of the network. Select the CB3000 operating mode based on device interoperability requirements and network conditions (DHCP support, security settings, etc.).

The CB3000 supports the following network modes:

• Infrastructure Mode
• Ad Hoc (Peer-to-Peer) Mode

1.2.1.1 Infrastructure Mode

In infrastructure mode, the CB3000 connects to a LAN through a wireless access point. Ethernet client devices, such as PCs, printers, POS devices, and other Ethernet-capable devices connect to the CB3000, either directly, or through a hub connection.

The CB3000 associates with a nearby access point and sees the network device combination as a standard mobile unit (MU). The access point then forms a wireless bridge between the wired LAN and clients through the CB3000.

The access point is a dedicated device wired into the LAN backbone, while the CB3000 can be physically moved throughout the LAN. However, the CB3000 is designed to be placed in a single location for optimal use.

Ethernet clients connected to the CB3000 communicate within the network by routing data through the associated access point. The 802.11 standard enables CB3000 supported clients to be moved from one location to another. Reassociation occurs instantly on an open network with DHCP, but IP configuration is necessary for the CB3000 to communicate within networks that have security settings applied.
Warning! Do not connect a Client Bridge set to Infrastructure mode directly to the LAN (for example, through a wall port). Such a connection could cause a transmission loop between the client bridge and access point, disrupting network operation.

1.2.1.2 Ad Hoc (Peer-to-Peer) Mode

Ad Hoc (Peer-to-Peer) mode allows two or more CB3000 units to communicate exclusively with one another without the use of an access point. In the simplest of terms, this mode uses the CB3000 to bridge two or more Ethernet devices.

In ad hoc mode, all client devices bridged with the CB3000 share the same subnet and have identical configurations. More specifically, the wireless LAN service area, channel selection, data preamble settings, and security settings are required to be the same for the units to communicate.
1.2.2 Media Access Control (MAC) Layer Bridging

Like other Ethernet devices, the CB3000 has a hardware factory encoded address called a MAC address. The address consists of a 48-bit number written as six hexadecimal bytes separated by colons.

The CB3000 maintains a list of up to 16 Ethernet clients. Using the CB3000 client list, the administrator can determine which device is receiving or sending data at any given time.

1.2.3 DHCP Support

The CB3000 can use Dynamic Host Configuration Protocol (DHCP) to obtain a leased IP address and configuration information from a remote server. DHCP is based on the BOOTP protocol and can co-exist or interoperate with BOOTP.

Configure the CB3000 to send out a DHCP request searching for a server to acquire the required IP address information. If DHCP server support is unavailable, an IP address can be assigned to the CB3000 manually (static).

If CB3000 is configured to use DHCP, but there is no DHCP server to service the request, the CB3000 by default takes the address 10.10.1.1. If it is not (as per the Ethernet settings) then one needs to set the address manually.

1.2.4 Modulation

Modulation is the process of modulating an electromagnetic carrier wave. (e.g., radio wave), by imposing digital information on it, enabling the user to transmit the information in analogue form. The 802.11b standard uses Direct Sequence Spread System (DSSS), while 802.11a/g use Orthogonal Frequency Division Multiplexing (OFDM) to accommodate higher data rates.

1.2.4.1 Direct Sequence Spread Spectrum (DSSS)

The 802.11b standard supported by the CB3000 uses DSSS for radio communication. Spread Spectrum (broadband) uses a narrowband signal to spread the transmission over a segment of the radio frequency band. Direct-sequence is a spread spectrum technique where the transmitted signal is spread over a particular frequency range.

DSSS communicates by continuously transmitting a redundant pattern of bits called a chipping sequence. Each bit of transmitted data is mapped into chips by the CB3000 and rearranged into a pseudo-random spreading code to form the chipping sequence. The chipping sequence is combined with a transmitted data stream to produce the output signal used by the CB3000 and its associated access point or peer device (if in Ad Hoc mode).

Devices receiving a direct sequence signal use the spreading code to map the chips within the chipping sequence back into bits to recreate the original transmitted data. Intercepting and decoding a direct sequence transmission requires a predefined algorithm to associate the spreading code used by the transmitting access point and CB3000 to the receiving device. This algorithm is defined within the IEEE 802.11b specification. The bit redundancy within the chipping sequence enables the receiving device to recreate the original data pattern, even if bits in the chipping sequence are corrupted by interference.

The ratio of chips per bit is called the spreading ratio. A high spreading ratio increases the resistance of the signal to interference. A low spreading ratio increases the bandwidth available to the user. 802.11b supported devices are capable of an 11 Mbps data transmission rate, but the coverage area is less than 1 or 2 Mbps (Frequency-Hopping devices) since coverage area decreases as bandwidth increases.
1.2.4.2 Orthogonal Frequency Division Multiplexing (OFDM)

Orthogonal Frequency Division Multiplexing (OFDM), sometimes referred to as multiple carrier modulation, divides the available frequency into multiple sub-carriers. 52 sub-carriers are created. Four of the carriers are used to shift frequencies or as a recommendation to disregard.

The sub-carriers provide data rates of 6, 9, 12, 18, 24, 36, 48, or 54 Mbps for 802.11a and 802.11g supported devices. These pathways send information in a parallel fashion with a spacing of 0.3125 MHz.

Because of the orthogonal nature of this method, sub-channels are allowed to overlap, thus using the whole spectrum efficiently. The aggregate rate of the sub-channels increases the data rate speed to up to 54 Mbps.

Since OFDM divides one high speed channel into multiple lower speed channels, the effect of multi-path distortion, or delay spread is greatly reduced. With OFDM, less noise (signal disruption) is experienced, since the frequency can be altered to channels with less interference.

1.2.5 Web Management Support

Connect to the CB3000 by directly entering the CB3000’s IP address within a Web browser or by using the Symbol CB3000 Discovery Tool to locate the CB3000 within the network and launch the user interface from the Discovery Tool.

Note By default, only https access is allowed. However, http can be enabled from the http management link.

The Symbol CB3000 contains a built-in browser interface for system configuration and remote management using a standard Web browser such as Microsoft Internet Explorer 5.0 or later or Netscape Navigator 6.0 or later. The browser interface also allows for system monitoring of the CB3000.

Note Web management of the CB3000 requires either Microsoft Internet Explorer 5.0 or later or Netscape Navigator 6.0 or later.

1.2.6 Wireless Security Support

CB3000 includes numerous wireless security provisions. For more details on the security options, see the following sections:

- About WEP Security
- About WPA1 (TKIP) Security
- About WPA2 (CCMP) Security
- About Secure 802.1x Security

1.2.6.1 About WEP Security

All WLAN devices face possible information theft. Theft occurs when an unauthorized user eavesdrops to obtain information illegally. The absence of a physical connection makes wireless links particularly vulnerable to this form of theft. Most forms of security rely on encryption to various extents.
Encryption entails scrambling and coding information, typically with mathematical formulas called algorithms, before the information is transmitted. An algorithm is a set of instructions or formula for scrambling the data. A key is the specific code used by the algorithm to encrypt or decrypt the data.

Decryption is the decoding and unscrambling of received data. WEP may be all that a retail business needs for the simple encryption of wireless data. However, networks that require more security are at risk from a WEP flaw and should use a more sophisticated method for securing their CB3000 managed network.

The same device, host computer or front-end processor, usually performs both encryption and decryption. The data transmit or receive direction determines whether the encryption or decryption function is performed. The device takes plain text, encrypts or scrambles the text typically by mathematically combining the key with the plain text as instructed by the algorithm, then transmits the data over the network. At the receiving end another device takes the encrypted text and decrypts, or unscrambles, the text revealing the original message. An unauthorized user can know the algorithm, but cannot interpret the encrypted data without the appropriate key. Only the sender and receiver of the transmitted data know the key.

WEP is an encryption security protocol specified in the IEEE Wireless Fidelity (Wi-Fi) standard, 802.11b and supported by the CB3000. WEP encryption is designed to provide a wireless device with a level of security and privacy comparable to that of a wired LAN.

The level of protection provided by WEP encryption is determined by the encryption key length and algorithm. An encryption key is a string of case sensitive characters used to encrypt and decrypt data packets transmitted between a mobile unit (MU) and the CB3000. An CB3000 and associated device must use the same encryption key (typically 1 through 4) to interoperate.

For detailed steps on configuring WEP for the CB3000, see Configuring WEP Security Settings on page 3-9.

1.2.6.2 About WPA1 (TKIP) Security

Wi-Fi Protected Access (WPA) is a robust encryption scheme specified in the IEEE Wireless Fidelity (Wi-Fi) standard, 802.11i. WPA is a security standard for systems operating with a Wi-Fi wireless connection. WPA is designed for corporate networks and small-business (retail) environments where more wireless traffic allows quicker discovery of encryption keys by an unauthorized person.

WPA (referred to as WPA1 within the CB3000 Security Mode menu) provides more sophisticated data encryption than WEP. WEP’s lack of user authentication mechanisms is addressed by WPA. Compared to WEP, WPA provides superior data encryption and user authentication.

The CB3000’s WPA encryption scheme can use Temporal Key Integrity Protocol (TKIP). TKIP addresses WEP’s weaknesses with a re-keying mechanism, a per-packet mixing function, a message integrity check, and an extended initialization vector with sequencing rules.

WPA also provides strong user authentication based on 802.1x EAP. Two requirements, strong encryption to prevent eavesdropping and mutual authentication to ensure that sensitive information is transmitted only over legitimate networks, must drive your wireless authentication strategy.

In practice, only methods based on the IETF’s well-known Transport Layer Security (TLS) standard can satisfy strict encryption and authentication requirements. Three TLS-based protocols have been developed for use with EAP and are suitable for deployments with wireless LANs:

- EAP-Transport Layer Security (EAP-TLS)
- Tunneled Transport Layer Security (TTLS)
- Protected EAP (PEAP)

For detailed steps on configuring WPA1 for the CB3000, see Configuring WPA1 (TKIP) Security Settings.
Table 1.1 summarizes the major differences between the protocols.

Table 1.1 Detailed Comparison of TLS-based EAP Methods

<table>
<thead>
<tr>
<th>EAP Type</th>
<th>TLS (RFC 2716)</th>
<th>TTLS (Internet draft)</th>
<th>PEAP (Internet draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authentication Server Implementations by</td>
<td>Cisco, Funk, HP, FreeRADIUS (open source), Meetinghouse, Microsoft</td>
<td>Funk, Meetinghouse</td>
<td>Cisco</td>
</tr>
<tr>
<td>Authentication Methods</td>
<td>Client certificates</td>
<td>Any</td>
<td>Generic token card</td>
</tr>
<tr>
<td>Protocol Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Basic Protocol Structure | Establish TLS session and validate certificates on both client and server | Two phases:
| | | - Establish TLS between client and TTLS server
| | | - Exchange attribute-value pairs between client and server | Two parts:
| | | - Establish TLS between client and PEAP server
| | | - Run EAP exchange over TLS tunnel | |
| Fast Session Reconnect | No | Yes | Yes |
| WEP Integration | Server can supply WEP key with external protocol (e.g. RADIUS extension) | | |
| **PKI and Certificate Processing** | | | |
| Server Certificate | Required | Required | Required |
| Client Certificate | Required | Optional | Optional |
| Certificate Verification | Through certificate chain or OCSP TLS extension (current Internet draft) | | |
| Effect of Private Key Compromise | Re-issue all server and client certificates | Re-issue certificates for servers (and clients if using client certificates in first TLS exchange) | |
| **Client and User Authentication** | | | |
| Protection of User Identity Exchange | No | Yes; protected by TLS | Yes; protected by TLS |

a. TLS is secure, but the requirement for client certificates is too big a hurdle for most institutions to deal with.
b. TTLS, at least initially, is much more widely implemented than PEAP, and therefore has a slight convenience advantage over the comparable PEAP method.
c. PEAP uses the TLS channel to protect a second EAP exchange. PEAP is backed by Microsoft.
1.2.6.3 About WPA2 (CCMP) Security

WPA2 is a newer 802.11i standard that provides even stronger wireless security than Wi-Fi Protected Access (WPA) and WEP. CCMP is the security standard used by the Advanced Encryption Standard (AES). AES serves the same function TKIP does for WPA-TKIP. CCMP (Counter Mode with Cipher Block Chaining Message Authentication Code Protocol) is the preferred encryption protocol in the 802.11i standard. CCMP computes a Message Integrity Check (MIC) using the proven Cipher Block Message Authentication Code (CBC-MAC) technique. Changing just one bit in a message produces a totally different result.

WPA2-CCMP is based on the concept of a Robust Security Network (RSN), which defines a hierarchy of keys with a limited lifetime (similar to TKIP). Like TKIP, the keys the administrator provides are used to derive other keys. Messages are encrypted using a 128-bit secret key and a 128-bit block of data. For detailed steps on configuring WPA2 for the CB3000, see Configuring WPA2 (CCMP) Security Settings.

1.2.6.4 About Secure 802.1x Security

The Secure 802.1x security option feature provides the CB3000 and its associated clients an additional measure of security for data transmitted over the wireless network. Secure 802.1x uses the Extensible Authentication Protocol (EAP) as an authentication mechanism between devices achieved through the exchange and verification of certificates.

The IEEE 802.1x standard ties the 802.1x EAP authentication protocol to both wired and wireless LAN applications. EAP provides an effective authentication scheme with or without IEEE 802.1x Wired Equivalent Privacy (WEP) encryption. EAP supports multiple authentication measures, allowing the authentication server to exercise full control.

The EAP process begins when an unauthenticated supplicant (client device) tries to connect with an authenticator (in this case, the CB3000). The CB3000 passes EAP packets from the client to an authentication server on the wired side of the CB3000. All other packet types are blocked until the authentication server (typically, a RADIUS server) verifies the MU’s identity.

Using Secure 802.1x, a user requests device connection through the CB3000. The CB3000 then requests the identity of the user and transmits that identity to an authentication server. The server prompts the CB3000 for proof of identity (supplied to the CB3000 by the user) and then transmits the user data back to the server to complete the authentication. A client should not be able to access the network if not authenticated.

For detailed steps on configuring 802.1x for the CB3000, see Configuring Secure 802.1x Security Settings.
Before installing the CB3000, review the installation guidelines in the following sections:

- Prerequisite Requirements
- Verifying the Package Contents
- Observing Placement and Range Guidelines
- Cabling the CB3000
- Logging into the CB3000
- Viewing CB3000 Information
2.1 Prerequisite Requirements

The following hardware and software resources are required to install and operate a CB3000:

- Networked PC to be used during device configuration. The PC must have an RJ-45 Ethernet port and a CDROM drive. The PC must be running the following:
 - Windows 2000 or XP operating system
 - Microsoft Internet Explorer 5.0 or later, or Netscape Navigator 6.0 or later
- An access point (for infrastructure mode operation) or a networked client (for ad hoc peer-to-peer mode operation).

2.2 Verifying the Package Contents

Before installing the CB3000, verify that the package contains the following components:

- CB3000 Installation Guide
- CB3000 Software and Documentation CDROM
- CB3000 Client Bridge with integrated radio
- Ethernet cable
- Power adapter
- Single detachable omni-pole antenna.
- Mounting hardware.

Note Contact the Symbol Support Center to report any missing or improperly functioning components.

2.3 Observing Placement and Range Guidelines

Before installing the CB3000, verify the installation site meets the following requirements:

- The Environmental Specifications as defined in Appendix A, Technical Specifications.
- The site should have access to a properly rated power source and antenna gain that meets the following specifications:
 - Peak Antenna Gain: 3 dBi at 2.4 GHz or 4 dBi at 5 GHz
 - Power Supply: Switching DC 12V, 1A
- The site should be dry and near the devices (hub, telephone, computers, point-of-sale) you intend to connect the CB3000 to.
- The site should not be near other equipment (transformers, fluorescent lights etc.) that could interfere with the CB3000’s radio transmissions.

The site should be within 330 ft. for 802.11a and 250 ft. for 802.11g of the LAN or wireless access point connected to the CB3000.
2.4 Cabling the CB3000

To cable the CB3000, follow these steps:

1. Screw the antenna clockwise onto the antenna connector on the rear of the CB3000.

 Warning! Do not connect a Client Bridge set to Infrastructure mode directly to the LAN (for example, through a wall port). Such a connection could cause a transmission loop between the client bridge and access point, disrupting network operation.

 ![Figure 2.1 Rear of the CB3000](image)

 1. Attach one end of an Ethernet cable to a RJ-45 jack on a networked computer or router.
 2. Connect the other end of the Ethernet cable to the LAN connector on the rear of the CB3000.
 3. Plug the power adapter into the DC-IN connector on the rear of the CB3000.

 Warning! Only use the power adapter supplied by Symbol with the CB3000. Using an incorrect power adapter could damage the CB3000 and void the product warranty.

 4. Connect the plug end of the power adapter into a power outlet. The built-in power converter automatically selects and adjusts the power for the appropriate voltage.
 5. Verify the installation by checking the status of the LEDs on the front of the CB3000.
Table 2.1 describes the CB3000 LED indicators. If the CB3000’s LED functionality has been verified, log into the CB3000 console to begin basic device configuration (see Logging into the CB3000).

Table 2.1 CB3000 LEDs

<table>
<thead>
<tr>
<th>LED Label</th>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power LEDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>OFF</td>
<td>Power OFF</td>
</tr>
<tr>
<td>Error</td>
<td>Orange ON</td>
<td>Hardware error</td>
</tr>
<tr>
<td>Status</td>
<td>Green ON</td>
<td>Power ON/Device ready</td>
</tr>
<tr>
<td>Status</td>
<td>Green Blinking</td>
<td>Booting, system self-test or firmware upgrade</td>
</tr>
<tr>
<td>Radio LEDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.11a, 802.11b/g</td>
<td>OFF</td>
<td>Connectivity disabled</td>
</tr>
<tr>
<td>802.11a</td>
<td>Orange ON</td>
<td>802.11a radio connectivity</td>
</tr>
<tr>
<td>802.11a</td>
<td>Orange Blinking</td>
<td>802.11a radio traffic</td>
</tr>
<tr>
<td>802.11b/g</td>
<td>Green ON</td>
<td>802.11b/g radio connectivity</td>
</tr>
<tr>
<td>802.11b/g</td>
<td>Green Blinking</td>
<td>802.11b/g radio traffic</td>
</tr>
<tr>
<td>LAN LEDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 Mbps, 10 Mbps</td>
<td>OFF</td>
<td>No Ethernet activity</td>
</tr>
<tr>
<td>100 Mbps</td>
<td>Orange ON</td>
<td>100 Mbps connection over LAN</td>
</tr>
</tbody>
</table>
2.5 Logging into the CB3000

There are two ways to log into the CB3000 console:

- Using the CB3000 Discovery Tool included on the CB3000 CD
- Using a Web browser such as Microsoft Internet Explorer 5.0 or later, or Netscape Navigator 6.0 or later

Typically, users locate the CB3000 using the Discovery Tool, then save the URL link as a browser “favorite” and use the saved link later to access the console directly through a Web browser. See the following sections for more details.

If using the Discover Tool to connect to a CB3000, the session is opened using https.

2.5.1 Discovery Tool Login

Included on the CB3000 Client Bridge CD is a utility called the Discovery Tool. When run, the Discovery Tool scans the network for all running CB3000 units and “discovers” them. When a unit is discovered, it is listed within the Discovery Tool interface. By selecting a discovered unit within the Discovery Tool, you can log into its console.

<table>
<thead>
<tr>
<th>LED Label</th>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Mbps</td>
<td>Orange Blinking</td>
<td>100 Mbps transmit/receive</td>
</tr>
<tr>
<td>10 Mbps</td>
<td>Green ON</td>
<td>10 Mbps connection over LAN</td>
</tr>
<tr>
<td>10 Mbps</td>
<td>Green Blinking</td>
<td>10 Mbps transmit/receive</td>
</tr>
</tbody>
</table>

Note If the subnet of the PC where the tool is run is different from the current ip-address of the CB, a window pops up which gives the option to change the ip-address of the Client Bridge. This is password protected (use admin/symbol).

To run the Discovery Tool:

1. Locate the Discovery Tool (discover.exe) on the CB3000 CD, and copy it to a desktop on the same network as the CB3000 you wish to access.
2. Double-click on the discover.exe file to launch the utility, and run a network scan. The scan starts immediately; when or if a CB3000 unit is discovered, a screen similar to Figure 2.3 is displayed.
3. Click on the IP address of the CB3000 unit that you wish to log into.
4. A Security Alert dialog box is displayed, click **Yes** to proceed.

5. A CB3000 Login dialog box displays. Enter a username and password to log onto the CB3000 console. The default username and password is “admin” and “symbol”, respectively.
6. Upon logging in, the CB3000 Information screen displays. See Viewing CB3000 Information for more details.

7. Proceed to the following sections to configure the CB3000:
 - **Understanding and Configuring Ethernet Settings** – This includes configuring identification settings for the CB3000 within the network.
 - **Understanding and Configuring Wireless Settings** – This includes configuring wireless network settings, as well as security policies for data received and transmitted through the CB3000.

2.5.2 Web Interface Login

After logging into the CB3000 console using the Discovery Tool (Discovery Tool Login), you can save the IP address and log into the console in the future using the CB3000's IP address.

To log into the CB3000 console using an IP address:

1. The CB3000 console is accessible via a Web browser using HTTP over SSL (secure socket layer) protocol. Simply, this means you need to add an “s” in the intro of the URL. For example, `https://`
Enter the IP address URL for the CB3000 within your Web browser. The default CB3000 address is 10.10.1.1.

2. A Security Alert dialog box displays, click **Yes** to proceed.

3. A CB3000 Login dialog displays. Enter a username and password to log onto the CB3000 console. The default username and password are “admin” and “Symbol”, respectively.
4. Upon logging in, the CB3000 Information screen displays. See *Viewing CB3000 Information* for more details.

5. Proceed to the following sections to configure the CB3000.

 - *Understanding and Configuring Ethernet Settings* – This includes configuring identification settings for the CB3000 within the network.

 - *Understanding and Configuring Wireless Settings* – This includes configuring wireless network settings, as well as security policies for data received and transmitted through the CB3000.
2.6 Viewing CB3000 Information

Upon first logging into the CB3000 console, the CB3000 Information screen displays. The Information screen includes four data fields:

- **Client Bridge Information** – Includes the factory settings such as device name, MAC address, installed firmware version, radio version, and country of origin for the device.

- **Ethernet Settings** – Includes IP address information for the Ethernet port (and ultimately the IP address of the device). Also, whether the device is assigned an IP through DHCP or a static IP. To modify these settings, see *Understanding and Configuring Ethernet Settings on page 3-17*.

- **WLAN Settings** – Includes wireless LAN settings for the network that the CB3000 is a part of. To modify any of these settings, see *Understanding and Configuring Wireless Settings on page 3-1*.

- **Clients** – Indicates the number of active devices attached to the CB3000 client bridge.

Figure 2.8 displays an example of the CB3000 Information screen.

![CB3000 Information Screen](image)
2.7 CB3000 Antenna Selection

The CB3000 ships with antenna model ML-2452-APA1-01. This is an 802.11 a/b/g antenna allowing the CB3000 to connect to all the client types the CB3000 was intended to support. However, if you intend to use a different model antenna, that antenna needs to be selected from the Antenna Settings screen.

To select an antenna for use with the CB3000:

1. Select **Settings > Wireless Settings > Antenna Settings** from the CB3000 menu tree. The **Antenna Settings** screen displays.

2. Select an antenna from the Antenna Selection drop-down menu. To use an antenna not listed in the menu, select **Other**.

3. Refer to the **Antenna Gain** parameter.

 Information the CB3000 derives from the antenna look-up table is based on the antenna the user selects. The antenna gain parameter is read-only with no user editable values.

 If the user selects any antenna except "other", the user cannot modify the gain value. If the user selects "other", the text entry field is blank and the user must enter a gain value. The gain is a positive value with no more than 1 decimal place.

4. Refer to the **Additional System Loss** parameter.

 If the user selects any antenna except "other", the user cannot modify the loss value. If the user selects "other" then the text entry field is blank and the user must enter a loss value.

5. Click **Apply** to save the settings. The CB3000 is now ready to have its default configuration modified to suit the requirements of its intended operation environment.
This chapter discusses the network configuration required for the CB3000 to communicate with network hosts, mobile units, access points, or other CB3000 devices. It includes the following sections:

- Understanding and Configuring Wireless Settings
- Understanding and Configuring Ethernet Settings
- Client Management

3.1 Understanding and Configuring Wireless Settings

Configuring the wireless LAN includes configuring network settings (including network type declaration and associated settings), security encryption configurations, and client list definitions for devices allowed on the restricted LAN. Before beginning network configuration, review existing the networks and their parameters.
The following sections describe how to view existing networks, and then configure different aspects of a wireless LAN:

- **Available Networks**
- **Network Configurations**
- **Security Encryption Configurations**
- **Client Management**

3.1.1 Available Networks

A *Wireless Local Area Network* (WLAN) is a data-communications system that flexibly extends the functionality of a wired LAN. A CB3000 can locate WLANs within its radio coverage area and connect to them.

A WLAN does not require lining up devices for line-of-sight transmission. Roaming users can be handed off from one WLAN to another like a cellular phone system. WLANs can therefore be configured around the needs of specific groups of users, even when they are not in physical proximity. Each WLAN has a unique network address, signal strength, security and mode configurations that could either render it optimal or at risk for a CB3000 connection.

To display the WLANs available to the CB3000, select **Settings > Wireless Settings > Available Networks** from the CB3000 menu tree. The Available Networks screen displays.

![Figure 3.1 Example of Available Networks](image)

Table 3.1 describes the parameters in the Available Networks screen. Click **Refresh** to update the list, if necessary.
If an access point or peer supported WLAN provides a better CB3000 connection option than the WLAN that the CB3000 is currently connected to, change the CB3000 connection. See Network Configurations for more details.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Network | The network mode for which the CB3000 is configured. Possible values are:
 - AP – Indicates infrastructure mode.
 - Peer – Indicates ad hoc mode.
 To change the network mode, see Network Configurations. |
| SSID | The Service Set Identifier (SSID) of the access point or peer device. The name is case sensitive and cannot exceed 32 characters. |
| MAC Address | The MAC address for the access point or peer. A MAC address is a 48-bit number written as six hexadecimal bytes separated by colons; it cannot be modified. |
| RSSI | The Relative Signal Strength Indicator (RSSI) value between the access point or peer and the CB3000. The RSSI is expressed as a dBm value. A higher dBm constitutes a higher signal strength value. |
| Security | The security type configured for the access point or peer. Each option (off [open], WEP, WPA1 WPA2 and Secure 802.1x) has their own unique benefits and risks. See Security Encryption Configurations for more details. |
| Channel | The direct-sequence channel that the access point or peer is currently using. The CB3000 and its connected device are required to use the same channel to interoperate.
 Note Ensure the channel selected is appropriate for the intended country of operation, or risk operating the CB3000 illegally. |
| Band | The frequency band the CB3000 is operating in. Either a or b/g, for 802.11a or 802.11b/g, respectively. |

3.1.2 Network Configurations

The CB3000 can be configured to run within an infrastructure (access point) type network or ad hoc (peer-to-peer) type network, based on configured communication settings. See one of the following sections, depending on the network type you are configuring the CB3000 to run in.

- Configuring Infrastructure Settings
- Configuring Ad Hoc Settings

3.1.2.1 Configuring Infrastructure Settings

Within the infrastructure network, the CB3000 can roam freely between access point cells in the network or transmit and receive across subnets. Infrastructure mode is the CB3000 default mode.

To configure the CB3000 Client Bridge within an infrastructure network, follow these steps:

1. Select **Settings > Wireless Settings > WLAN Settings** from the CB3000 menu tree. The WLAN Settings screen displays.
2. For the **Network Mode** field, select **Infrastructure (AP)**. The Infrastructure Configuration screen displays.
3. Configure the **ESSID (Wireless LAN Service ID)** field, as appropriate:

 - **Attach to any ESSID automatically** – Select this radio button to enable the CB3000 to randomly select a target WLAN for connection.

 - **Specify the ESSID** – Select this button to enter the name of a target WLAN or use the drop-down menu to select an existing WLAN. Click “View” to display the available networks first, if unsure.

4. Select the **Frequency Band**. Options include “a/b/g”, “a”, or “b/g”.

 Ensure the frequency band selected is consistent with the WLAN network. By restricting the Frequency Band on the CB3000 you can reduce the time the CB3000 takes to search for available APs.

5. Click the **View Available Networks** link to view the Available Networks screen.

 Use this screen to view a list of available ESSIDs (networks), and possibly select an ESSID. For more information, see **Available Networks**.

6. Select the **Scan Mode** as either Active Scan or Passive Scan.

 Active Scan mode takes less time when searching for APs by sending probe requests. Passive Scan takes more time during a scan, but only listens for AP beacons.

7. In the **Country/Region** section, select the appropriate operating region/country.
Note Each country has its own regulatory restrictions concerning electromagnetic emissions and the maximum RF signal strength that can be transmitted. Consequently, selecting a country different from the country you are actually operating the CB3000 in results in the illegal operation of the CB3000.

8. Click Apply to apply and save the settings, or Cancel to exit the screen without saving your changes.

To configure the CB3000 into an ad hoc network, see Configuring Ad Hoc Settings.

3.1.2.2 Configuring Ad Hoc Settings

Ad hoc mode is used to form peer-to-peer CB3000 networks without access points. Use ad hoc mode to create networks within established network coverage areas or networks free of the physical constraints of access point provided radio coverage areas. The device starting the ad hoc network (the first device transmitting a beacon) determines the channel and data rate used for the other devices within the network using the same ESSID.

Ad hoc mode is an Independent Basic Service Set (IBSS) mode requiring no backbone infrastructure. The lack of an access point results in devices alternating the duty of sending beacons. There are no relay functions in an Ad Hoc network, and not all mobile units are capable of communicating with other mobile units due to the range limitations. Consequently, all stations need to be within range of each other.

Note The CB3000 must already be configured to run in ad hoc mode in order to set data rates. If the unit is configured for infrastructure mode, the Data Rate button is disabled.

The CB3000 and its connected devices are required to use the same channel to interoperate. However, a channel has restrictions based on the country of operation. Ensure the channel selected is appropriate for the intended country of operation, or risk operating your CB3000 illegally.

To configure the CB3000 for AD Hoc operation:

1. Select Settings > Wireless Settings > WLAN Settings from the CB3000 menu tree.
2. For the Network Mode field, select Ad-hoc (Peer-to-Peer). The Ad Hoc Configuration screen displays.
3. Configure the remainder of the fields, as appropriate, per the following descriptions.
 - **ESSID (Wireless LAN Service ID)** – Select from one of the following radio buttons:
 - Attach to any ESSID automatically – Enables the CB3000 to randomly select a target WLAN for connection.
 - Specify the ESSID – Enables you to enter the name of a target WLAN or use the drop-down menu to select an existing WLAN.
 - **Frequency Band** – Select either “a” or “b/g” for the 802.11 frequency band supported.
 - **Channel Selection** – Select from one of the following radio buttons:
 - Use default channel – Enables the CB3000 to use the default channel settings.
- **Specify the channel to use** – Enables you to select a channel approved for your operating region and country.

- **Country/Region** – All countries have their own regulatory restrictions concerning electromagnetic emissions and the maximum RF signal strength that can be transmitted. Select the appropriate operating region/country.

- **Data Rate** – See step 4 for more details on configuring the data rate.

Note The CB3000 must already be configured to run in ad hoc mode in order to set data rates. If the unit is configured for infrastructure mode, the **Data Rate** button is disabled.

4. To set data rates for the ad hoc configured CB3000, click the **Data Rate** button. The Set Data Rates screen displays.
Select at least one **Basic Rate** as a minimum transmit rate value for the CB3000 radio. Within the **Supported Rates**, select the data rate the CB3000 radio defaults to if a higher selected data rate cannot be maintained.

Note Select supported rates in respect to the data rates supported by the peer devices within the ad hoc network. For example, if several of the peers within the network are 802.11b clients, supported data rates should include 11 Mbps, 5.5 Mbps, 2 Mbps and 1 Mbps.

5. Click **Apply** to apply and save the settings, or **Cancel** to exit the screen without saving your changes. To configure the CB3000 into an Infrastructure network instead, see *Configuring Infrastructure Settings*.
3.1.3 Security Encryption Configurations

Security measures for the CB3000 and its connected network devices is critical regardless of your operating environment (retail, enterprise etc.). Use the available CB3000 security options to protect the CB3000 managed LAN from wireless vulnerabilities, and safeguard the transmission of RF packets between the CB3000 and its connected devices.

Available CB3000 security provisions are described further in the following sections:

- **Configuring Open Security Settings** – No security settings applied.
- **Configuring WEP Security Settings** – 802.11 Wired Equivalent Privacy encryption.
- **Configuring WPA1 (TKIP) Security Settings** – WPA1 dynamic encryption.
- **Configuring WPA2 (CCMP) Security Settings** – WPA2 (CCMP) dynamic encryption.
- **Configuring Secure 802.1x Security Settings** – 802.1x EAP authentication

3.1.3.1 Configuring Open Security Settings

Though having no security for data transmitted through the CB3000 is not recommended, an open, no encryption, non-secure security option is available among the CB3000 security options.

To set CB3000 security to Open (no data protection):

1. Select **Settings > Wireless Settings > Security** from the CB3000 menu tree. The Security screen is displayed.
2. Select **Open** from the **Security Mode** drop-down menu.
3. Click **Apply** to save and apply the setting.
3.1.3.2 Configuring WEP Security Settings

WEP is an encryption security protocol specified in the IEEE Wireless Fidelity (Wi-Fi) standard, 802.11b, and supported by the CB3000. WEP encryption is designed to provide a wireless device with a level of security and privacy comparable to a wired LAN.

The level of protection provided by WEP encryption is determined by the encryption key length and algorithm. An encryption key is a string of case-sensitive characters used to encrypt and decrypt data packets transmitted between a mobile unit and the CB3000; the CB3000 and associated device must use the same encryption key (typically 1 through 4) to interoperate. For further overview information on WEP, see About WEP Security.

To configure WEP encryption security settings:

1. Select **Settings > Wireless Settings > Security** from the CB3000 menu tree.
2. Select **WEP** from the **Security Mode** drop-down field.

Figure 3.4 WEP Configuration

3. Configure the remainder of the fields, as appropriate, per the following descriptions.

- **Authentication Type** – Specify whether a shared key is implemented between the CB3000 and its connected device or no key is used (Open System). If a shared key is used, both the CB3000 and its connected device are required to use the same key (1 through 4) to interoperate. A shared key increases the level of security within the network as opposed sending information without one.

- **Default Transmit Key** – Specify which one key is used to transmit WEP algorithm information between the CB3000 and its connected device.
WEP Encryption – Select a WEP encryption model:
- **64-bits** – Encrypts using a 40-bit key. The keys are 10 hexadecimal characters in length.
- **128 bits** – More secure. Encrypts using a 104-bit key. The keys are 26 hexadecimal characters in length.

Passphrase Algorithm – Select the passphrase algorithm used for encrypting the passphrase.
- **Symbol PassKey** – Symbol proprietary algorithm the CB3000 can share with other Symbol clients capable of decoding it. The CB3000 decodes the PassKey into a set of 4 WEP keys using MD5 algorithms. The WEP keys display as alphanumeric text in the key fields until saved or the user navigates away from the WEP screen. Like a passphrase, the PassKey provides an easy to remember way of entering WEP key data without having to manually enter the keys each time WEP keys area created.
- **Generic PassPhrase** – A passphrase used as a standard means of creating WEP keys between the Symbol CB3000 and non-Symbol clients. The CB3000 decodes the passphrase into a set of 4 WEP keys, with the length depending on the 64 or 128 bit key length. The WEP keys display as alphanumeric text in the key fields until saved or the user navigates away from the WEP screen. The PassKey provides an easy to remember way of entering WEP key data without having to manually enter the keys each time WEP keys area created.

Note Both the CB3000 and its networked device are required to use the same key and key length to interoperate.

- **Passphrase** – Specify a 4 to 32 character passphrase, then click the **Generate Keys** button.
 The CB3000, other proprietary routers and Symbol devices use an algorithm to convert the ASCII passphrase string to the same hexadecimal number. This conversion is not required for a wireless connection. Wireless devices without Symbol adapters need to use WEP keys manually configured as hexadecimal numbers.

4. Click **Apply** to apply and save the settings, or **Cancel** to exit the screen without saving your changes.

3.1.3.3 Configuring WPA1 (TKIP) Security Settings

WPA, referred to as WPA1 within the CB3000 console, provides more sophisticated data encryption than WEP. The CB3000’s WPA encryption scheme uses Temporal Key Integrity Protocol (TKIP). TKIP addresses WEP’s weaknesses with a re-keying mechanism, a per-packet mixing function, a message integrity check, and an extended initialization vector with sequencing rules.

Also, WPA provides strong user authentication based on 802.1x EAP. The CB3000 supports three EAP types suitable for deployments with wireless LANs. They are:
- **TLS** – Transport Layer Security
- **TTLS** – Tunneled Transport Layer Security
- **PEAP** – Protected EAP

For overview information on WPA1, see [About WPA1 (TKIP) Security](#).

For more details on encryption types, pros and cons of different encryption types and required configuration parameters, see the Wi-Fi Alliance Web site at: http://www.wifialliance.org/OpenSection/index.asp.

To configure WPA1 (TKIP) security settings:
1. Select Settings > Wireless Settings > Security from the CB3000 menu tree.
2. Select WPA1 from the Security Mode drop-down menu.

Security

Changing the security settings may cause this CB3000 to associate with a different access point. This may temporarily disrupt your configuration session.

<table>
<thead>
<tr>
<th>Security Mode</th>
<th>WPA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPA1 Type:</td>
<td>WPA1 Personal</td>
</tr>
<tr>
<td>WPA1 Algorithms:</td>
<td>TKIP</td>
</tr>
<tr>
<td>WPA1 Shared Key:</td>
<td>********** (8-63 characters)</td>
</tr>
</tbody>
</table>

![Figure 3.5 WPA1 Configuration](image)

3. Select a WPA1 Type of either WPA1 Personal or WPA1 Enterprise.
 - **WPA1 Personal** – In this mode, a pre-shared key (password) is used for authentication.
 - **WPA1 Enterprise** – In this mode, authentication is achieved via 802.1X and Extensible Authentication Protocol (EAP).

4. Select an algorithm from the WPA1 Algorithm drop-down menu. The algorithms are described as follows.
 - **TKIP** – Defines a “wrapper” that goes around an existing WEP encryption algorithm. TKIP comprises the same encryption engine and RC4 algorithm defined for WEP. However, the key used for encryption in TKIP is 128 bits long.
 TKIP changes the key used for each packet. The key is created by mixing together a combination of things, including a base key (called a Pairwise Transient Key), the MAC address of the transmitting station, and the serial number for the packet.
 This mixing operation is designed to put a minimum demand on the CB3000 and its supported clients, but enough cryptographic strength so it cannot easily be broken.
 - **CCMP (AES)** – Utilizes an Advanced Encryption Standard (AES) 128-bit key algorithm with a 48-bit initialization vector (IV) for replay detection. The Counter Mode (CM) component of CCMP is the algorithm providing data privacy. The Cipher Block Chaining Message Authentication Code (CBC-MAC) component of CCMP provides data integrity and authentication.

5. Configure the remainder of the fields, as appropriate, per the following descriptions.

WPA1 Personal Only Parameters follow:

- **WPA1 Shared Key** – Specify a shared key both the CB3000 and its connected device must use to exchange data encrypted using WPA1.
The shared key can be any alphanumeric string. The CB3000, other proprietary routers and Symbol devices use the shared key to convert an ASCII string to the same hexadecimal number. Wireless devices without Symbol adapters need to use a shared key manually configured as hexadecimal numbers.

WPA1 Enterprise Only Parameters follow:

- **WPA1 EAP Type** – Specifies the WPA1 EAP type. These types are described and compared in detail in *About WPA1 (TKIP) Security*. Possible options are:
 - **TLS** – Transport Level Security is an EAP type that is used in certificate-based security environments. If you are using smart cards for remote access authentication, TLS authentication is the method to use.
 - **TTLS** – Tunneled TLS. Requires certificate-based RADIUS server authentication, but supports an extensible set of user authentication methods
 - **PEAP** – Windows XP SP1 and Microsoft 802.1X Authentication Client support Protected EAP (PEAP).

- **WPA1 User ID** – For all EAP types.
- **WPA1 TLS Key** – For TLS only. Drag a user certificate into the WPA1 root certificate field to upload.
- **WPA1 Key Password** – For TLS only. Enter a key password.
- **WPA1 User Certificate** – For TLS only. Drag a user certificate into the WPA1 user certificate field to upload.
- **WPA1 Root Certificate** – For TLS and PEAP only. Cut and paste a root certificate into the WPA1 root certificate field to upload. The certificate should be in PEM format.
- **WPA1 Password** – For TLS and PEAP only.

6. Click **Apply** to apply and save the settings, or **Cancel** to exit the screen without saving your changes.

3.1.3.4 Configuring WPA2 (CCMP) Security Settings

WPA2 (CCMP) is based on the concept of a Robust Security Network (RSN), which defines a hierarchy of keys with a limited lifetime (similar to TKIP). Like TKIP, the keys the administrator provides are used to derive other keys. Messages are encrypted using a 128-bit secret key and a 128-bit block of data. The end result is an encryption scheme as secure as any that the CB3000 provides.

For further overview information on WPA2, see *About WPA2 (CCMP) Security*.

For more details on encryption types, pros and cons of different encryption types and required configuration parameters, see the Wi-Fi Alliance Web site at: http://www.wifialliance.org/OpenSection/index.asp.

To configure WPA2 (CCMP) security settings, follow these steps:

1. Select **Settings > Wireless Settings > Security** from the CB3000 menu tree.
2. Select **WPA2** from the **Security Mode** drop-down field.

![Security Mode](image)

Changing the security settings may cause this CB3000 to associate with a different access point. This may temporarily disrupt your configuration session.

<table>
<thead>
<tr>
<th>Security Mode</th>
<th>WPA2 Type</th>
<th>WPA2 Algorithms</th>
<th>WPA2 Shared Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPA2</td>
<td>WPA2 Personal</td>
<td>CCMP(AES)</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 3.6: WPA2 Configuration](image)

3. Select a **WPA2 Type** of either **WPA2 Personal** or **WPA2 Enterprise** menu.
 - **WPA2 Personal** – In this mode, a pre-shared key (password) is used for authentication.
 - **WPA2 Enterprise** – In this mode, authentication is achieved via 802.1X and **Extensible Authentication Protocol (EAP)**.

4. Select an algorithm from the **WPA2 Algorithm** drop-down menu. The algorithms are described as follows.
 - **TKIP** – Defines a "wrapper" that goes around an existing WEP encryption algorithm. TKIP comprises the same encryption engine and RC4 algorithm defined for WEP. However, the key used for encryption in TKIP is 128 bits long.
 TKIP changes the key used for each packet. The key is created by mixing together a combination of things, including a base key (called a Pairwise Transient Key), the MAC address of the transmitting station, and the serial number for the packet.
 This mixing operation is designed to put a minimum demand on the CB3000 and its supported clients, but enough cryptographic strength so it cannot easily be broken.
 - **CCMP (AES)** – Utilizes an Advanced Encryption Standard (AES) 128-bit key algorithm with a 48-bit initialization vector (IV) for replay detection. The Counter Mode (CM) component of CCMP is the algorithm providing data privacy. The Cipher Block Chaining Message Authentication Code (CBC-MAC) component of CCMP provides data integrity and authentication.
 - **Both** – Select **Both** to enable the CB3000 to interoperate with both TKIP and CCMP supported clients. This setting is recommended in coverage areas populated by numerous devices.

5. Configure the remainder of the fields, as appropriate, per the following descriptions.

WPA2 Personal Only Parameters follow:

- **WPA2 Shared Key** – Specify a shared key both the CB3000 and its connected device must use to exchange data encrypted using WPA1.
The shared key can be any alphanumeric string. The CB3000, other proprietary routers and Symbol devices use the shared key to convert an ASCII string to the same hexadecimal number. Wireless devices without Symbol adapters need to use a shared key manually configured as hexadecimal numbers.

WPA2 Enterprise Only Parameters follow:

- **WPA2 EAP Type** – Specifies the WPA1 EAP type. These types are described and compared in detail in *About WPA2 (CCMP) Security*. Possible options are:
 - **TLS** – Transport Level Security is an EAP type used in certificate-based security environments. If using smart cards for remote access authentication, TLS authentication is the method to use.
 - **TTLS** – Tunneled TLS. Requires certificate-based RADIUS server authentication, but supports an extensible set of user authentication methods.
 - **PEAP** – Windows XP SP1 and Microsoft 802.1X Authentication Client support Protected EAP (PEAP).
- **WPA2 User ID** – For all EAP types.
- **WPA2 TLS Key** – For TLS only. Drag a user certificate into the WPA2 root certificate field to upload.
- **WPA2 Key Password** – For TLS only. Enter a key password.
- **WPA2 User Certificate** – For TLS only. Drag a user certificate into the WPA2 user certificate field to upload.
- **WPA2 Root Certificate** – For TLS and PEAP only. Drag a root certificate into the WPA2 root certificate field to upload.
- **WPA2 Password** – For TLS and PEAP only.

6. Click **Apply** to apply and save the settings, or **Cancel** to exit the screen without saving your changes.

3.1.3.5 Configuring Secure 802.1x Security Settings

The Secure 802.1x security option provides the CB3000 and its associated clients an additional measure of security for data transmitted over the wireless network. Secure 802.1x uses (EAP) as an authentication mechanism between devices that is achieved through the exchange and verification of certificates.

A client should not be able to access the network if not authenticated. Refer to the system administrator for information on configuring a server for Secure 8021.x support. For information on configuring 802.1x, see *Configuring Secure 802.1x Security Settings*.

Note This authentication scheme will not work properly unless the Time Settings screen is set to the correct time.

For more details on encryption types, pros and cons of different encryption types and required configuration parameters, see the Wi-Fi Alliance Web site at: http://www.wifialliance.org/OpenSection/index.asp

To configure Secure 802.1x security settings:

1. Select **Settings > Wireless Settings > Security** from the CB3000 menu tree.
2. Select **Secure 802.1x** from the **Security Mode** drop-down field.
3. Use the **EAP Type** drop-down menu to select the authentication mechanism used between the CB3000 and a target device to exchange and verify certificates. Options include:

- **MD5** – The MD5 authentication method takes a message of arbitrary length as input and produces a 128-bit fingerprint. The MD5 algorithm is intended for digital signature applications, in which a large file must be compressed in a secure manner before being encrypted with a private (secret) key under a public-key cryptographic system.

- **MSCHAPV2** – Microsoft Challenge Handshake Authentication Protocol Version 2. MS-CHAP-v2 [RFC2759] is an extension of, yet incompatible with, MSCHAPv1. It also supports mutual authentication. MSCHAPV2 is the default authentication method used by the Microsoft Windows 2000 operating system. Support of this authentication method on the CB3000 enables Windows 2000 users to establish remote PPP sessions without needing to first configure an authentication method on the client. MSCHAP V2 introduces a change password feature, allowing the CB3000 to change the account password if the RADIUS server reports the password has expired.

- **PEAP** – Windows XP SP1 and Microsoft 802.1X Authentication Client support Protected EAP (PEAP). Uses an encrypted TLS-Tunnel. Only the server certificates are required.

- **TLS** – Transport Level Security is an EAP type that is used in certificate-based security.
environments. If you are using smart cards for remote access authentication, TLS authentication is the method to use.

- **TLS** – Tunneled TLS. Requires certificate-based RADIUS server authentication, but supports an extensible set of user authentication methods.

Note The CB3000 displays a read-only Cipher data which specifies the type of data packet that follows it.

4. Use the Default Transmit Key checkboxes to specify which one key is used to transmit WEP algorithm information between the CB3000 and its connected device.

Note Both the CB3000 and its networked device are required to use the same key and key length to interoperate.

5. Select either **64 bits** or **128-bits** from the WEP Encryption drop-down menu.

For WEP 64 (40-bit key), the keys are 10 hexadecimal characters in length. For WEP 128 (104-bit key), the keys are 26 hexadecimal characters in length.

6. Select the **Passphrase Algorithm** used for encrypting the passphrase.

- **Symbol PassKey** – Symbol proprietary algorithm the CB3000 can share with other Symbol clients capable of decoding it. The CB3000 decodes the PassKey into a set of 4 WEP keys using MD5 algorithms. The WEP keys display as alphanumeric text in the key fields until saved or the user navigates away from the WEP screen. Like a passphrase, the PassKey provides an easy to remember way of entering WEP key data without having to manually enter the keys each time WEP keys area created.

- **Generic PassPhrase** – A passphrase used as a standard means of creating WEP keys between the Symbol CB3000 and non-Symbol clients. The CB3000 decodes the passphrase into a set of 4 WEP keys, with the length depending on the 64 or 128 bit key length. The WEP keys display as alphanumeric text in the key fields until saved or the user navigates away from the WEP screen. The PassKey provides an easy to remember way of entering WEP key data without having to manually enter the keys each time WEP keys area created.

7. Specify a 4 to 32 character **Passphrase** and click the **Generate Keys** button.

The passphrase is helpful for entering keys without having to remember all of the characters comprising the key. The pass key can be any alphanumeric string. The CB3000, other proprietary routers and Symbol devices use the algorithm to convert an ASCII string to the same hexadecimal number. This conversion is not required for a wireless connection. Wireless devices without Symbol adapters need to use WEP keys manually configured as hexadecimal numbers.

8. Enter the **User ID** and **Password** to verify your user credentials against the user and password credentials used by the authentication server.

9. Click **Apply** to apply and save the settings, or **Cancel** to exit the screen without saving your changes.
3.2 Understanding and Configuring Ethernet Settings

Configuring the CB3000’s Ethernet Settings entails specifying a name and network address information for the CB3000 device. To configure Ethernet settings for the CB3000:

1. Select **Settings > Ethernet Settings** from the CB3000 menu tree.

![Figure 3.8 Ethernet Settings](image)

2. Assign a CB3000 device name and set CB3000 network address information.
 - **Device Name** – A device name for the CB3000. A suggestion is to use a name representative of the CB3000 user base (for example, eng1, eng2, SF_retail, NY_retail, etc.).
 - **DHCP** – Select a DHCP setting. The options are as follows:
 - **Obtain an IP address automatically** – Select this option if the CB3000 is using a DHCP server to obtain an IP address.
 - **Specify an IP address** – Select this option if an IP address is entered manually (static).
 - **IP Address** – If no DHCP resources are available, specify the static IP address of CB3000. This IP address is visible to the Internet.
 - **Subnet Mask** – If no DHCP resources are available, specify a subnet mask (or filter) for the CB3000 IP address.
 - **Gateway IP Address** – IP address of the device providing the connection to the Internet (such as the IP address of a cable modem or DSL router).
 - **Spanning Tree Protocol** – Select this checkbox to enable a technique that detects loops in a network and logically blocks redundant paths, thus ensuring only one route exists between any two LANs.

3. Click **Apply** to apply and save the settings, or **Cancel** to exit the screen without saving your changes.
3.3 Client Management

The CB3000 can support a maximum 16 devices within the CB3000 supported subnet as prioritized devices. Once located and added to the client prioritization list, clients can be moved off of the list in order to maintain the maximum of 16 devices. Of the maximum 16 devices supported by the CB3000 client prioritization list, only one can be a POS (point-of-sale) device.

CB3000 client prioritization employs an adoption rule for allowing or denying client access to the CB3000 supported WLAN by way of exception. By default, all located clients have the ability to connect and interoperate with the CB3000. It is only when the client list exceeds 16 devices, that clients require removal from the list. The list can be refreshed periodically to remove devices that have lost their CB3000.

To create a list of prioritized CB3000 client devices:

1. Select **Settings > Client Management** from the CB3000 menu tree. The Client Management screen displays.
2. Define the **CB3000 Bridging Mode** as either Single or Multi Client Bridging Mode

- **Single Client Bridging Mode**: In this mode, the CB3000 provides bridging functionality to support legacy devices. Only one client per CB3000 is supported. In this mode, the MAC address of the MU is visible on the network.
Multi Client Bridging Mode: In this mode, the CB3000 can support a maximum 16 devices (within the CB3000 supported subnet) as preferred devices. Of these devices, only one can be a point-of-sale (POS) device. Once located and added to the client prioritization list, clients can be moved off of the list in order to maintain the maximum of 16 devices. Device MAC addresses are not visible on the network in this mode and are replaced by the CB3000’s MAC address.

3. To add a client, enter the client’s MAC address in the MAC Address field, then click Add MAC. The device is added to a list of devices the CB3000 can use to allocate priority status.

4. The Preferred Clients List displays the (up to 16) devices receiving connection priority with the CB3000. If the list is full, remove devices as necessary to free-up room for high priority connections.

5. Click the Move to ACL button to move a MAC address directly into the CB3000’s list of device MAC addresses approved for operation with the CB3000. For more information on ACL operation, see Configuring a Wired Ethernet ACL on page 3-20.

6. Add devices as required to build your list of devices with which the CB3000 frequently interoperatorates. As devices are added, the screen displays a Configuration files updated message informing of the additions.

3.4 Configuring a Wired Ethernet ACL

The CB3000 supports Ethernet MAC filtering. Only client devices with a MAC address within the range specified can pass traffic through the CB3000. If the list is empty, all clients are allowed. The Client Bridge allows all connected clients to configure the CB3000 through the User Interface and have access through SNMP.

To create a list of prioritized CB3000 client devices:

1. Select Settings > Wired Ethernet ACL from the CB3000 menu tree. The Wired Ethernet ACL screen displays.
2. To add a MAC address range, enter the client MAC address range in the MAC Address field (in both the start and stop MAC address fields). Click **Add**.

 The MAC address range is added to an Ethernet Access Control List

3. Delete the MAC address range from the Ethernet Access Control list to grant access to all clients.

 As MAC address ranges are added, the screen displays a “Configuration files updated” message informing of the additions. Continue to add MAC addresses as needed to complete the list of allowed and/or denied devices.
This chapter describes the statistic tracking functionality included with the CB3000. This includes Ethernet statistics, wireless, and client-related displays. A CB3000-specific event log is also continually maintained.

This chapter also discusses a number of management protocols that have specific settings to support monitored statistics and logs. These include configuration settings related to SNMP, radio antennas, DHCP functionality, time settings, and log files.

Management options include the following sections:

- Statistics and Logs
- Configuring Management Protocols
4.1 Statistics and Logs

The CB3000 includes functionality to display robust transmit and receive Ethernet statistics, including transmit and receive errors, dropped packets and overruns. This information can be used to assess the CB3000’s overall performance and whether an optimal data rate can be achieved and maintained in respect to the devices with which the CB3000 is interoperating.

Transmit and receive statistics can also be displayed for the CB3000 radio. The wireless radio statistics information is useful in assessing the CB3000’s radio RF utilization and the level of RF interference currently within the radio coverage area.

Use the CB3000 log to view an event timeline with each event or potential error condition defined. This information is useful when troubleshooting broken device connections and unexpected network events.

See the following sections for more detail:

- Viewing Wireless Statistics
- Viewing Ethernet Statistics
- Viewing Event Log
4.1.1 **Viewing Wireless Statistics**

Wireless Statistics include CB3000 radio traffic, status, and errors. To view CB3000 Ethernet statistics, select **Statistics > Wireless Statistics** from the CB3000 menu tree.

<table>
<thead>
<tr>
<th>Wireless Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
</tr>
<tr>
<td>Physical Address:</td>
</tr>
<tr>
<td>Current Channel:</td>
</tr>
<tr>
<td>CB Room Count:</td>
</tr>
<tr>
<td>Traffic (does not include "retry overhead")</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Pkts per second</td>
</tr>
<tr>
<td>Throughput</td>
</tr>
<tr>
<td>Avg. Bit Speed</td>
</tr>
<tr>
<td>Approximate RF Utilization</td>
</tr>
<tr>
<td>% Non-unicast pkts</td>
</tr>
<tr>
<td>RF Status</td>
</tr>
<tr>
<td>Avg CB Signal</td>
</tr>
<tr>
<td>Avg CB Noise</td>
</tr>
<tr>
<td>Avg CB SNR</td>
</tr>
<tr>
<td>Errors</td>
</tr>
<tr>
<td>Avg Num of Retries</td>
</tr>
<tr>
<td>%Dropped Pkts</td>
</tr>
<tr>
<td>%of Undecryptable Pkts</td>
</tr>
</tbody>
</table>

Figure 4.1 Wireless Statistics Screen

The Wireless Statistics screen is partitioned into four detailed fields:

- **Information** – Basic device address and location information.
- **Traffic** – Displays statistics for cumulative packets, throughput, bit speed, RF utilization and other details received and transmitted over the CB3000 radio.
- **RF Status** – Includes average MU signal, noise, and signal to noise ratio information.
- **Errors** – Displays retry information as well as data transmissions the radio either gave up on or could not decrypt.
Table 4.1 Describes the Wireless Statistics. Click **Refresh** to update to the latest statistics.

Table 4.1 Wireless Statistics Screen Details

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Panel Details</td>
<td></td>
</tr>
<tr>
<td>Physical Address</td>
<td>MAC address of the CB3000 housing the radio. The MAC address is hard-coded into the device at the factory and cannot be changed.</td>
</tr>
<tr>
<td>Current Channel</td>
<td>Channel for communications between the CB3000 radio and its clients.</td>
</tr>
<tr>
<td>CB Roam Count</td>
<td>Displays the number of times the client bridge has roamed to another device. Use this value as a metric of network stability, as a high roam count could be an indicator of poor signal strength.</td>
</tr>
<tr>
<td>Frequency Band</td>
<td>Displays the radio type currently transmitting. Either 802.11a or 802.11b/g.</td>
</tr>
<tr>
<td>Power</td>
<td>The power level in dbm for RF signal strength.</td>
</tr>
<tr>
<td>Reset</td>
<td>Click the Reset button to reset the roam count.</td>
</tr>
<tr>
<td>Traffic Panel Details</td>
<td></td>
</tr>
<tr>
<td>Pkts per second</td>
<td>The Total column displays the average total packets per second crossing the radio. The Rx column displays the average total packets per second received. The Tx column displays the average total packets per second transmitted.</td>
</tr>
<tr>
<td>Throughput</td>
<td>Use this information to assess whether the current throughput is sufficient to support required network traffic. The Total column displays average throughput on the radio. The Rx column displays average throughput in Mbps for packets received. The Tx column displays average throughput for packets transmitted.</td>
</tr>
<tr>
<td>Avg. Bit Speed</td>
<td>Displays the average bit speed in Mbps for the radio, considering both transmitted and received packets.</td>
</tr>
<tr>
<td>Approximate RF Utilization</td>
<td>Approximate RF utilization of the CB3000 radio. This value is calculated as the throughput divided by average bit speed.</td>
</tr>
<tr>
<td>% Non-unicast pkts</td>
<td>Percentage of total radio packets that are non-unicast. Non-unicast packets include broadcast and multicast packets.</td>
</tr>
<tr>
<td>RF Status Panel Details</td>
<td></td>
</tr>
<tr>
<td>Avg MU Signal</td>
<td>Average RF signal strength in dBm for all devices interoperating with the CB3000.</td>
</tr>
<tr>
<td>Avg MU Noise</td>
<td>Average RF noise for all devices interoperating with the CB3000 radio. If the noise level is excessive, consider moving the MUs closer to your CB3000, or to an area with less conflicting network traffic.</td>
</tr>
<tr>
<td>Avg MU SNR</td>
<td>Average Signal to Noise Ratio (SNR) for all devices interoperating with the CB3000 radio. The Signal to Noise Ratio is an indication of overall RF performance on your wireless network.</td>
</tr>
<tr>
<td>Error Panel Details</td>
<td></td>
</tr>
<tr>
<td>Avg Num. of Retries</td>
<td>Average number of retries for all devices interoperating with the CB3000 radio.</td>
</tr>
<tr>
<td>% Gave Up Pkts</td>
<td>Percentage of packets that the CB3000 gave up on for all devices interoperating with the CB3000 radio.</td>
</tr>
<tr>
<td>% of Undecryptable Pkts</td>
<td>Percentage of undecryptable packets for all devices interoperating with the CB3000 radio.</td>
</tr>
</tbody>
</table>
4.1.2 Viewing RF Statistics

RF Statistics track CB3000 activity over the device radio. To view CB3000 RF statistics, select Statistics > RF Statistics from the CB3000 menu tree.

<table>
<thead>
<tr>
<th>Packet Retry Histogram</th>
<th>Packets (Number of Packets retried)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>445068</td>
</tr>
<tr>
<td>1</td>
<td>39223</td>
</tr>
<tr>
<td>2</td>
<td>18419</td>
</tr>
<tr>
<td>3</td>
<td>11509</td>
</tr>
<tr>
<td>4</td>
<td>8616</td>
</tr>
<tr>
<td>5</td>
<td>5965</td>
</tr>
<tr>
<td>6</td>
<td>4164</td>
</tr>
<tr>
<td>7</td>
<td>2795</td>
</tr>
<tr>
<td>8</td>
<td>1861</td>
</tr>
<tr>
<td>9</td>
<td>1399</td>
</tr>
<tr>
<td>10</td>
<td>1063</td>
</tr>
<tr>
<td>11</td>
<td>15244</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Refer to the Packet Retry Histogram field for an overview of the retries transmitted by the CB3000 radio and whether those retries contained any data packets. Use this information to assess overall radio performance.

2. Scroll down through the content of the screen to display a Packets Sent Histogram for each of the client bridge radios. The Packets Sent Histogram displays a percentage of the packets sent over the CB3000 radio at the data rate (Mbps) each was sent. If the majority of the packets sent are at a slower data rate then the one configured for the CB3000 radio, then network problems are preventing the CB3000 from transmitting at an optimum speed and you need to troubleshoot the device.

3. Click the Refresh button at any time to update the content of the RF Statistics screen to the latest data collected over the CB3000 managed network.
4.1.3 Viewing Ethernet Statistics

Ethernet Statistics track CB3000 activity over the Ethernet. To view CB3000 Ethernet statistics, select **Statistics > Ethernet Statistics** from the CB3000 menu tree.

The Ethernet Statistics screen is partitioned into three detailed fields:

- **Information** – Displays basic device address information and link connection status.
- **Received** – Displays statistics for the cumulative packets, bytes, and errors received since the CB3000 was last rebooted or the data collection statistics refreshed.
- **Transmitted** – Displays statistics for the cumulative packets, bytes, and errors transmitted since the CB3000 was last rebooted or the data collection statistics refreshed.
Table 4.2 Describes the Ethernet statistics. Click **Refresh** to update to the latest statistics.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Panel Details</td>
<td></td>
</tr>
<tr>
<td>Physical Address</td>
<td>The MAC address of the CB3000. The MAC address is hard-coded into the device at the factory and cannot be changed.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>Subnet mask IP address for the CB3000.</td>
</tr>
<tr>
<td>Link</td>
<td>Status of the connection link. Possible values are:</td>
</tr>
<tr>
<td></td>
<td>• Up – The connection is active between the CB3000 and network.</td>
</tr>
<tr>
<td></td>
<td>• Down – The connection is interrupted or lost.</td>
</tr>
<tr>
<td>Speed</td>
<td>The CB3000 network connection speed displayed in Mbps. For example, 100 Mbps. If the throughput speed is not achieved, examine the number of transmit and receive errors, or consider increasing the supported data rate.</td>
</tr>
<tr>
<td>IP Addresses</td>
<td>IP address of the CB3000.</td>
</tr>
<tr>
<td>Received Panel Details</td>
<td></td>
</tr>
<tr>
<td>RX Packets</td>
<td>Data packets received by the CB3000 from its networked clients.</td>
</tr>
<tr>
<td>RX Bytes</td>
<td>Data bytes of information received for the CB3000's networked clients.</td>
</tr>
<tr>
<td>RX Errors</td>
<td>Total of RX Dropped, RX Overruns and RX Frame errors. Use this information to determine performance quality of the current CB3000 network connection.</td>
</tr>
<tr>
<td>RX Dropped</td>
<td>Number of data packets that fail to reach the CB3000. If this number appears excessive, consider establishing a new connection to the client.</td>
</tr>
<tr>
<td>RX Overruns</td>
<td>Buffer overruns to the CB3000. These occur when packets are received faster than the CB3000 can handle them. If the number seems excessive, consider reducing the data rate. (see Configuring Ad Hoc Settings for more details).</td>
</tr>
<tr>
<td>RX Frame</td>
<td>Number of TCP/IP data frame errors received.</td>
</tr>
<tr>
<td>Transmitted Panel Details</td>
<td></td>
</tr>
<tr>
<td>TX Packets</td>
<td>Total packets transmitted by the CB3000 to networked clients.</td>
</tr>
<tr>
<td>TX Bytes</td>
<td>Data bytes of information transmitted by the CB3000.</td>
</tr>
<tr>
<td>TX Errors</td>
<td>Total of TX Dropped, TX Overruns and TX Carrier errors. Use this information to re-assess the effectiveness of the CB3000's location and transmit speed.</td>
</tr>
<tr>
<td>TX Dropped</td>
<td>Number of data packets that fail to get sent from the CB3000.</td>
</tr>
<tr>
<td>TX Overruns</td>
<td>Buffer overruns on the WAN connection. These occur when packets are sent faster than the WAN interface can handle. If the number seems excessive, consider reducing the data rate.</td>
</tr>
<tr>
<td>TX Carrier</td>
<td>Number of TCP/IP data carrier errors transmitted.</td>
</tr>
</tbody>
</table>
4.1.4 Viewing Event Log

The CB3000 keeps a log of network events updated every time an event occurs. Use the log file to troubleshoot network problems that could result from broken device connections between the CB3000 and networked clients.

To display the CB3000 log, select Statistics > View Log from the CB3000 menu tree. Click Refresh to update to the logged events.

Figure 4.4 View Log Screen

4.2 Configuring Management Protocols

Numerous management protocol settings are required to support the monitoring and logging mechanisms of the CB3000. To configure these management protocol settings, see the following sections:

- HTTP, HTTPS Configuration Settings
- SNMP Settings
- DHCP Server Settings
- Time Settings
- Logging Settings
4.2.1 HTTP, HTTPS Configuration Settings

The CB3000 supports both HTTP and HTTPS Web access mechanisms. This configuration sets the minimum requirement for access. If you select HTTPS (default), then only HTTPS can access the CB3000. If you select HTTP, then either HTTP or HTTPS will be able to access the CB3000. The Discovery Tool always launches HTTPS pages.

To enable HTTP or HTTPS Web access:

1. Select Management > HTTP from the CB3000 menu tree.

<table>
<thead>
<tr>
<th>HTTP HTTPS Configuration Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP/HTTPS Selection</td>
</tr>
<tr>
<td>- Http</td>
</tr>
<tr>
<td>- Https</td>
</tr>
<tr>
<td>Apply</td>
</tr>
<tr>
<td>Help</td>
</tr>
</tbody>
</table>

The HTTP/HTTPS Configuration Settings screen displays. By default, HTTPS is enabled.

2. To change Web access to HTTP, select the HTTP radio button. Click Apply.
 This enables HTTP access to the Client Bridge.
 If you select HTTP, the CB3000 is accessible through HTTPS as well. If HTTPS is selected however, access is only permitted through HTTPS.

3. Click Apply. The appropriate access mechanism is enabled.
4.2.2 SNMP Settings

Simple Network Management Protocol (SNMP) facilitates the exchange of management information between network devices. SNMP uses Management Information Bases (MIBs) to manage the device configuration and monitor Internet devices that may be in remote locations. MIB information accessed via SNMP is defined by a set of managed objects called object identifiers (OIDs). An object identifier (OID) is used to uniquely identify each object variable of an MIB.

SNMP allows a network administrator to manage network performance, find and solve network problems, and plan for network growth. The CB3000 supports SNMP management functions for gathering information from its network components, and communicating that information to specified users.

The CB3000 SNMP agent functions as a command responder and is a multilingual agent responding to SNMPv1 and v2c managers (command generators). The factory default configuration maintains SNMPv1/2c support of the community names, and thus provides backward compatibility.

To customize the SNMP capabilities provided by default with the CB3000, see the following sections:

- SNMP Trap Selection
- SNMP Access
- SNMP Destination

4.2.2.1 SNMP Trap Selection

SNMP provides the ability to send traps to notify the administrator that trap conditions are met. Traps are network packets containing data relating to network devices, or SNMP agents, that send the traps. SNMP management applications can receive and interpret these packets, and optionally perform responsive actions. SNMP trap generation is programmable on a trap-by-trap basis.

By default, the following SNMP traps are enabled to capture network events that could impact your network, as they relate to CB3000 operations:

- **SNMP Cold Start** – Trap generated whenever the CB3000 re-initializes while transmitting, possibly altering the SNMP agent’s configuration or protocol entity implementation.
- **SNMP ACL Violation** – Trap generated whenever an SNMP client cannot access SNMP management functions or data due to an Access Control List (ACL) violation. This can result from a missing/incorrect IP address entered within the Ethernet Settings screen.
- **SNMP Authentication Failures** – Trap generated whenever an SNMP-capable client is denied access to the CB3000’s SNMP management functions or data. This can result from an incorrect login, or missing or incorrect user credentials.
- **Configuration Changes** – Trap generated whenever changes to the CB3000’s configuration file are saved.
- **Ethernet Acl Violation** - Trap generated whenever a device (not on the Wired Ethernet ACL) has requested access to the CB3000 managed network. Only devices on the Wired Ethernet ACL can access the CB3000 without trap generation.
- **Firmware Upgrade Failure** - Trap generated whenever errors are detected during the CB3000 firmware upgrade process.
- **Config File Update Failure** - Trap generated whenever errors are detected during a CB3000 configuration file update operation.
- **Invalid Text Config** - Trap generated whenever an error is detected when reading a configuration file.
- **Wireless Time Adopt Failure** - Trap generated when the adoption threshold (limit) has been exceeded for a device adoption operation.

- **RF Threshold Throughput** - Trap generated when the defined RF throughput for the CB3000 has been exceeded.

- **RF Average Retries** - Trap generated when the defined number of device retry attempts has been exceeded.

- **Process Failure** - Trap generated when a system critical process (Linux process) fails and is re-started.

To modify these default SNMP trap definition settings, select **Management > SNMP > SNMP Trap Selection** from the CB3000 menu tree. The SNMP Trap Selection screen displays.

1. Unselect a trap, if desired, then click **Accept** to save the setting.

<table>
<thead>
<tr>
<th>SNMP Cold Start</th>
<th>SNMP ACL Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP Authentication Failures</td>
<td>Configuration Changes</td>
</tr>
<tr>
<td>Ethernet ACL Violation</td>
<td>Firmware Upgrade Failure</td>
</tr>
<tr>
<td>Config File Update Failure</td>
<td>Invalid Text Config</td>
</tr>
<tr>
<td>Wireless Time Adopt Failure</td>
<td>Rf Threshold Throughput</td>
</tr>
<tr>
<td>RF Average Retries</td>
<td>Process Failure</td>
</tr>
</tbody>
</table>

![SNMP Trap Selection](image)

Figure 4.6 SNMP Trap Selection

4.2.2.2 SNMP Access

Use the CB3000 SNMP interface to restrict access control using IP addresses. Those who are allowed to access the CB3000 SNMP interface have access to read SNMP generated information and, if capable, modify related settings from an SNMP-capable client.

Note The CB3000 implemented SNMP ACL applies to SNMP v1/v2c community definitions.

To configure SNMP user access control for the CB3000:

1. Select **Management > SNMP > SNMP Access** from the CB3000 menu tree. The SNMP Access Control screen displays.
2. Select the **Enable SNMP Access** checkbox to enable/disable the CB3000 SNMP interface.

3. Enter a 4-32 character string for read-only SNMP permissions in the Read Only field. The default is "public".

4. Enter a 4-32 character string for read/write SNMP permissions in the Read Write field. The default is "private".

5. Enter Start IP and End IP addresses to specify a range of users that can access the CB3000 SNMP interface. Use just the Starting IP Address to specify a single SNMP user. To leave access unrestricted, do not enter an IP address.

 For additional access control, an SNMP-capable client can be set up whereby only the administrator can use a read/write community definition.
6. Click **Add** to add the specified IP address(es).
 Once added, those IP addresses with an allowed designation display within the Allowed IP Addresses table.

4.2.2.3 SNMP Destination

Traps generated by the CB3000 can be sent to one or more destinations. To configure a SNMP trap destination for receiving SNMP traps generated by the CB3000:

1. Select **Management > SNMP > SNMP Trap Destinations** from the CB3000 menu tree. The SNMP Trap Destinations screen displays.

SNMP Trap Destinations

![Figure 4.8 SNMP Trap Destinations](image)

- **Destination IP** – Specify a destination IP address for receiving the traps sent by the CB3000 SNMP agent.
- **Port** – Specify a destination User Datagram Protocol (UDP) port for receiving traps.
- **Community** – Enter a community name specific to the SNMP-capable client that receives the traps.
- **SNMP Version** – Use the SNMP Version drop-down menu to specify v1 or v2. Some SNMP clients support only SNMP v1 traps, while others support SNMP v2 traps and possibly both. Verify the correct traps are in use with clients that support them.

2. Configure the remainder of the fields.
 - Select the checkbox for the destination IP address you wish to delete from the list. Click **Delete**.
 - Click the **Refresh** button to update the data displayed within the screen to the latest values.
4.2.3 DHCP Server Settings

A CB3000 in an ad hoc network can serve as a DHCP server to allocate IP addresses to other devices comprising the ad hoc network.

Note This feature is only relevant for Ad Hoc networks.

To configure CB3000 DHCP:

1. Select **Management > DHCP Server** from the CB3000 menu tree. The DHCP Server screen displays. The DHCP Server screen displays.

2. Select the **Enable DHCP Server support** radio button. This enables the CB3000 to act as a host server to allocate IP addresses to those devices joining the CB3000 initiated ad hoc network.

3. Configure the DHCP server settings, as follows:
 - **IP Range for DHCP** – This range provides a means of controlling a low and high value for the IP addresses on the CB3000 network. Define the range of IP addresses you would like the CB3000 to provide to DHCP clients joining the CB3000-initiated ad hoc network. The valid range of numbers is between 1 and 254.
 - **Subnet Mask** – IP address for the CB3000 DHCP server connection. This number is available from the ISP for a DSL or cable-modem connection, or from an administrator if the CB3000 connects to a larger network. A typical subnet mask is 255.255.255.0.
 - **Gateway** – IP address of the DHCP server.
 - **First DNS** – A DNS server translates human readable addresses (i.e, www.symbol.com) into an IP address readable by a computer.
 - **Second DNS** – Backup DNS server.

4. Click **Apply** to save the settings, or **Cancel** to exit the screen without saving your changes.
4.2.4 Time Settings

Time synchronization is recommended for the CB3000's network operations. Therefore, setting the CB3000’s internal time is required for network clock synchronization in a CB3000’s managed network environment.

The CB3000 (an NTP client) periodically synchronizes its time with a master clock (an NTP server). For example, the CB3000 sets its clock to 07:04:59 upon reading a time of 07:04:59 from its designated NTP server. Support for both of these options is available in the Time Settings screen.

Warning! The time setting will be lost on a reboot, and it will start with the default time, i.e., January 1, 2000.

To configure clock synchronization on the CB3000:

1. Select **Management > Time Settings** from the CB3000 menu tree. The Time Settings screen displays.

![Figure 4.10 Time Settings](image)

2. Select either **Manual Time Setting** or **Enable NTP on CB3000** to specify how CB3000 system time is configured.

 - **Manual Time Setting** – If selected, the CB3000 system time is based on the time entered within the **Local Time Settings** fields.

 - **Local Time Settings** – Current time based on the CB3000 system clock. If NTP is disabled or if there are no servers available, the system time displays the CB3000 uptime. The time does not automatically update. Click the **Refresh** button to update the date and time.

 - **Enable NTP on CB3000** – If selected, specifies the CB3000 time is based on the specified NTP server entered within the **Server Configuration** fields.
• **Preferred time Server** – IP address and port of the primary NTP server. The default port is 123.

• **First Alternate time Server** – Optionally, specify the IP address and port of an alternative NTP server to use for time synchronization if the primary NTP server goes down.

• **Second Alternate time Server** – Optionally, specify the IP address and port of yet another NTP server for the greatest assurance of uninterrupted time synchronization.

3. Select the **Enable Wireless Network Time Adoption on CB 3000** checkbox to enable the CB3000 to obtain its system time from its associated switch.

• **UTC Settings** – Define the **Hours** and **Minutes** intervals the CB3000 uses to synchronize its system time with its associated switch.

4. Click **Apply** to save the settings, or **Cancel** to exit the screen without saving your changes.

4.2.5 Logging Settings

The CB3000 continually logs system events which can prove useful later in assessing the throughput and performance of the CB3000 or troubleshooting problems on the CB3000-managed LAN. The type of event message and where they should be logged can also be configured from the CB3000 console.

To configure event logging for the CB3000:

1. Select **Tools > Logging Configurations** from the CB3000 menu tree. The Logging Configurations screen displays.

![Logging Configurations](image)

Figure 4.11 Logging Configurations

2. Configure the logging level and log destination as required.

• **Logging Level** – Select the desired log level for tracking system events. Eight standard UNIX/LINUX syslog levels are available:
 - 0 - Emergency. The system is unusable.
 - 1 - Alert. Action on these types of events must be taken immediately.
 - 2 - Critical. States a critical condition.
- **3 - Errors.** Describes an error.
- **4 - Warning.** Action should be taken as soon as possible.
- **5 - Notice.** A normal but important event.
- **6 - Info.** Nothing to do, since information only.
- **7 - Debugging purposes only.**

- **saved locally** – Select this radio button to save the log file to the host to which the CB3000 is physically connected. Log entries are not saved in the CB3000. While the CB3000 is in operation, log data temporarily resides in memory.

- **syslog server** – Select this radio button to enable an external syslog server to listen for incoming syslog messages and decode the messages into a log for viewing. Enter the IP address of an external syslog server in order to route the syslog events to that destination.

- **email** – Select this radio button to configure the CB3000 to route log files to the email address and mail server designated. Configure the following parameters:
 - **eMail address** – Enter an email address as the target destination for the log file.
 - **Your Outgoing Mail Server** – Enter the IP address of the outgoing mail server required to route the log file to the destination email address.

3. Click **Apply** to save any changes.
4. Click **Undo Changes** to undo any changes made. Configurations revert to the last saved configuration.
This chapter discusses administrative options to configure support settings of the CB3000 rather than central operational settings. These include:

- Changing the Password
- Rebooting or Restoring a Device
- Importing or Exporting the Configuration File
- Loading Firmware
- Troubleshooting Options

5.1 Changing the Password

Before setting the CB3000 security options, verify an administrative password exists for the CB3000 that differs from the default password (that can be easily obtained).
To password protect and restrict CB3000 device access:

1. Select **Tools > Change Password** from the CB3000 menu tree.

![Change Password Screen](image)

2. Enter the username and password used to log into the console in the **Username** and **Old Password** fields.

3. Enter a new password in the **New Password** field. The new password can be from 0 - 8 characters.

4. Enter the new password a second time in the **Re-enter Password** field.

5. Click **Apply** to save the settings, or **Cancel** to exit the screen without saving your changes.

 To restore the username and password to default values, click the **Restore Default** button.

Warning! While password protecting the CB3000 provides an increased level of security for the device, the password is transited over the network in the clear and can still be hacked.

5.2 Rebooting or Restoring a Device

If the CB3000 stops responding correctly or is acting sluggish, sometimes the best and easiest thing to do is to reboot the device, (much like one reboots a PC).

In addition, if at any given time the administrator needs to restore the device to its original factory state, this is also a viable option. Restoring the device wipes out all previously configured settings as well. Symbol recommends saving a configuration file before restoring the device. (See *Importing or Exporting the Configuration File*).
See the following sections for more information on rebooting or restoring the CB3000.

- **Rebooting the Device**
- **Restoring the Device**

5.2.1 Rebooting the Device

Warning! Please wait 10 seconds before resetting the CB3000 after changing its configuration to avoid a disruption of operation and possible device hang.

To reboot the CB3000:

1. Select **Tools > Reset / Restore** from the CB3000 menu tree. The Reset/Restore CB3000 screen displays.

 ![Figure 5.2 Reset / Restore CB3000 Screen](#)

 Figure 5.2 Reset / Restore CB3000 Screen

2. Click the **Reboot** button to restart the CB3000. The CB3000’s network connection is disrupted for a few moments while the CB3000 reboots.

 ![Note](#)

 Note If rebooting the CB3000 does not alleviate the device’s poor performance. Consider restoring the CB3000’s out-of-box default configuration. For more information, see **Restoring the Device on page 5-4.**
5.2.2 Restoring the Device

If problems persist with the operation of the CB3000, consider restoring the device's out-of-box factory configuration. Reverting the CB3000 back to its default configuration wipes out the current device configuration. Consider saving the CB3000's current configuration, and having it available to either port to another CB3000 or download back to the same CB3000 after restoring the device. See Importing or Exporting the Configuration File.

Warning! Restoring the CB3000's default configuration deletes the device's current configuration.

To restore the CB3000 to the out-of-box default configuration:

1. Save the CB3000's current configuration before updating the firmware. After the firmware update, the configuration file can be imported in order to restore the CB3000 to the configuration saved before the update. See Importing or Exporting the Configuration File for more information.

 Warning! Be sure to save a copy of the CB3000's configuration file before restoring the device's default configuration.

2. Select Tools > Reset/Restore from the CB3000 menu tree. The Reset/Restore CB3000 screen displays.

 Figure 5.3 Reset/Restore CB3000 Screen

3. Click the Restore button.

 The CB3000's network connection is disrupted for a few moments while the CB3000 loads its default (out-of-box) configuration, then restores the screen. Once the default configuration is restored, restore the last saved configuration or reconfigure the device.

 Note Restoring the device is the same as the “Reset to initial” option available on the Troubleshooting screen.
5.3 Importing or Exporting the Configuration File

A CB3000 configuration file can be saved and downloaded (exported) to be used later for importing to other CB3000 units, or to restore a CB3000 temporarily reset to factory defaults. Using the file-based configuration feature speeds up the setup process at sites using multiple CB3000s.

To create an import-able/export-able CB3000 configuration file, select Tools > Configuration File from the CB3000 menu tree. The Config Import/Export screen displays.

Imports or exports can be conducted using either FTP or HTTP. FTP is useful for remote accessibility of configuration files not co-located with the CB3000, but on an accessible FTP server. HTTP is useful to import/export configuration files locally. See the following depending on your import/export requirements.

- Using FTP
- Using HTTP
5.3.1 Using FTP

To import or export a CB3000 configuration file using an FTP server:

1. Select **Tools > Configuration File Settings** from the CB3000 menu tree. The Config Import/Export screen displays. If using FTP, only the top panel of the screen is used.

 ![Config Import/Export](image)

 Figure 5.4 Config Import/Export

2. Configure the FTP Import/Export settings to import or export a CB3000 configuration file.

 - **Filename** — Name of the configuration file written to the FTP server.
 - **File Path** — Defines the path to the specified filename.
 - **Server IP** — IP address of the destination FTP server where configuration file is imported or exported.
 - **Username** — Username used when logging in to the FTP server.
 - **Password** — Password (associated with username) allowing access to the FTP server for the operation.
3. Continue, as appropriate, depending on whether you are importing or exporting a configuration file from/to the specified FTP or TFTP server with the specified filename and login information.
 - If importing, click the FTP Import or TFTP Import button.
 The system displays a confirmation window indicating the administrator must log out of the CB3000 after the operation completes for the changes to take effect.
 Click Yes to continue the operation, or No to cancel the configuration file import.
 - If exporting, click the FTP Export or TFTP Export button.
 The saved configuration file should be found/available on the specified FTP server.

5.3.2 Using HTTP

To import or export a CB3000 configuration file using HTTP settings (local machine import/exports):
1. Select Tools > Configuration File from the CB3000 menu tree. The Config Import/Export screen displays. If using HTTP, only the bottom panel of the screen is used.
2. Continue, as appropriate, depending on whether you are importing or exporting a configuration file.
 - If importing, follow these steps:
 - Click Browse to define a location on the system for the imported configuration file.
 - Click the Apply Uploaded File button to apply the configuration. If successful, the following message displays: Configuration file has successfully updated. Rebooting... Please wait.
 - If exporting, follow these steps:
 - Click the Generate File button to generate the configuration data to export to a file (within the console system’s clipboard).
 - A few moments after a “Generate File done” message displays, click Download File. A File Download pop-up window appears.

Warning! Please wait 10 seconds before resetting the CB3000 after changing its configuration to avoid a disruption of operation and possible device hang.
Figure 5.5 File Download Dialog Box

- Click **Save**. A dialog box prompts for a filename and location for the exported file (on the local machine or networked machine).
- Click **OK** to export the file.

5.4 Loading Firmware

Symbol periodically releases updated versions of the CB3000 device firmware to the following Symbol URL:

```text
http://www.symbol.com/services/downloads
```

If the CB3000 firmware version displayed on the **Information** or **Troubleshooting** screens are older than the version on the Web site, Symbol recommends updating the CB3000 to the latest firmware for full feature functionality.

Note The firmware file must be available from an FTP or TFTP site, or a locally networked machine to perform the update.
To conduct a CB3000 firmware update:

1. Save the CB3000 current configuration before updating the firmware. After the update, the configuration file can be imported to restore the CB3000 to the settings before the update. See Importing or Exporting the Configuration File for more information.

 Warning! Be sure to save a copy of the CB3000's configuration file before updating the firmware.

2. Select Tools > Load Firmware from the CB3000 menu tree. The Load Firmware screen displays.

 ![Load Firmware Screen](image)

3. Refer to the CB3000 Version displayed at the top of the screen to assess whether a firmware update is required. Compare the installed version with the version available at:

 If a firmware update is required, proceed to step 4.

4. Select whether to get the firmware file from either an FTP/TFTP server, or locally, via HTTP, by clicking on the appropriate radio button in the upper and lower panels on the screen.

5. If loading the firmware file from a FTP/TFTP server, follow these steps (skip to step 6 for HTTP loads):
 a. Specify the name of the target firmware file within the File name field.
b. If the target firmware file resides within a directory (once downloaded from the Web site), specify a complete path for the file within the **File path** field.

c. Select either the FTP or TFTP server radio button, as required, to define whether the firmware file resides on a FTP or TFTP server.

d. Set the following parameters:
 - **IP Address** – IP address for the FTP or TFTP server.
 - **Username** (for FTP server only) – Username to log into the server.
 - **Password** (for FTP server only) – Password associated with the username.

e. Continue with step 7.

6. If loading the firmware file from a locally stored file (getting firmware file from HTTP), click the Browse button to navigate to the locally stored firmware update file. Continue with step 7.

7. Click the **Upgrade** button to initiate the update. Upon confirming the firmware update, the CB3000 reboots and completes the update.

8. Confirm the CB3000's configuration is the same as before the firmware update.

 If they are not, import the configuration file saved prior to performing the update (step 1). See *Importing or Exporting the Configuration File* for more details.

Warning! Please wait 10 seconds before resetting the CB3000 after changing its configuration to avoid a disruption of operation and possible device hang.
5.5 Troubleshooting Options

The CB3000 console includes utilities for testing IP network or local network communication issues between the device and host. These utilities (as well as a button to restore the CB3000 to its factory configuration) are available in the CB3000 Troubleshooting screen.

Access the Troubleshooting screen by selecting **Tools > Troubleshooting** from the CB3000 menu tree. At the top of the screen, the Firmware version, MAC address and CB3000 serial number display.

Troubleshooting

![Troubleshooting Screen](image)

The following options exist within the Troubleshooting screen:

- **Determine if a Firmware Update is Needed** — Determine whether a firmware update is required by comparing the existing version against the latest version available on the Symbol Web site. Go to http://www.symbol.com/services/downloads to compare the versions. To update the firmware, see **Loading Firmware**.

 The **MAC Address** and **Serial Number** are hardcoded to the CB3000 during the manufacturing and are located on the bottom of the CB3000. Keep the MAC address and the serial number readily available since these addresses are required when contacting Symbol to report a problem.

- **Ping an Associated Device** — The CB3000 can verify its link with an associated access point or networked peer (depending on the configured network mode) by sending WNMP ping packets to the device. To conduct a ping test with an associated device, follow these steps:
 a. Enter the IP address of the target device.
 b. Specify the length of each data packet transmitted to the target device during the ping test. This increment is defined in bytes. If you don’t know, enter a large arbitrary amount like 500.
c. Specify the number of ping packets to transmit (in other words, the number of ping tests to perform).
d. Click the **ICMP Ping Test** button. Results of the ping test displays in the **Status** box.

![Screenshot of ICMP Ping Test](image1.png)

Figure 5.8 Ping Test with Associated Device Status Example

Use the results to determine whether the device association should be maintained or replaced by a device association providing better network coverage and signal strength.

- **Ping the Host** – The CB3000 can verify its link with its host by sending WNMP ping packets to the host’s IP address. To conduct an ICMP ping test with the CB3000’s host:

a. Enter the IP address of the host.

b. Specify the length of each data packet transmitted to the target device during the test. This increment is defined in bytes. If you don’t know, enter a large arbitrary amount like 500.

c. Specify the number of ping packets to transmit.

d. Click the **Comm Connection Test** button. Results of the test displays in the **Status** box.

![Screenshot of Comm Connection Test](image2.png)

Figure 5.9 Ping Test with Host Status Example

e. Use this information to determine whether the host connection should be maintained or replaced by a host connection providing better connectivity with the CB3000.
The CB3000 client bridge has the following technical specifications:

Table A.1 CB3000 Technical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (with antenna)</td>
<td>0.65 lbs (0.30 kg)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>7 in. wide x 4 in. deep x 1.2 in. high</td>
</tr>
<tr>
<td></td>
<td>(17.78 cm. wide x 10.16 cm. deep x 3.05 cm high)</td>
</tr>
<tr>
<td></td>
<td>excluding external antenna and foot stand</td>
</tr>
<tr>
<td>Protocol Support</td>
<td>TCP/IP, DHCP</td>
</tr>
</tbody>
</table>
Standards Conformance
- IEEE 802.11
- IEEE802.3
- IEEE802.1d
- IEEE 802.11a
- IEEE 802.11g
- IEEE802.1x
- IEEE802.3u
- HTTP

Network Architectures
- Infrastructure (Access Points)
- Ad-Hoc (Peer-to-Peer)

Operating Frequencies
- **IEEE 802.11a**: 4.9 – 5.9 GHz
- **IEEE 802.11b/g**: 2.4 – 2.5 GHz

LAN (Ethernet) Connection
- One 10/100 Base-T

Ethernet Frame
- Ethernet_II and IEEE 802.3

Data Rate
- **IEEE 802.11a**: 54, 48, 36, 24, 18, 12, 9, 6 Mbps
- **IEEE 802.11b**: 11, 5.5, 2, 1 Mbps
- **IEEE 802.11g**: 54, 48, 36, 24, 18, 12, 9, 6 Mbps

Modulation
- **IEEE 802.11a**: Orthogonal Frequency Division Multiplexing
 (64QAM, 16QAM, QPSK and BPSK)
- **IEEE 802.11b**: Direct Sequence Spread Spectrum (CCK, DQPSK, DBPSK)
- **IEEE 802.11g**: Orthogonal Frequency Division Multiplexing
 (64QAM, 16QAM, QPSK and BPSK)

Security
- 64/128-Bit WEP
- IEEE 802.1x
- WPA1 (TKIP)
- WPA2 (CCMP)

Peak Antenna Gain
- 3 dBi at 2.4 GHz
- 4 dBi at 5 GHz

Operating Temperature
- 0 – 50° Celsius
Table A.1 CB3000 Technical Specifications (Continued)

<table>
<thead>
<tr>
<th>Storage Temperature</th>
<th>-20 – 70°C Celsius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Humidity</td>
<td>10 – 90% relative humidity, non-condensing</td>
</tr>
<tr>
<td>Storage Humidity</td>
<td>5 – 85% relative humidity, non-condensing</td>
</tr>
<tr>
<td>Power Supply</td>
<td>Switching DC 12V, 1A</td>
</tr>
</tbody>
</table>
| **Other Features** | • Supports SNMP MIBs (Simple network management protocol)
 | • Features: Embedded HTTP Web management server in each access point works with any web browser that supports HTML and Javascript |
The reference design has support for SNMP v2. The SNMP agents WILL be accessible through SNMP manager applications such as HP Open View, MIB browsers. The SNMP agent WILL support read-write, read only or disabled modes. The following are the supported SNMP MIBs.

Additional MIBs will be supported as needed for minimum functioning of the CB3000 for Symbol Enterprise Mobility Management (SEMM) support.

Table B.1 SNMP MIB Support

<table>
<thead>
<tr>
<th>MIB Name</th>
<th>Description</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRIDGE</td>
<td>Module for managing devices supporting 802.1D</td>
<td>.1.3.6.1.2.17</td>
</tr>
<tr>
<td>IEEE802dot11</td>
<td>Standard MIB for 802.11 devices and includes entities for station management, MAC and PHY settings.</td>
<td>.1.2.840.10036</td>
</tr>
</tbody>
</table>
Table B.1 SNMP MIB Support (Continued)

<table>
<thead>
<tr>
<th>MIB Name</th>
<th>Description</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF-MIB</td>
<td>MIB module for managing objects for network interface sub-layers. This is an updated version of the MIB-II Table.</td>
<td>.1.3.6.1.2.1.2.2.1.1</td>
</tr>
<tr>
<td>IP-FORWARD-MIB</td>
<td>Module for managing CIDR multipath routes</td>
<td>.1.3.6.1.2.1.4.24</td>
</tr>
<tr>
<td>IP-MIB</td>
<td>MIB for managing IP and ICMP implementations, excluding the management of IP routes.</td>
<td>.1.3.6.1.2.1.4 (IP)</td>
</tr>
<tr>
<td>XXX-DOT11EXT2-MIB</td>
<td>Vendor specific extensions to the standard 802.11 MIB for additional station management objects, association table, enhanced security, neighboring BSSs.</td>
<td>.1.3.6.1.4.1.yyy.3</td>
</tr>
<tr>
<td>SNMPv2-MIB</td>
<td>MIB module for managing SNMPv2 entities.</td>
<td>.1.3.6.1.6.3.x</td>
</tr>
<tr>
<td>TCP-MIB</td>
<td>MIB module for managing TCP implementations.</td>
<td>.1.3.6.1.2.1.6</td>
</tr>
<tr>
<td>UDP-MIB</td>
<td>MIB module for managing UDP implementations.</td>
<td>.1.3.6.1.2.1.7</td>
</tr>
<tr>
<td>SBL-MIB</td>
<td>Symbol-specific MIB information to be implemented</td>
<td></td>
</tr>
</tbody>
</table>
Symbol Technologies provides its customers with prompt and accurate customer support. Use the Symbol Support Center as the primary contact for any technical problem, question or support issue involving Symbol products.

If the Symbol Customer Support specialists cannot solve a problem, access to all technical disciplines within Symbol becomes available for further assistance and support. Symbol Customer Support responds to calls by email, telephone or fax within the time limits set forth in individual contractual agreements.

When contacting Symbol Customer Support, please provide the following information:

- Serial number of unit
- Model number or product name
- Software type and version number
North American Contacts

Inside North America, contact Symbol at:

For sales and product information:
Symbol Technologies, Inc.
One Symbol Plaza
Holtsville, New York 11742-1300
Telephone: 1-631-738-2400/1-800-SCAN 234
Fax: 1-631-738-5990

For product support and service:
Symbol Global Support Center:
Telephone: 1-800-653-5350
+1-631-738-6213 (Outside North America)
Fax: 1-631-738-5410
Email: support@symbol.com

International Contacts

Outside North America, contact Symbol at:

Symbol Customer Contact Centre
44 800 328 2424 (toll free UK)
042 053 333 6123 (Brno)
+ “in country” local numbers in EMEA

For other sales offices use the Symbol Services Web site for contact information
http://www.symbol.com/services/howto/howto_contact_us.html

Web Support Sites

Comprehensive On-line support is available at the MySymbolCare Web site. Registration is free and a variety of services can be linked through this web-portal.

MySymbolCare
http://www.symbol.com/services/msc/msc.html

Symbol Services Homepage
http://www.symbol.com/services

Symbol Software Updates
http://www.symbol.com/services/downloads

Symbol Developer Program
http://devzone.symbol.com
Additional Information

Obtain additional information by contacting Symbol at:

1-800-722-6234 (Inside North America)
+1-631-738-5200 (Inside/Outside North America)
http://www.symbol.com/