Table of Contents

Table of Contents... 3
1. Overview .. 4
 1.1 Technical Requirements .. 4
2. Topology... 4
 2.1 Configuration.. 5
 2.1.1 Configure Virtual Controller .. 5
 2.1.2 Smart-RF Configuration .. 7
 2.1.3 Create MCX Meshpoint .. 9
 2.1.4 Tune System Profile ... 11
 2.1.5 Misconfiguration Recovery .. 18
3. Troubleshooting .. 19
 3.1 MCX Status / Troubleshooting Command Reference ... 23
1. Overview

Zebra best practices for deploying a MeshConnex (MCX) network details the use of AP-mode profile types, specifically a profile for “root” nodes and a profile for “non-root” nodes. There are a number of reasons for this suggestion:

- It lends to a hierarchical flow and organization of the master configuration
- It provides a means to ensure that non-root devices do not assume RF-Domain Manager responsibilities by disabling the “RF-Domain Manager Capable” parameter or by establishing a lower priority for these devices
- It aids in the change-control process within an organization
 - Delineates between devices types, mitigating potential misconfiguration issues
 - Allows for granularity in process recording

However, in a virtual controller setting, this is not possible as there is only a single device-type profile. The Virtual Controller function does not allow for multiple profiles as it only serves to manage like devices.

The purpose of this guide is to outline the configuration of a Virtual Controller MeshConnex™ environment.

1.1 Technical Requirements

Listed are the components used in creating this document:

- WiNG 5.4.0.0-047R
- (3x) – AP7131 Access Points

2. Topology
2.1 Configuration

The steps involved with configuring a Virtual Controller based MeshConnex network are listed below. Full configuration of WLAN’s and other parameters are beyond the scope of this document:

1. Configure Virtual Controller AP
2. Configure Smart-RF policy or establish static channels
3. Configure Meshpoint (MeshConnex WLAN)
4. Tune the system profile for MCX AP types

2.1.1 Configure Virtual Controller

A single AP will act as the adopting device for the other AP’s that are of the same hardware type; i.e. all AP7131’s or AP6532’s, etc. Establishing the VC is simply a check box on the designated device, which is found at Configuration > Devices > Virtual Controller AP > System Name:
At the command line, enter configuration mode on the device you wish to act as Virtual Controller:
Enter “self” configuration mode:

ap7131-9313CC#self
Enter configuration commands, one per line. End with CNTL/Z.
ap7131-9313CC(config-device-00-23-68-93-13-CC)#

Execute the virtual controller command:

ap7131-9313CC(config-device-00-23-68-93-13-CC)#virtual-controller
ap7131-9313CC(config-device-00-23-68-93-13-CC)#commit write
[OK]
ap7131-9313CC(config-device-00-23-68-93-13-CC)#show context

ap71xx 00-23-68-93-13-CC
use profile MCX-APs
use rf-domain default
hostname ap7131-9313CC
interface vlan10
 ip address dhcp
 no shutdown
virtual-controller
 logging on
 no logging console
 logging buffered warnings
ap7131-9313CC(config-device-00-23-68-93-13-CC)#

2.1.2 Smart-RF Configuration

If Smart-RF will be used, then care should be taken to determine if indoor or outdoor channels are utilized as well as if DFS is to be avoided or not. The Smart-RF policy can be found by navigating to: Configuration > Wireless > Smart-RF:
Enable Smart-RF by checking “Activate SMART RF Policy”.

- Disable the three recovery modes, as these are generally not applicable for MCX links and may cause inadvertent performance issues. (Under Basic Configuration)

- MCX should generally be limited to the 5GHz band. Specify the Smart-RF channel list per the regulations for the country it is being configured in. (Under Channel and Power)
• Remember to specify your MCX ID, binding the meshpoint to Smart-RF.
• The channel-list settings shown are an example only. In this case, US outdoor channels that avoid DFS frequencies were selected.

Smart-RF Configuration:

```bash
ap7131-9313CC#show run smart-rf-policy tme-smart-rf
smart-rf-policy tme-smart-rf
  assignable-power 5GHz max 10
  assignable-power 2.4GHz max 7
  channel-list 5GHz 149,153,157,161,165
  smart-ocs-monitoring meshpoint 5GHz tme-mcx
  no interference-recovery
  no neighbor-recovery
  no coverage-hole-recovery
ap7131-9313CC#
```

2.1.3 Create MCX Meshpoint

The meshpoint is similar to a WLAN, only dedicated to the communication of the mesh AP’s with one another. Navigate to Configuration > Wireless > MeshConnex Policy and create a new policy:
The Mesh ID identifies the links to the AP’s; like an SSID. Beacon format should be set to “mesh-point” to include the information element to the APs.

Under the **Security** tab is where the PSK will be defined if encryption of the mesh links is desired.
Under the “Radio Rates” tab, the defaults can be left, as the rates will be adjusted within the device profile.

Meshpoint configuration at the command line is similar to that of creating a WLAN:

```
Meshpoint Configuration:
ap7131-9313CC#show run meshpoint tme-mcx
meshpoint tme-mcx
description VC Mesh
meshid tme-mcx
beacon-format mesh-point
control-vlan 10
allowed-vlans 8-11
security-mode psk
wpa2 psk 0 hellomoto
no root
ap7131-9313CC#
```

2.1.4 Tune System Profile

The system profile is the profile that is used by the devices within the Virtual Controller domain, whether you have selected to use the default or create another (as to stick with a naming
convention, for example). The profile parameters herein will ensure that MCX is optimized for mesh links. Navigate to **Configuration > Devices > System Profile**

As there is only a single profile supporting both root and non-root AP’s, configure the profile for root parameters. Port link monitoring will determine if the device ends up as a root or a non-root device.
Within this example, there will be no devices connected to Ge2. Scenarios may exist in which an IP camera (video surveillance), electric utility cap-bank (Smart Grid) or other device may utilize the Ge2 port. On the AP7161 and AP7181 devices, this port can also provide PoE (802.3af) for those devices.

For purposes of this document, the “radio2” interface configuration, specifically will be covered as it is used for the mesh links between nodes.

The settings within this document represent those specific to the AP7131. Remember that within a mesh network, typically all devices participating in a particular meshpoint will be the same model. Thus the parameters can be hard-coded for optimal performance, rather than accepting the typical default, client-friendly settings.

- Dynamic Chain Selection: un-checked
- Data Rates: “an” – as we are specifically using the 5GHz radio for mesh and want the best throughput on the mesh links
- Radio Placement: depends on application
- Rate Selection: always set for Opportunistic
Next we must map the meshpoint to the radio, similar in the way that we map a WLAN to a radio:

Under the **WLAN Mapping / Mesh Mapping** tab, select the MeshPoint and click the “<” to move the meshpoint to the radio, as seen below:
Under **Advanced / Miscellaneous** is where one finds the MeshPoint Behavior setting, dependent on whether the device is a *Vehicle Mounted Modem* (VMM) or not. Generally this parameter will be left at its default setting of "External (Fixed)"., unless a VMM is in use.

Finally, navigate to **Mesh Point** within the System Profile. Here you will add the meshpoint that was created earlier, defining the device profile as that of a meshpoint device and specify that the profile will always set the device as a “root” AP.
Under General set “Is Root” to true and then check the “Monitor Primary Port Link” box, as shown below:
By monitoring the primary (Ge1) port, MCX can determine if the device should be a root AP or a non-root; if there is no data link detected on Ge1, the device will fallback to non-root, thus utilizing a single hardware profile and automatically provisioning our device type.

There are caveats with this method of provisioning in a regular MCX environment where you may support multiple device types and profiles. Please see the MCX How-To guide for details on provisioning the device mode in those cases.

System Profile Configuration:

```
ap7131-9313CC#show run profile ap71xx MCX-APs
profile ap71xx MCX-APs
  no autoinstall configuration
  no autoinstall firmware
  crypto ikev1 policy ikev1-default
    isakmp-proposal default encryption aes-256 group 2 hash sha
  crypto ikev2 policy ikev2-default
    isakmp-proposal default encryption aes-256 group 2 hash sha
  crypto ipsec transform-set default esp-aes-256 esp-sha-hmac
  crypto ikev1 remote-vpn
  crypto ikev2 remote-vpn
  crypto auto-ipsec-secure
interface radio1
  wlan tme-wlan bss 1 primary
interface radio2
  data-rates custom basic-54 mcs8-15
  rate-selection opportunistic
  placement outdoor
  meshpoint tme-mcx bss 1
  aggregation ampdu none
  antenna-mode 2x2
  no dynamic-chain-selection
interface radio3
interface ge1
  switchport mode trunk
  switchport trunk native vlan 10
  no switchport trunk native tagged
  switchport trunk allowed vlan 8-11
  ip dhcp trust
  qos trust dscp
  qos trust 802.1p
```
interface ge2
 ip dhcp trust
 qos trust dscp
 qos trust 802.1p
interface vlan10
 ip address dhcp
 ip dhcp client request options all
interface wwan1
interface pppoe1
use firewall-policy default
service pm sys-restart
router ospf
 meshpoint-device tme-mcx
 name tme-mcx
 root
 monitor primary-port-link action no-root
ap7131-9313CC#

2.1.5 Misconfiguration Recovery

There is a parameter known as “misconfiguration-recovery-time” only found (as of 5.4.0.0-047R) at the CLI. This parameter essentially affords a failsafe in the event of a misconfiguration that causes the mesh to fail.

The default misconfiguration-recovery-time is 180 seconds. Once the mesh network has been deployed and functional, this should be set to 300 seconds. This will ensure that once a configuration change has been applied, it will have up to 5 minutes to settle and re-form links; otherwise the previous configuration will be reinstated. Enter config mode and go into the device profile to modify the parameter:

Misconfiguration-recovery-time

ap7131-9313CC#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
ap7131-9313CC(config)#profile ap71xx MCX-APs
ap7131-9313CC(config-profile-MCX-APs)#misconfiguration-recovery-time 300
[OK]
ap7131-9313CC(config-profile-MCX-APs)#commit write
ap7131-9313CC(config-profile-MCX-APs)#end
ap7131-9313CC#
3. Troubleshooting

First, a good summary is necessary to establish just where we’re at. Navigate to Statistics and select your RF-Domain name (Default if left unchanged), then Mesh Point. At this top-level view you can determine what links exists for all meshpoints or by selecting a specific meshpoint.

Pay attention to the drop-downs that allow you to select a specific meshpoint and whether you would like to view Paths or Neighbors. The color coded legend will discern the link types.

Under the Device Types tab, you can select the individual devices to obtain other information such as the Paths as seen by the selected device:
Of course, there is the power of the CLI to get more information:

Show wireless meshpoint on <rf-domain>:

```plaintext
ap7131-9313CC#show wireless meshpoint on default
---------------------------------------------------------------------
MESH HOSTNAME HOPS IS-ROOT CONFIG-AS-ROOT ROOT-HOSTNAME ROOT-BOUND-TIME PATH-METRIC NEXT-HOP-HOSTNAME NEXT-HOP-USE-TIME
---------------------------------------------------------------------
tme-mcx ap7131-9313CC 0 YES YES N/A N/A 0
N/A 0 N/A

tme-mcx ap7131-970408 1 NO YES 0 days N/A 0 days
04:44:59 ap7131-9313CC 0 days 04:44:59

tme-mcx ap7131-9E5144 1 NO YES 0 days N/A 0 days
04:45:10 ap7131-9313CC 0 days 04:45:10

Total number of meshpoint displayed: 3
```

The above command will give a good reference point as to the number of hops for the devices, who is acting as root, etc.

And an example of the formatting if you expand your terminal client to full screen (a much better view of the information):
Show wireless meshpoint neighbor detail on `<rf-domain>`:

```
ap7131-9313CC#sho wireless meshpoint neighbor detail on default
Neighbors @00-23-68-93-13-CC (ap7131-9313CC), tme-mcx [00-23-68-93-48-60]

<table>
<thead>
<tr>
<th>Neighbor Name</th>
<th>Neighbor MPID.IFID</th>
<th>Root Name</th>
<th>Root MPID</th>
<th>RMet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hops Type</td>
<td>Interface</td>
<td>Auth-State</td>
<td>Resourced</td>
<td>Rank</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>------------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Fixed</td>
<td>00-23-68-93-13-CC:R2 Enabled</td>
<td>Yes</td>
<td>5</td>
</tr>
<tr>
<td>ap7131-9E5144</td>
<td>00-23-68-99-E7-30</td>
<td>ap7131-9313CC</td>
<td>00-23-68-93-48-60</td>
<td>192</td>
</tr>
<tr>
<td>1</td>
<td>Fixed</td>
<td>00-23-68-97-04-08:R2 Enabled</td>
<td>Yes</td>
<td>7</td>
</tr>
<tr>
<td>ap7131-970408</td>
<td>00-23-68-94-B7-80</td>
<td>ap7131-9313CC</td>
<td>00-23-68-93-48-60</td>
<td>191</td>
</tr>
<tr>
<td>0</td>
<td>Root</td>
<td>00-23-68-97-04-08:R2 Enabled</td>
<td>Yes</td>
<td>8</td>
</tr>
</tbody>
</table>
```

Neighbors @00-23-68-97-04-08 (ap7131-970408), tme-mcx [00-23-68-94-B7-80]

```
ap7131-9313CC 00-23-68-93-48-60.00-23-68-93-48-60 ap7131-9313CC 00-23-68-93-48-60 0
```

Neighbors @00-23-68-97-04-08 (ap7131-970408), tme-mcx [00-23-68-94-B7-80]

```
ap7131-9313CC 00-23-68-93-48-60.00-23-68-93-48-60 ap7131-9313CC 00-23-68-93-48-60 0
```

Neighbors @00-23-68-9E-51-44 (ap7131-9E5144), tme-mcx [00-23-68-99-E7-30]

```
ap7131-9313CC 00-23-68-93-48-60.00-23-68-93-48-60 ap7131-9313CC 00-23-68-93-48-60 0
```

```
ap7131-970408 00-23-68-94-B7-80.00-23-68-94-B7-80 ap7131-9313CC 00-23-68-93-48-60 191
```
To get a good view of the tree structure of your meshpoint; that is – the various paths through your devices, use the following:

Show wireless meshpoint tree on <rf-domain>:

```
ap7131-9313CC#show wireless meshpoint tree on default
1:tme-mcx [3 MPs(1 roots, 2 bound)]
   |-ap7131-9313CC
   |   |-ap7131-9E5144
   |   |-ap7131-970408

Total number of meshes displayed: 1
```

Below is the output of the “debug wireless meshpoint on <rf-domain>” command, which shows a device as it lost power and then came back into the mesh:

debug wireless meshpoint on <rf-domain>:

```
ap7131-9313CC#debug wireless meshpoint on default
```

And with formatting:

```
<table>
<thead>
<tr>
<th>Neighbor Name</th>
<th>Neighbor Mesh ID</th>
<th>Root Name</th>
<th>Root Mesh ID</th>
<th>Xmit Hop</th>
<th>Type</th>
<th>Interface</th>
<th>Ctrl-Status</th>
<th>Mesh Point</th>
<th>Last Seen</th>
<th>IMAP Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>ap7131-9313CC</td>
<td>00-23-68-93-48-60</td>
<td>ap7131-9313CC</td>
<td>00-23-68-93-48-60</td>
<td>192</td>
<td>Fixed</td>
<td>00-23-68-93-48-60</td>
<td>Enabled</td>
<td>76</td>
<td>90</td>
<td>192</td>
</tr>
<tr>
<td>ap7131-9313CC</td>
<td>00-23-68-93-48-60</td>
<td>ap7131-9313CC</td>
<td>00-23-68-93-48-60</td>
<td>192</td>
<td>Fixed</td>
<td>00-23-68-93-48-60</td>
<td>Enabled</td>
<td>76</td>
<td>90</td>
<td>192</td>
</tr>
</tbody>
</table>
```

Total number of meshpoints displayed: 3
3.1 MCX Status / Troubleshooting Command Reference

Listed are some commands that will be effective in troubleshooting MCX from the CLI:

<table>
<thead>
<tr>
<th>MCX troubleshooting command reference:</th>
</tr>
</thead>
<tbody>
<tr>
<td>show wireless meshpoint on <rf-domain></td>
</tr>
<tr>
<td>show wireless meshpoint neighbor detail on <rf-domain></td>
</tr>
<tr>
<td>show wireless meshpoint path <meshpoint></td>
</tr>
<tr>
<td>show wireless meshpoint tree on <rf-domain></td>
</tr>
<tr>
<td>debug wireless meshpoint on <rf-domain></td>
</tr>
</tbody>
</table>