Table of Contents

1. Introduction: .. 4
 1.1 Overview: ... 4

2. Pre-Requisites: .. 5
 2.1 Requirements: .. 5
 2.2 Components Used: ... 5

3. Output Options: .. 5
 3.1 CLI Configuration Example: ... 5

4. Configuration: .. 6
 4.1 Command Syntax: ... 6
 4.1.1 What and Where... 7
 4.1.2 CLI Configuration Example: .. 10

5. Useful Options: .. 11
 5.1 Example 1 - Filters: ... 11
 5.2 Example 2 - “snap”: .. 14

6. Advanced Capabilities – remote-debug: .. 14
 6.1 TZSP Caveat: .. 16
 6.1.1 CLI Configuration Example ... 16
 6.1.2 TZSP Host Configuration: ... 16

7. Reference Documentation: .. 18

Figures

Figure 1: Points of Capture Logical Diagram .. 4
Figure 2: Scenario Diagram .. 6
Figure 3: Example .pcap File .. 11
Figure 4: Viewing with Wireshark ... 12
Figure 5: Filter Example .. 13
Figure 6: Capwap capture .. 13
Figure 7: Example of a “snapped” capture .. 14
Figure 8: Wireshark on remote host ... 17
Figure 9: Wireshark display filters ... 17

Excerpts

Excerpt 1: Radio Interface Capture... 7
Excerpt 2: Wireless Interface Capture ... 7
Excerpt 3: RFS Ge1 Interface Capture .. 8
Excerpt 4: L3 Interface Capture ... 8
Excerpt 5: Wireless Interface Capture ... 10
Excerpt 6: Write to File Example .. 10
Excerpt 7: Send to TFTP ... 11
Excerpt 8: Filter Options ... 11
Excerpt 9: Capwap Filter Example ... 13
Excerpt 10: “Snap” Feature .. 14
Excerpt 11: remote-debug options ... 15
Excerpt 12: live-pktcap “hosts” option ... 15
1. Introduction:

The WiNG platform includes many troubleshooting and diagnostic features to help the administrator in determining root cause and effect of many various problems that inhibit communications. The robust troubleshooting feature set built in to Zebra’s WiNG software affords network administrators the ability to troubleshoot at any point in the WLAN infrastructure and the edge network. One of these features is the built-in packet capture function, which is a command-line based tool. The purpose of this paper is to introduce the reader to the “pktcap” and “remote-debug” commands that allow traces to be captured and analyzed. It also gives a brief overview of some of the functionality this powerful command gives the network administrator.

1.1 Overview:

In WiNG 5.x, the “pktcap” command becomes much more robust in functionality. It now includes the ability to:

- Capture at the core or the edge of the wireless network (i.e. – RFS switch and / or the access points)
- Capture on any physical interface (Ethernet, radio, radio interface module (rim), etc.)
- Capture on any logical interface (bridge, vlan, wireless, vpn, etc.)
- Capture based on applied rules (deny, drop)
- Capture to to remote destinations (tftp, ftp or a Tazman Sniffer Protocol (tzsp) host via the remote-debug command)

WiNG 5 now gives a network administrator fully distributed packet capture capabilities to perform troubleshooting at a very granular level. The following diagram represents points at which packet capture can be executed as related to an access point running WiNG 5; every logical and physical boundary can facilitate captures in both inbound and outbound directions:

![Figure 1: Points of Capture Logical Diagram](image-url)
2. Pre-Requisites:

2.1 Requirements:

As of this writing, the following requirements must be met in order to utilize the packet capture feature described herein:

An RFS switch running WiNG version 5.0.0.0-107R or later.

AP650’s or AP71731’s running version 5.0.0.0-107R or later.

2.2 Components Used:

The information in this document is based on the following Zebra hardware and software versions:

1 x RFS4010 running version 5.0.0.0-107R.
1x AP7131 running version 5.0.0.0-107R.

1x Laptop
1x mobile client – in this case, an Apple iPhone 4

Registered users may download the latest software and firmware from the Zebra Technical Support Site http://support.symbol.com.

3. Output Options:

By default, the “pktcap” feature will capture to the terminal / console from which it was started in real time. It will capture up to 50 packets, scrolling them by on the console. However this behavior is configurable; options include:

Save to local file in flash; file can be named

Locally saved captures can be up to 1M packets

Save to a tftp or ftp host

Capture to a remote TZSP host for real-time analysis with applications such as Wireshark. This is further discussed in section 6 (Advanced Capabilities).

3.1 CLI Configuration Example:

1)

RFS4000# service pktcap on interface vlan10 write pktcap.pcap
Capturing up to 50 packets. Use Ctrl-C to abort.
...

2)
RFS4000# dir

Directory of flash:/.
4. Configuration:

The following diagram depicts the setup:

![Scenario Diagram]

Figure 2: Scenario Diagram

4.1 Command Syntax:

“Pktcap” is a sub-command to the “service” command, as seen below:

```
rfs4000-22A3AC# service ?
advanced-wips  Advanced WIPS service commands
    clear        Reset functions
    cli-tables-expand  Expand the cli-table in drapdown format
    ..
    mint         MiNT protocol
    pktcap       Start packet capture
    pm           Process Monitor
    radio        Radio parameters
    ..
```


As can be seen via the help feature, there are many options right away to use with the “pktcap” command. The packet capture feature of WiNG 5 allows the administrator to save the capture by various methods so that it can be reviewed later using a capture / decoding application such as Wireshark.

4.1.1 What and Where

One of the first questions that may come up for many administrators is where do I capture to see the data I want or what data will I see at “named” interface? These are good questions and to answer, it helps to logically think about the flow of data from the wireless client to the point that it enters the supporting wired infrastructure. A couple examples are included below:

4.1.1.1 At the Access Point

From client to AP, layer-2 connectivity data can be captured. Packets between immediate L2 devices (wireless client mac, data switch mac where AP is plugged in) and the mac-address of the BSS (particular SSID) are seen, and these packets are encrypted (if using encryption on the WLAN).

Excerpt 1: Radio Interface Capture

![Excerpt 1: Radio Interface Capture](image)

To capture packets as they leave the AP, headed either for the infrastructure or the controller, capture at the “wireless” interface, which is from the wireless medium to the wired medium. At this point there will be wireless infrastructure overhead packets (MiNT) as well as the unencrypted data between wireless clients and the infrastructure.

Excerpt 2: Wireless Interface Capture

![Excerpt 2: Wireless Interface Capture](image)
4.1.1.2 At the RFS (Controller)

Unless the controller includes built-in radios (i.e. rfs4011), then capturing at the “radio” or “wireless” interfaces will yield nothing; the commands will be accepted, but you’ll be waiting quite a while to see any packets as none are being capture.

On the RFS, it makes sense to capture on physical interfaces (gex, up1), L3 logical interfaces (interface vlan1) or the bridge interface. And depending on which point you choose, you will see MiNT infrastructure packets and / or unencrypted client data packets. In the first example below, the AP7131 is plugged directly into an rfs4010. Thus, we can expect to see client data packets, broadcast / multicast packets from the AP as well as the controller and also direct communication MiNT packets between the AP and the controller (not all types were included in the excerpt).

Excerpt 3: RFS Ge1 Interface Capture

1) RFS “Ge1” Interface Capture

```
RFS4000# service pktcap on interface ge1
Capturing up to 50 packets. Use Ctrl-C to abort.
1: 2:44:57.639687 I ICMP: 192.168.150.11 > 192.168.150.7 echo request, id 512, seq 46976, length 40
2: 2:44:57.640284 O ICMP: 192.168.150.7 > 192.168.150.11 echo reply, id 512, seq 46976, length 40
3: 2:44:58.263696 O MINT 00:23:68.22.A3.AC > 01-A0-F8-00-00-00 | DGRAM 68.22.A3.AC/0 > 00-00-00-00-00-00 router
4: 2:44:58.263696 O MNT 00:23:68.22.A3.AC > 01-A0-F8-00-00-00 | DGRAM 68.22.A3.AC/0 > 00-00-00-00-00-00 router
5: 2:44:58.639721 I ICMP: 192.168.150.11 > 192.168.150.7 echo request, id 512, seq 47232, length 40
6: 2:44:58.640280 O ICMP: 192.168.150.7 > 192.168.150.11 echo reply, id 512, seq 47232, length 40
7: 2:44:59.639750 I ICMP: 192.168.150.11 > 192.168.150.7 echo request, id 512, seq 47488, length 40
8: 2:44:59.640403 O ICMP: 192.168.150.7 > 192.168.150.11 echo reply, id 512, seq 47488, length 40
9: 2:45:00.626974 I MINT 00:23:68.93.13.CC > 01-A0-F8-00-00-00 | DGRAM 68.93.13.CC/0 > 00-00-00-00-00-00 router
```

Note: Notice that direction of the packet is indicated by (I | O) after the timestamp and before the protocol type.

Of course, on a L3 interface, we can expect to see L3 data. The following example shows data packets from the HTTP GUI on the RFS, various ARP data as well as the ICMP echo / reply packets from a client to the controller.

Excerpt 4: L3 Interface Capture

1) RFS “vlan1” L3 Interface Capture

```
RFS4000# service pktcap on interface vlan1
9: 3:00:32.561239 I ICMP: 192.168.150.11 > 192.168.150.100 echo request, id 512, seq 23684, length 40
10: 3:00:32.561384 O ICMP: 192.168.150.100 > 192.168.150.11 echo reply, id 512, seq 23684, length 40
11: 3:00:32.884424 O TCP: 192.168.150.7 ports 80 > 4431, data length 317, PA, DF
12: 3:00:32.988723 I ARP: Who has 192.168.150.1007 tel l 192.168.150.7
13: 3:00:32.988736 O ARP: 192.168.150.100 i s at 00-23-68-22-A3-AC
```
4.1.1.3 Remote-Debug “Distributed” Capture

Discuss more later, the remote-debug feature allows for promiscuous capture of all traffic a device hears. It is similar to having a “distributed” capture system in place. In this way, if one wishes to see what kind of traffic is in the air in a specific area, then this method can be used to capture all the packets in the air as heard by the device that remote-debug is executed on.

The difference is that “pktcap” captures traffic traversing a specific device and so the clients associated to that device will be seen as well as traffic sourced from or destined to the particular device that “pktcap” is executed at. With remote-debug live-cap executed at an access-point, traffic from any client heard by that device will be captured, whether the client is associated to that access point or not. Additionally, the access point may pick up management frames (probe requests, responses, beacons, etc.) from neighboring WLAN's in other buildings, for other companies.
4.1.2 CLI Configuration Example:

Connecting to the AP7131 in the diagram and issuing a simple wireless capture

Excerpt 5: Wireless Interface Capture

1) Connecting to AP / Wireless Interface Capture

RFS4000# connect ap7131-85CD20
<output removed for brevity>

Ap7131-85CD20# service pktcap on wireless
Capturing up to 50 packets. Use Ctrl-C to abort.

1 19:37:32.023070 I WNMP-Config DC-2B-61-16-CF-86 > 01-A0-F8-F0-00-04
2 19:37:32.080950 I ARP: Who has 192.168.150.17 tell 192.168.150.48
3 19:37:32.081053 O ARP: Who has 192.168.150.1 is at 00-23-68-22-D2-6E
4 19:37:32.081157 I ARP: Who has 10.0.0.1? tell 10.0.0.19
5 19:37:32.081166 O ARP: Who has 10.0.0.1? tell 10.0.0.19
6 19:37:32.082874 O UDP: 0.0.0.0 > 255.255.255.255 ports 68 > 67, data length 308
7 19:37:32.082928 O UDP: 0.0.0.0 > 255.255.255.255 ports 68 > 67, data length 308
8 19:37:32.083637 O UDP: 192.168.150.1 > 255.255.255.255 ports 67 > 68, data length 308, tos 0x10

In the above example, a packet capture to the console was started and then the iPhone client was connected to the WLAN (only the first 8 packets were included in the text).

In the following example, a simple capture to a file of the same action was performed, but this time at the RFS4000 switch:

Excerpt 6: Write to File Example

1) Write to File Example

rfs4000-22D26E# service pktcap on inter ge1 write example-cap.pcap count 20
filter ether host DC-2B-61-16-CF-86 - note the use of the filter
Capturing up to 20 packets. Use Ctrl-C to abort.

20

rfs4000-22D26E#dir
Directory of flash:/.

drwx Thu Sep 30 19:30:55 2010 log
drwx Sat Jan 1 00:00:08 2000 configs
drwx Sat Jan 1 00:00:08 2000 cache
-rw 5425 Wed Sep 29 21:06:20 2010 vlab-config
drwx Sat Jan 1 00:00:08 2000 crashinfo
-rw 3375 Thu Sep 30 19:45:06 2010 example-cap.pcap
drwx Sat Jan 1 00:00:08 2000 hotspot
-rwx 24 Fri Sep 17 19:36:58 2010 wifi-pktcap-112310.pcap
And to view the file using Wireshark, we simply copy the file to our laptop using tftp (tftpd32.exe (http://tftpd32.jounin.net/) running in this example):

Excerpt 7: Send to TFTP

1) Sending Capture File to TFTP Server

```bash
rfs4000-22D26E# copy example-cap.pcap tftp://192.168.150.5/
```

We can then open the file to view the contents:

Figure 3: Example .pcap File

![Figure 3: Example .pcap File](image)

5. **Useful Options:**

5.1 Example 1 – Filters:

Continuing with our example, there are a number of very useful options an administrator can use while performing troubleshooting with the packet capture functions. Some of these include on-the-fly filters and the ability to limit how much of a packet is captured. The list of filter options follows:

Excerpt 8: Filter Options

1) Pktcap Filter Options

```bash
rfs4000-22D26E# service pktcap on inter gel write example-cap.pcap count 20 filter ?
```

LINE User defined packet capture filter (enclose in " if (and) are used):

```bash
   ([not]) ether host AA-BB-CC-DD-EE-FF|src AA-BB-CC-DD-EE-FF|dst
   AA-BB-CC-DD-EE-FF| broadcast|multicast)
   (ip6|arp|ether proto <0-65535>)|vlan <1-4095>
```
priority <0-7>| wlan
<1-2>| (host|src|dst)
A. B. C. D|
(src|dst) net A. B. C. D/M
ip (multicast|proto (<0-255>|PROTO)|)
tcp (fin|syn|rst|ack)|
udp|
icmp|
igmp|
(src|dst) port (<0-65535>|PORT)|
capwap (data|ctrl)|
mint|
radi o <index>

One might notice that some of the files do not appear to have been the result of the “filter” option in the command. Take for instance packet 3 in Figure 4, which is a DHCP request packet. If you drill down into this packet, you will find that the request did initiate with the client specified in the filter, as seen in Figure 5.

![Wireshark Screenshot](example-cappecap-Wireshark.png)

Figure 4: Viewing with Wireshark
An administrator may find themselves in a position where they are troubleshooting communications between an access point and the controller. In this case one may want to start with the “capwap” filter. Control and Provisioning of Wireless Access Points (capwap) is a protocol that enables a controller to manage a collection of access points and is an IEEE standard based on Cisco’s LWAPP. If these packets are not seen, then the suspect access point is not adopted (which is probably already known at this point) and further investigation into reasons why (such as layer-2 vlan boundaries) can be conducted.

Excerpt 9: Capwap Filter Example

```
1) Capwap Filter Example

rfs4000-22D26E# service pktcap on inter ge1 write example-cap.pcap count 20 filter capwap
Capturing up to 20 packets. Use Ctrl-C to abort.
20
```

Figure 5: Filter Example

Figure 6: Capwap capture
5.2 Example 2 – “snap”:

Often when troubleshooting wireless, it is not necessary for an administrator to see an entire packet's contents; perhaps only a connectivity problem is being investigated. In this case, the “snap” option can be used to limit the size of the packets to, as an example, only the first 128 bytes. This gives the administrator the important header information that may be needed, while saving on resources such as cpu cycles, memory or storage use.

Excerpt 10: "Snap” Feature

1) “Snap” Feature

```
rfs4000-22D26E# service pktcap on inter ge1 write example-cap.pcap count 20
snap 128 filter ether host DC-2B-61-16-CF-86
```
Capturing up to 20 packets. Use Ctrl-C to abort.

Now compare the screen shot in Figure 6 below to the one in Figure 5. Notice that packet 3 this time is only 128 bytes in length (instead of 324 bytes) and as not all information was in the packet, Wireshark was unable to fully qualify the packet as a DHCP request. Yet the pertinent information of the “filter” client address and the BOOTP details give enough information to analyze the packet correctly.

6. Advanced Capabilities – remote-debug:

One of the latest and most advanced features in WING 5 is the remote-debug command. This command allows one to troubleshoot a remote device by providing access from the controller to obtain logs, trace files and various debugging information. While this command has many more options that what are mentioned here, the focus of this writing is the “live-capture” option. This feature enables a WING 5 wireless system to function as a distributed sniffer, enabling packet capturing from remote hosts. It is a very powerful troubleshooting tool for the wireless and the wired network. Typically, remote-debug will be
performed at a controller to capture data for known connected and specified devices (adopted AP’s, cluster members, etc.).

The “remote-debug live-capture” command allows an administrator to perform packet capture of all traffic heard by the device where the remote-debug is executed, in real-time. It can then be written off to various destinations, just as a standard capture with the “pktcap” command (FTP, TFTP, file on flash, etc.). However, one big benefit is the ability to send to a remote host via the Tazman Sniffer Protocol (tzsp), allowing for real-time packet analysis with a protocol analyzer such as Omnipeek or Wireshark. The TZSP method is covered in this document.

First, we’ll look at a breakdown of the command syntax and some options.

Excerpt 11: remote-debug options

1) Remote-debug command options

```
remote-debug ?

clear-crashinfo Clear all crashinfo files
copy-crashinfo Copy all files from flash/crashinfo
copy-techsupport Copy extensive system information useful to technical support for troubleshooting a problem
end-session End ongoing debug session
live-pktcap Live packet capture
more Display the contents of a file
offline-pktcap Capture packets and transfer packet capture data after capture completes
wireless Wireless debug messages
```

2) Remote-debug live-pktcap

```
remote-debug live-pktcap ?

hosts Remote hosts
rf-domain Specify the RF-Domain
```

When performing a live packet capture using the “remote-debug” command, one has two options; “hosts” and “rf-domain”.

Hosts – specify any known and reachable hosts; may specify multiple hosts by separating with spaces

Rf-domain – specify the rf-domain relative to the data that is to be captured. This is a shortcut to listing all hosts in an rf-domain, instead of having to list each host individually.

Excerpt 12: live-pktcap "hosts" option

```
remote-debug live-pktcap hosts ap7131-970408 ap7131-9313CC
```

Capturing up to 50 packets from each remote host. Use Ctrl-C to abort.
When capturing from multiple hosts, the controller will automatically collate the packets into a single stream in sequence, making it easy to observe events across the network.

6.1 TZSP Caveat:

TZSP is an encapsulation protocol that runs over UDP. As such, when capturing in this way, the device performing the capture will send to the specified TZSP host (a laptop running Wireshark, for instance) on UDP port 37008. As most laptops do not typically listen for udp on port 37008, a display filter can be written to hide the resulting ICMP "destination port unreachable" messages that will be received. Another option is to run the "iperf.exe" application on said host and configure it to listen on udp port 37008, but this is not necessary. "iperf.exe" can be downloaded from the Internet for free for many OS platforms by doing a simple Google search. A Windows version can be found at: http://www.noc.ucf.edu/Tools/Iperf/iperf.exe; copy this file into a system path directory, such as `C:\Windows\system32`.

6.1.1 CLI Configuration Example

1) **Iperf.exe Command on Laptop (command prompt)**

```
AP7131# iperf.exe -s -u -p 37008
```

Server listening on UDP port 37008
Receiving 1470 byte datagrams
UDP buffer size: 8.00 KByte (default)

2) **WiNG 5 Device Command**

```
AP7131# remote-debug live-pktcap rf-domain default write tzsp 192.168.150.1 radio 1
```

6.1.2 TZSP Host Configuration:

By initiating a capture on the interface as specified via IP address in the "remote-debug" command and applying a display filter of "tzsp", real-time analysis can be performed remotely.
As previously stated, TZSP encapsulates over UDP and WiNG will default to a destination port of 37008. Since it is not common that a laptop may be listening on this port, a display filter can be written to hide the ICMP “destination port unreachable” messages that will result.
7. Reference Documentation:

<table>
<thead>
<tr>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
</table>